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iTeleScope: Softwarized Network Middle-Box
for Real-Time Video Telemetry and Classification

Hassan Habibi Gharakheili, Minzhao Lyu, Yu Wang, Himal Kumar, and Vijay Sivaraman

Abstract—Video continues to dominate network traffic, yet
operators today have poor visibility into the number, duration,
and resolutions of the video streams traversing their domain.
Current monitoring approaches are inaccurate, expensive, or
unscalable, as they rely on statistical sampling, middle-box
hardware, or packet inspection software. We present iTelescope,
the first intelligent, inexpensive, and scalable softwarized network
middle-box solution for identifying and classifying video flows in
real-time. Our solution is novel in combining dynamic flow rules
with telemetry and machine learning, and is built on commodity
OpenFlow switches and open-source software. We develop a fully
functional system, train it in the lab using multiple machine
learning algorithms, and validate its performance to show over
95% accuracy in identifying and classifying video streams from
many providers including Youtube and Netflix. Lastly, we conduct
tests to demonstrate its scalability to tens of thousands of
concurrent streams, and deploy it live on a campus network
serving several hundred real users. Our traffic monitoring system
gives unprecedented fine-grained real-time visibility of video
streaming performance to operators of enterprise and carrier
networks at very low cost.

Index Terms—Softwarized Networks, Telemetry, Classification,
Video Traffic.

I. INTRODUCTION

V IDEO constitutes a majority of Internet traffic today, and
is slated to increase even further in the near future, as

higher resolutions (1440p and 4K) become more prevalent, and
augmented/virtual reality (AR/VR) starts to take off [8]. In or-
der to manage this video traffic (for quality and cost reasons),
enterprises and carriers need better visibility into the video
streams in their network. Operators can today infer macro-
scopic attributes (such as aggregate volume of video traffic on
their peering link with a video content provider like Netflix),
but they have near-zero visibility into the micro-scopic aspects,
such as how many video streams are concurrently active at a
time, what their durations are, what resolutions they operate
at, and how often they adapt their rate. Visibility into these
attributes can allow them to better understand both video
content characteristics and video viewing patterns, so they can
tune their network to meet content-provider expectations as
well as enhance user experience.

Several existing methods can be used for visibility into

Email addresses: H. Habibi Gharakheili, M. Lyu, H. Kumar, and
V. Sivaraman are with the School of Electrical Engineering and
Telecommunications, University of New South Wales, Sydney, NSW
2052, Australia (e-mails: h.habibi@unsw.edu.au, minzhao.lyu@unsw.edu.au,
yu.wang1@unswalumni.com, himal.kumar@unsw.edu.au, vi-
jay@unsw.edu.au).

This article is an extended and improved version of our paper presented
at the EWSDN 2016 conference [48].

video streams, but they come with disadvantages: SNMP
[27] can be used to retrieve traffic counts from switches, but
these counters are at the interface-level, and may represent
an aggregate of many video and non-video flows. NetFlow
[16] enables a switch to aggregate IP flow information in a
local cache and export this information periodically – this
requires the switch hardware to be capable of decoding,
collating and caching entries, and can also entail a penalty in
switch CPU utilization in the range of 7-22% [1]. sFlow [42]
reduces this overhead by statistically sampling traffic; however,
lower sampling rates inevitably lead to reduced accuracy in
traffic characterization [43] (explained in §III-F). Specialized
traffic monitoring solutions can provide both accuracy and
performance – for example deep packet inspection “middle-
boxes” (e.g., Sandvine) can inspect data packets at high rates;
however, such solutions cost hundreds of thousands of dollars
that is prohibitive for many network operators.

The general problem of classifying network traffic has
been studied by many prior research works [9], [46], [14],
[41], [37], [38], [21], using various methods ranging from
inspecting a few bytes in the payload, to processing headers or
characterizing the signatures of packets streams, which may
become unreliable with the adoption of tunnel and payload
encryption. Our paper focuses more narrowly on streaming
video flows, and the general methods developed earlier do not
directly apply, as they are either reliant on tunnel or packet
payloads being visible (video traffic is increasingly encrypted)
or require long trains of packets to be analyzed in software
(limiting scalability). Further, they do not determine aspects
specific to video streams, such as rates and resolutions. We
believe that the Software Defined Networking (SDN) paradigm
is ideally suited to the task of identifying and classifying
video traffic, since Openflow by its nature provides flow-level
isolation and visibility in a low-cost and scalable manner.

Video streaming over the Internet has evolved over the past
two decades [31]. Currently, dynamic adaptive streaming over
HTTP (DASH) is the dominant technique of video delivery,
used by major providers such as Youtube and Netflix, that
breaks the video into a sequence of small chunks, each chunk
containing a short interval of playback time of video. The
video content is made available at a variety of different resolu-
tions (i.e., bit rates) – the higher the video resolution, the larger
the chunk size (in Bytes). While the video is being played
back, the client automatically selects from the alternatives of
next chunk to download and plays based on current network
conditions [32], providing high quality playback with minimal
stalls [25].

While SDN-based flow-level monitoring for video streams
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may seem conceptually simple, there are several challenges
to be overcome: correctness of the solution requires dealing
with an arbitrary set of content providers and dynamic video
end-points; carrier-grade performance requires the controller
to be protected against packet overload and the solution to be
resilient to controller failures; and high scalability requires
minimizing the software inspection of packets as well as
flow-modifications on the switch hardware. In this paper we
develop, deploy, and evaluate our SDN-based solution called
iTeleScope that meets these challenges to provide fine-grained
visibility into streaming video flows. Our first contribution
is to develop a system architecture, comprising selective
packet inspection, dynamic flow-table management, and flow
traffic profile analytics, that is intelligently able to identify
and classify long video streams. We show how our design
meets our goals of low cost (by using commodity Openflow
switches), scalability (by filtering packets to minimize soft-
ware processing), and high accuracy (via machine learning
methods that use key attributes related to flow traffic profiles).
Our second contribution develops a fully-functional prototype
based on the above architecture using commodity hardware
and software: a NoviFlow Openflow switch, the Ryu SDN
controller, the Bro packet inspection engine, and the Weka
machine learning suite. We show how we train and tune our
classifier in the lab, and validate its performance to obtain over
95% accuracy in identifying video streams and deducing their
resolution, typically within 60-90 seconds, even when such
traffic comes from shared server pools that serve many types
of content (such as done by Google). Finally, we demonstrate
the scalability of our system to tens of thousands of concurrent
streams generated from a hardware tester, and do a field-
deployment in a University dorm network serving hundreds
of students, yielding new insights into video viewing patterns
and quality measures for the University residence network.

The rest of this paper is organized as follows: §II describes
prior work on network monitoring solutions, and §III describes
our solution approach that captures and evaluates flow-level
information. In §IV we describe our prototype implementation
used to validate our solution, while in §V we evaluate the
scalability and efficacy of our system. The paper is concluded
in §VI.

II. RELATED WORK

Traffic classification: This has been a broad-ranging area
of interest to the research community for well over a decade,
aiming to distinguish mice from elephants, peer-to-peer from
downloads, and over-the-top voice/video from streaming ap-
plications. Several surveys of this area have been conducted
[9], [46], [14] and reveal existing classification techniques to
have different trade-offs in terms of their accuracy, computing
cost, and scalability. Among widely used approaches: (a)
TCP/UDP port-based classifiers have become less reliable
since modern sophisticated applications use non-standard or
random port numbers; (b) payload inspectors come at a high
cost of processing and are increasingly being defeated due to
encrypted content [13]; (c) statistical and behavioral classifiers
are attractive as they are fairly light-weight, employing flow-

level information and machine learning algorithms to iden-
tify various traffic types. It has been shown [22] that flow-
level analysis (i.e., based on NetFlow and IPFIX) is more
scalable than packet-level analysis, and combination of packet
inspection and flow monitoring achieves more accurate results.
Indeed, traffic modeling has been studied extensively over the
past two decades [20], [23], [39], and many researchers have
worked to develop models ranging from fractal-based [40],
[52] to structural models [36], [33] for describing the behavior
of Internet traffic in short timescales. Inspired by prior work
[28], we use flow attributes computed at multiple timescales as
input to our classifiers (§III-E). Also, there exist commercial
middle-boxes which are either purely software-based (i.e., Vir-
tual Network Functions) [5], [11], [18] or custom-hardware-
based [4], [6]. Both types of existing middle-boxes employ
deep packet inspection, but their effectiveness may reduce as
more Internet traffic becomes end-to-end encrypted. We note
that existing appliances generally perform classifications for a
broader range of traffic types [14], [45], and hence may not
accurately characterize video flows. Further, we note that fully
virtual (software-based) solutions are difficult to scale while
custom-built hardware solutions are very expensive.

Authors of [29] proposed a sampling technique for classi-
fying TCP flows that only zero-payload packets are extracted
by network functions to address the scalability concern of
software-based inspection. Work in [24] developed an algo-
rithm to enhance the performance of rule matching inside
SDN hardware switches using multi-dimensional lookups.
Moreover, there exist a body of work on custom sketch-
based algorithms [49], [51] for monitoring network flows.
However, these methods require specialized data structure
and hardware design which hinders the practical adoption of
such approaches. Additionally, sketching algorithms typically
demand additional compute resources on network switches
[34] (concern of scalability). Some [43] have proposed to
measure network activity of “top-k” heavy hitters (only a
limited number of elephant flows) by running a customized
algorithm in data-plane. Our objective, instead, is to monitor
all potential elephant flows (videos and non-videos) with
generic flow-level telemetry given limited resources available
on network switches. Our iTelescope system leverages the
best of both worlds, by keeping the state management and
intelligent processing in the software (at low load) while
pushing repetitive tasks for long flows into the SDN white-box
hardware (at high speeds). This dynamic split lets our solution
achieve unprecedented scale. Unlike much of the prior work
that tries to classify traffic by application type, our focus in
this paper is specifically on streaming video for reasons stated
earlier. As we will see soon, our solution uses a combination
of packet filtering based on header information, flow-level
telemetry, and behavioral pattern recognition to detect and
classify streaming video flows in real-time.

SDN-based monitoring: Several proposals for flow-based
measurement and monitoring for SDN have been developed
in the literature [17], [51], [15], [50], [47]. OpenSketch [51]
proposes a clean slate redesign of the data-plane to support
monitoring; unfortunately it requires an upgrade to the data-
plane, which can be a barrier to uptake. DevoFlow [17]
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Fig. 1: iTeleScope (a) system, (b) data broker, and (c) SDN
application, architecture.

highlights the performance limits of OpenFlow when scaling
to extract counters for all flow entries. We partially avoid
these problems by inserting reactive entries for only a small
fraction of flows, namely flows that transfer a large volume of
traffic. Examples of standard OpenFlow based approaches for
traffic monitoring include PayLess [15], FlowSense [50], Sam-
ple&Pick [12] and OpenNetMon [47], which insert rules and
collect per-flow counters in response to standard PacketIn
and FlowRemoved messages respectively. These approaches
try to balance the accuracy of flow-level statistics against
the cost of control-plane overhead, by adjusting the time-
out attribute of rules for example based on their counters (a
large byte-count shortens the time-out). However, we believe
that these reactive interactions between the controller and
the switch (i.e., PacketIn and FlowRemoved) can impose
a heavy processing load on the controller, and suffer from
disruptions in data-plane operation if there is a control-plane
failure. As we will explain later, our architecture does not
use any PacketIn messages, minimizing the use of controller
resources, while also being robust to failures.

The work in [26] proposes an interactive user interface
that uses SDN to monitor and visualize the network state,
including traffic rates and rules within each switch. The
network administrator can adjust the time-outs of rules as
well as the frequency of statistics collection. Our solution also
provides an intuitive web-based user interface, though it is
specifically for visualizing video flows, and it manages flow-
table entries automatically without operator involvement. The
work in [30] conducts empirical studies to show that flow-
level counters in OpenFlow switches may have significant
inaccuracies; however, we have confirmed in our experimental
work (§V-A) that our NoviFlow switches are accurate to within
1.7% in terms of their flow byte-counts.

The current work builds upon our earlier proposal for flow-
based video telemetry [48]. However, our earlier work relied
only on average bitrate, with threshold detectors statically
configured for selected video content providers. The current
work extends it by extracting a richer set of attributes (such as

idle-fraction and burstiness at various time-scales) and using
machine learning to automatically identify and classify video
flows. Further, we expand our system to incorporate DNS
inspection to identify a larger set of content providers, and
validated its performance in a live network serving several
hundred users.

III. SYSTEM DESIGN AND ARCHITECTURE

In this section we describe our iTelescope solution, includ-
ing the major architectural decisions (§III-A), the functional
blocks (§III-B), flow-table management (§III-C), packet in-
spection (§III-D), telemetry collection (§III-E), and the classi-
fication algorithm (§III-F).

A. Architectural Decisions

Our solution is designed to be a “bump-in-the-wire” on the
link at which video classification is desired (an alternative
approach is to feed our system a mirror of all organizational
traffic, though this precludes active traffic management at a
later date). Our system is therefore transparent to the network,
and does not modify packets in any way. Further, our SDN
switch does not send any data packets to the controller; instead,
packets that need to be inspected in software are sent as copies
on a separate interface of the switch, to which a software
inspection engine is attached. This protects the controller
from overload from the data-plane, allowing it to scale to
high rates and to service other SDN applications. Moreover,
since incoming data packets are sent onwards by the switch
immediately, the data-plane benefits in having minimal latency
overhead, and is protected from controller failures.

Our second architectural decision is in the judicious combi-
nation of packet-level and flow-level monitoring. In essence,
we use the Openflow switch as a hardware filter to limit the
fraction of traffic (to the first few MB of each flow) that
is mirrored for software inspection; heavier (elephant) flows
are suppressed from software mirroring by inserting reactive
flow-table entries, and are monitored by periodically polling
their flow-level counters. This approach is tuned to balance
the load between the software (for packet inspection) and the
hardware (for flow table size, modification rate, and counter
polling). We undertook an experimental investigation of this
trade-off using a 24-hour feed of our University campus traffic
(our empirical results are outlined in [35]), and found that a
volume threshold of 4 MB is suitable for declaring a flow
as an elephant and creating a reactive flow-table entry for
it. With this threshold, only a small fraction of flows were
elephants. We required less than 5000 entries in the hardware
flow-table at any time and less than 20 flow-mods per-second.
Also, no more than 25-30% of packet traffic (corresponding to
mice flows) was sent to the software inspection engine. This
is because according to our empirical study in [35], 70-75%
of the traffic was carried in elephant flows and thus bypasses
software inspection. As we will demonstrate later, this balance
between hardware and software processing reduces cost and
increases scalability, while enabling extraction of attributes for
machine learning-based classification with high accuracy.
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Fig. 2: Flow table structure.

B. Functional Blocks
Fig. 1(a) shows the functional blocks in the iTeleScope

architecture applied to a typical carrier or enterprise network.
End-users are on the left, and can be on an access network us-
ing wired (DSL, Ethernet, Fiber) and/or wireless (e.g., 3G/4G,
WiFi) technology. The video content providers are on the right,
connected to the carrier/enterprise network through an Internet
gateway. Our iTelescope solution can be applied on any desired
link as a bump-in-the-wire. It comprises an SDN switch whose
flow-table rules will be managed dynamically (explained in
§III-C), a packet inspection engine (described in §III-D), and a
data broker in conjunction with our App on the SDN controller
(internal modules shown in Figures 1(b) and 1(c)) that collect
telemetry (§III-E) and run the classification algorithms (§III-F).

The operational flow of events is as follows: assume that
video traffic enters (from the content provider) on port-1 and
exits (towards the consumer) on port-2; the switch is initially
configured to mirror all traffic to the inspection engine on port-
3. The inspection engine keeps track of flow volume, and once
it exceeds the threshold of 4 MB, notifies the data broker. The
broker then instructs our SDN App to insert a reactive flow-
entry for the specific stream, which stops the mirroring of
packets for this stream. Thereafter, the data broker polls the
counters (via SDN App) periodically and develops a traffic
profile for the stream, which is fed to the machine learning
algorithm for classification. Flow entries for a stream are
automatically aged out upon inactivity. Further, our inspection
engine has a specific event handler that captures DNS A-type
replies, and extracts the server name and IP address so the
content provider for the video stream can be identified. In
what follows we describe each of the components in more
detail.

C. Flow Table Management
We use a combination of proactive and reactive entries in

a multi-table pipeline of the SDN switch, as shown in Fig. 2.

Reactive rules match on the 5-tuple, are of highest priority
(Table 0), and are installed as a consequence of elephant flows
detected by the packet inspection engine. They automatically
time out upon a minute of inactivity, so as to reduce TCAM
usage. The reactive flow entries achieve two objectives: to
stop mirroring of long-flow packets to the software inspection
engine, and to provide flow-level telemetry for the individual
(potentially video) long-flows. The action corresponding to a
match in the reactive table sends the flow to its appropriate
entry in the group table, which identifies the content provider
(Youtube, Netflix, etc.). The content provider for the flow is
identified by searching for the server IP address in the most
recent captured DNS suffixes (e.g., googlevideo.com or
nflxvideo.com) that are stored in a time-series database by
the software inspection engine. We note that if a video stream
from a new DNS suffix is detected (e.g., ttnvw.net) then a
new group entry (for Twitch in this example) will be created
dynamically. Our design not only makes the system adaptive
to new video content providers, but also allows us to track
aggregate video volumes for each video content provider.

Proactive (Table 1) entries are statically pushed by the
controller so that all TCP (proto=6) and UDP (proto=17)
packets received from the content provider, that have not
already matched an elephant flow (Table 0), are forwarded
(on port 2) and mirrored (on port 3) to the software inspection
engine. Note that this includes DNS reply packets that contain
the domain name of the video content provider and the video
server IP address. All other packets are sent to Table 2, where
the default action is to cross-connect the input and output ports
(without any mirroring). We again emphasize that no data
packets are sent to the controller, minimizing controller load,
reducing packet-forwarding latency, and immunizing against
controller failures.

D. Packet Inspection Engine

The packet inspection engine keeps track of new flows,
including 5-tuple information, duration, and volume, using ef-
ficient hash-table based data structure with 5-tuple information
as the hash key. The engine maintains states in our optimized
hash-table ordered in time. Our hash table data structure is
a combination of key, value pairs where values are doubly
linked (using pointers) and arranged in time to ease timeout
and deletion. If a flow is active for more than a threshold
volume, it is deemed as a elephant flow, and the engine informs
the Broker which then makes a RESTful API call to the SDN
controller to insert the reactive flow-table entry into the switch.
This suppresses data-plane traffic for this flow from being
mirrored to the inspection engine (as described in §III-C), and
also triggers telemetry for that flow, as described in §III-E.

The other responsibility of the packet inspection engine is
detection of DNS A-type replies, upon which it extracts the
domain name and server IP addresses, and sends these via
JSON to the broker, which writes it into a time-series DNS
database. This database is used to associate a video stream to
its content provider. Note that we use unencrypted DNS replies
since our empirical results from the university campus traffic
feed show that only a negligible fraction (less than 0.01%) of
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(a) Youtube 144p(low resolution)
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(b) Youtube 480p(medium resolution)
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(c) Youtube 1080p(high resolution)
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(d) Youtube 2160p(u-high resolution)
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(e) Netflix (high resolution)
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(f) Twitch (high resolution)
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Fig. 3: Traffic profiles.
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(a) Video u-high (original, N=1)
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(b) Video u-high (after sampling N=1000)
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(e) Video medium (original, N=1)
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Fig. 4: Traffic profiles under sampling.

daily DNS messages is encrypted. In future, with growth of
encrypted DNS traffic (i.e., DNS-over-TLS protocol), one may
choose to perform reverse DNS lookups [19] or query existing
WHOIS databases [7] (mapping IP address to AS/organization)
to label video flows with their providers.

E. Telemetry Algorithm
Our data broker queries per-flow statistics (counters and

timers), stores them in a time-series database, and exposes
them to the user interface (which provides a real-time visu-
alization of statistics for video streams and their resolutions)

via appropriate RESTful APIs. The telemetry collects per-flow
(fine grain) and per-group (coarse grain) usage statistics using
the Stats collector module of our SDN application.

Algorithm: Recollect that our packet inspection engine
identifies all elephant flows, which may include a mixture of
video streams and elephant downloads, and suppresses their
packets from being mirrored. We now develop an algorithm
to distinguish video streams (from elephant transfers), and
identify their content providers and resolutions. At a high
level, the algorithm: (a) computes attributes of a given flow,
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TABLE I: Number of flows captured with sampling.

Sampling N 1 100 200 500 1000 2000

Total num. of flows 16983 3251 1964 873 544 312

Num. of elephant flows 50 48 47 43 42 38

Num. of mice flows 16933 3203 1921 832 503 274

which are then fed into an intelligent classifier (discussed in
§III-F) to distinguish video streams from elephant transfers, (b)
queries DNS database using the flow’s client/server IP address
to associate the video stream with its content provider and
(c) estimates the resolution of the video stream (i.e., Low,
Medium, High, Ultra-high).

Usage Collection and Storage: We collect flow counters
per content provider (group table) and per video stream
(reactive flow table). While the number of entries in the group
table is generally small and fixed, the number of reactive flow
entries can vary significantly with time. Polling the latter when
the number of entries is large can result in a multi-part reply
– for example the Noviflow switch breaks the response into
chunks of 2500 flows each – putting considerable strain on the
agent in the switch and affecting timeliness of the results. Prior
work such as [15] has explored the trade-off between accuracy,
timeliness, and network overhead of polling switch entries,
though their work is evaluated only in mininet emulation; in
this work we take a relatively simplistic approach, whereby
we tune the polling frequency depending on the number of
entries. Consequently, when the number of reactive flows is
less than 2500, we poll the counters every second, and the
frequency reduces to once every 4 seconds when the number
of entries increases to 10,000. The flow/group-level counters
are stored in a time-series Flow DB, as shown in Fig. 1(b),
and are exposed periodically using a JSON-formatted message
to the machine learning algorithm described next.

F. Classification using Machine Learning

We develop a machine learning technique to determine
if traffic pertaining to an elephant flow is streaming video
or not (the “video identifier”), and if so, to determine the
stream resolutions (the “resolution classifier”). Our objective is
to achieve video identification and classification in real-time
with accuracy comparable to or better than computationally
expensive techniques that require inspection of all traffic.

1) Attributes: Attributes selection is of paramount im-
portance for training of classifiers, given that these should
be predictive to correctly identify/classify video streams. To
motivate our attributes selection and have an insight into
behaviour of various flows, we plot in Fig. 3 the traffic pattern
we have observed for various video streams including Youtube,
Netflix and Twitch (at different resolutions: low, medium, high
and ultra-high definition) and other elephant flows including
Facebook application and large download (i.e., a represen-
tative of bulk transfer or GoogleDrive/dropbox cloud storage
sychronization) during the first three minutes of their activity.
It can be seen that due to buffering that accompanies video
streaming, the idle-time characteristic (i.e., fraction of time
that no data is exchanged) of video flows in Figs. 3(a)-3(f)
is quite distinctive compared to the large download flow in

Fig. 3(h)). We also note that the average rate (shown by dotted
red lines) of the Youtube 2160p (4k ultra-high definition video)
in Fig. 3(d) is much higher than that of other video resolutions
(shown in Figs. 3(a)-3(c) and 3(e)-3(f)) but comparable to
the large download in Fig. 3(h). In addition to idle-time and
average rate, the burstiness characteristic of each flow is also
distinctive – the low resolution video and the large download
exhibit the most and the least bursty patterns respectively,
among these representative profiles shown in Fig. 3. Based on
these visual observations, we believe that idle-time, average
rate and burstiness are collectively needed to identify and
classify video flows. For example, the Facebook application
flow shown in Fig. 3(g) exhibits similar characteristics of video
streams (shown in Figures 3(b)-3(c)) in terms of idle-time and
burstiness, but its rate is far below those of video streams.

The average rate and fraction of idle-time for a flow can
be computed over a moving window (of say one minute).
Burstiness of flow traffic can be computed in various ways
[28], and it has been noted (particularly in the characterization
of long-range dependent traffic) that it should be measured
at multiple time-scales. We therefore compute the coefficient
of variance (i.e., the ratio of the standard deviation to the
mean, CV = σ/µ) of our streams at time-granularities of 1-,
2-, 4-, 8- and 16-seconds, giving us σ1/µ, σ2/µ, σ4/µ, σ8/µ,
and σ16/µ. These burstiness measures, in addition to idle-time
and average rate µ of each flow, are input as attributes to our
classifiers. Note that for a new flow, we may have only a
subset of burstiness attributes at the begininng, as computing
σ16 would require collection of data for at least a minute.
A flow that commenced only 20 seconds ago would only be
able to yield σ1/µ, σ2/µ and σ4/µ since we have less than
4 data points at time scales of 8-second and 16-second. It
is important to note that we identify and classify elephant
flows only. Therefore, attributes are computed by the SDN
application by collecting flow-level telemetry for the reactive
flow-rules inside the SDN switch.

Impact of packet sampling on attributes: We note that
existing sampling methods for monitoring flows make it hard
to achieve reasonable accuracy at acceptable overheads [43]
– common practice of sampling is 1 in 1000 packets [2]. We
undertook an experimental investigation of packet sampling
from a real traffic mix of mice and elephant flows. We
collected a 1-hour PCAP trace (of size 3.6 GB comprising
3,392,018 packets) from our University campus testbed. Our
trace contained 16,983 flows of which 50 were elephant flows
(ground truth known from the PCAP) including video and
large downloads. We then applied a simple packet sampling
(i.e., randomly selecting 1 in N packets) at varying rates
to our traffic trace. Table I shows the impact of sampling
periodicity N on the count of flows captured. For each N we
ran our sampling 10 times and computed the average values.
We observe that sampling completely misses some flows,
which gets worse as the sampling periodicity N increases.
For example, with N = 1000, 97% of mice flows are missed,
and more worryingly, 16% of elephant flows (8 out of 50) are
totally missed, all of which happened to be video flows – this
indicates that sampling can miss a significant number of long
streams.
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Fig. 5: iTeleScope prototype.

Another significant observation is that packet sampling does
not preserve the profile of elephant flows, for video streams as
well as large downloads. Considering the two main attributes
needed for classification, namely burstiness and idle-time,
we show in Fig. 4 how the traffic profile and the resulting
attributes change due to sampling. Fig. 4(a) and Fig. 4(b) show
the profile before and after sampling for ultra-high resolution
video, Fig. 4(e) and Fig. 4(f) for medium resolution video,
and Fig. 4(c) and 4(d) for a download stream. Worryingly,
the profile of the download stream becomes similar to that
of video, since its burstiness almost doubles and idle-time
fraction increases significantly from 2.65% to 32.45% – this
greatly increases the risk of misclassification of the download
stream as a video stream. We also show in Fig. 4(g) and
Fig. 4(h) that a low-resolution and a medium-resolution video
stream are entirely missed by the random sampling process,
and will hence not be classified at all.

To summarize, random sampling of packets causes two
problems: (a) it risks entirely missing a non-negligible fraction
of elephant flows, specifically video flows of low and medium
resolutions; and (b) it distorts the traffic profile and hence risks
misclassifying download streams as video flows. By contrast,
our SDN-based telemetry method is more intelligent in how
it samples only the initial packets of a flow and thereafter
obtains per-flow telemetry on elephant flows from the switch.
This flexibility provides us with a fine-grained visibility into
the profile of elephant flows (and their attributes), enabling
accurate video identification and classification without missing
any flows.

2) Identification/Classification: As mentioned earlier, our
iTeleScope data broker employs two classifiers namely the
video identifier (to indicate if the flow is a streaming video or
not) and the resolution classifier (to determine the resolution
of video during playback). The identifier and classifier are
invoked every 16 seconds to dynamically capture profile
changes (e.g., video stream rate adaptation) – initial invocation
may have access to only five attributes (idle-time, µ, σ1/µ,
σ2/µ, and σ4/µ), and subsequent invocations that have access
to more (burstiness-related) attributes may change the clas-
sification, improving accuracy and/or identifying resolution
changes. Note that our attributes are extracted from flows
activity, without packet-level inspection. This means that our
classifiers are trained only by behavioral attributes of flows,
and hence become agnostic to traffic encryption – payload
contents are not used. The training of the classifiers will be
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Fig. 6: Recent video flows.

Fig. 7: Load of the network and video traffic.

described in the next section.

IV. PROTOTYPE IMPLEMENTATION AND
MACHINE TRAINING

A. Prototype

We have implemented a fully functional near-production-
grade iTeleScope system that identifies and classifies video
streams in real time at line rate of up to 10 Gbps. For our
system we have implemented an application on top of the
Ryu SDN controller, augmented the Bro packet inspection
engine for flow state management and event triggering, im-
plemented various databases including InfluxDB, PostgreSQL,
and CouchDB, and a web-GUI (in ReactJS) for interaction
with our tool. Further, each of these components operates
on a separate docker container or virtual machine in our
cloud environment powered by the VMware Esxi 6.0 hy-
pervisor. All VMs run Ubuntu server 14.04 LTS and are
allocated to a four-core CPU, with 8 GB of memory and
32 GB disk space. Our system is currently managing three
environments: (a) an SDN-enabled experimental lab network
connected via WiFi access points (used for machine training
in §IV-B), (b) a point-to-point link over which an industrial
scale Spirent traffic generator feeds traffic into our setup,
and (c) a live campus dorm network link operating at 10
Gbps and serving several hundred real users. Our implemented
design is depicted in Fig. 5, and the interested reader can
see the interface live via our publicly accessible website at:
https://telescope-core.sdn.unsw.edu.au/.

SDN switch: Our SDN switch is a fully Openflow 1.3
compliant NoviSwitch 2116, as shown in Fig. 5. It provides
160 Gbps of throughput, tens of thousands of TCAM flow
entries, and millions of exact-match flow-entries in DRAM,
and we found it to amply cater to the requirements of this
project.
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Fig. 8: Histogram of idle-time, average rate and burstiness at various time scales (video vs. non-video).

Packet Inspection Engine: We use the Bro (v2.4.1) [45]
open-source tool for inspection of the mirror traffic. We wrote
event-handlers in Bro that keep track of the flow duration and
volume, and to trigger an API call to the data broker when
an elephant flow is detected. Similarly, DNS replies are also
parsed and the information is passed to the data broker for
recording into the time-series database.

Data broker: We used python to implement our data
broker that receives the 5-tuple of elephant flows and DNS
information from the Bro inspection engine, inserts/modifies
flow/group entries, and collects statistical data from our SDN
application via RESTful API. Flow and group stats collected
from the SDN application are written into a time series
InfluxDB. Flow level information is queried from InfluxDB
periodically for processing by the intelligent classifier trained
by the Weka tool [3] using Weka’s Python library wrapper
interface (v0.3.9). The intelligent classifier identifies video
flows, queries the DNS database to label video flows, calls
RESTful APIs to modify flow entries’ output group, and
identifies video stream resolutions, as described in §III-C.

SDN controller and application: We used the Ryu (v4.0)
Openflow controller for operating our system, and developed a
Python based SDN application exposing northbound RESTful
APIs to the data broker for inserting or modifying network
rules and polling flow statistics. Successful RESTful API calls
result in appropriate actions (e.g., network rules insertion,
modification and counters collection) at the SDN switch
serving the data-plane.

DataBases: We employ three databases in our system to
store flows usage statistics, DNS information, and system
configurations. We use time-series InfluxDB (v1.0.0) to store
periodic flow/group statistics as mentioned in §III-E. In the
same InfluxDB we also store information of DNS A-type
replies including the domain name and client/server IP ad-
dresses. An object relational database PostgreSQL (v9.6.3)
is used to store the mapping between domain IP addresses,

domain name suffixes and provider names. Lastly, we use
a NoSQL CouchDB (v2.0.0) document-oriented database to
store configurations of the SDN switch such as DPID and
multi-table configs.

Web Interface: We provide a front-end for network op-
erators to visualize video streams in their network, imple-
mented in ReactJS using Rubix template and D3 library.
Snapshots are shown in Fig. 6 and 7. The reader can
see the live interface via a public accessible website at:
https://telescope-core.sdn.unsw.edu.au/. The inter-
face shows aggregated video consumption statistics by differ-
ent content providers over the last one hour, one day and one
week, the total number of elephant flows, and the most recent
video streams.

B. Machine Training

We now train our classifiers with datasets collected in our
lab over our prototype. In order to have the ground truth
for the training, we scripted the streaming of video from
various providers (i.e., Youtube, Netflix, Youku, Facebook,
Tencent) at various resolutions. The automation was done
using APIs where possible, such as the Youtube Player API
that allows videos to be streamed at specified resolution (i.e.,
low: 144p, 240p, 360p; medium: 480p, 720p; high: 1080p,

1440p; and ultra-high: 4K), and by launching a browser URL
otherwise. We also scripted the generation of elephant flow
traffic including large ISO file downloads and Google-Drive
sync operations, and mice flows from dynamic webpage loads
(e.g., Office 365, Facebook homepage, WhatsApp).

For the purpose of training, our scripts limit all flows (video
and non-video) to 128 seconds (i.e., about two minutes), even
though all chosen videos have total length in excess of 20
minutes. At the end of each two-minute activity, the script
queries the InfluxDB to extract the flow profile (byte counts at
1-second time interval) to calculate attributes (as explained in
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Fig. 9: Histogram of idle-time, average rate and burstiness at various time scales (various resolutions).
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§III-F). We then split the 128-second traffic profile into 8 sub-
profiles (i.e., time intervals of [1,16]s, [1,32]s, [1,48]s, [1,64]s,
[17, 80]s, [33, 96]s, [48, 112]s, and [65, 128]s). The script
lastly computes the attributes for each of the sub-profiles. We
note that short sub-profiles (e.g., [1,16]s) will have incomplete
attributes such as σ8/µ and σ16/µ. We have run our script for
two weeks and collected a total of 28,543 labeled training
instances for elephant flows (video and non-video) of which
10,416 instances were labeled for various video resolutions.

1) Attribute Profiles: We briefly describe the profiles of the
attributes (idle-time, average rate, and burstiness at various
time-scales) collected from our dataset. Fig. 8 shows the
histogram of these attributes used by the video identifier
machine. The difference between video and non-video long
flows is visually apparent: for example, Fig. 8(a) shows that
non-video flows have very low idle time fraction (centered
at about 1% with minor deviations), whereas video traffic
idle-time fraction is widely spread between 20% and 95%.
The video and non-video streams are not so distinct in their
distribution of average rate (Fig. 8(b)); however, they do have
different burstiness behaviors at various time-scales, as seen
in Figs. 8(c)-8(g).

The distribution of the attributes used by the resolution
classifier is shown in Fig. 9. The distinctions between the
resolutions are again visually apparent: Fig. 9(a) shows that
as video resolution increases, the idle-time fraction distribu-
tion (predictably) shifts to the left, whereas the average rate
distribution shifts to the right (Fig. 9(b)). The video stream
burstiness for the various resolutions is also distinct at the
various time-scales, as shown in Figs. 9(c)-9(g).

It is evident from the above that the different attributes
will have different importance for the classification engines
that identify video streams and their resolutions. In machine
learning, there exist selection techniques such as principal
component analysis (PCA) and information gain that help
simplify (optimize) models and rank attributes by importance.
PCA [10] is a statistical procedure, typically used to reduce
a large set of attributes to a small set while keeping most of
the information in the original set. Since we have identified
only a handful of traffic attributes (§III-F) which are not
computationally expensive, reduction of attributes space (via
PCA) is not employed for this work. Instead, in order to
quantify the importance of attributes, we used the InfoGain
tool that is part of the Weka Machine Learning package, that
determines an average merit score of each attribute based
on the measure of information gain from that attribute –
the larger the reduction of entropy (uncertainty), the higher
the merit of an attribute. Fig. 10 shows the merit of each
attribute for the two machines. The blue bars, corresponding
to the video identification machine, show that all attributes
are nearly equally important, with idle-time being slightly
more dominant, and average rate slightly less. By contrast,
the video resolution classifier (yellow bars) relies heavily upon
the average rate, followed by the idle-time. The burstiness at
the various time-scales are roughly equally important to both
machines. These merit scores confirm our initial intuition that
the selected attributes constitute reasonable inputs to the video
classification engines.
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Fig. 11: Confusion matrix of video identifier.
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Fig. 12: Confusion matrix of video resolution classifier.

TABLE II: Tuning Random-Forest (video identifier).

Number of attributes
1 2 3 4 5 6

D
ep

th
of

tr
ee

1 80.7978 89.2830 91.5748 88.0770 85.7852 85.7634

2 85.5997 91.7440 92.9281 93.4083 93.7138 93.7084

3 90.7454 94.0849 94.4996 94.576 94.5542 94.5051

4 93.7193 94.4505 94.6033 94.7015 94.7288 94.6306

5 94.1777 94.6797 94.8434 94.898 94.7725 94.5869

6 94.5762 94.9089 94.9907 94.7179 94.5978 94.6742

7 95.0071 95.0999 94.7506 94.7397 94.7233 94.7179

8 95.1162 95.0453 94.7670 94.7124 94.6197 94.6361

9 95.2908 94.8981 94.7670 94.7615 94.6306 94.6579

10 95.1108 94.8052 94.7070 94.7452 94.7288 94.6906

11 94.9471 94.7831 94.6977 94.7124 94.7233 94.6561

12 94.7834 94.7179 94.6488 94.6397 94.7233 94.6343

2) Tuning Machine Parameters: We employ three popular
classification algorithms: J48, Random Forest, and MLP, from
the Weka machine learning library. We tune the parameters
of these machine learning algorithms to maximize their per-
formance for the chosen attributes. For example, the Random
Forest algorithm has two parameters we can tune – the depth
of the tree and the number of selected attributes for each tree.
For each combination of parameters, we evaluated its efficacy
via 10-fold cross-validation, whereby the dataset (collected
in our lab) is randomly split into training (90% of total
instances) and testing (the remaining 10% of total instances)
sets, and accuracy is averaged over 10 runs to produce a single
performance metric.

For the video identification machine, the overall accuracy of
Random Forest is shown in Table II for the various parameter
combinations. The highest accuracy (of 95.29%) was achieved
by setting the tree-depth to 9 and the number of attributes in
the tree to 1. Increasing tree-depth or number of attributes
per-tree beyond these numbers reduces accuracy due to over-
fitting. We similarly tuned the J48 algorithm by adjusting the
number of instances on each leaf (optimal = 4), and the MLP

algorithm by varying the number of hidden layers (optimal =
8), in order to maximize performance, yielding accuracy of
95.12% and 87.36% respectively.

For the video resolution machine, we used a similar method
to tune the parameters. The Random Forest model reaches its
highest accuracy of 99.4411% when the tree-depth equals to 5
and the number of attributes per-tree is 3. For optimal settings
of other algorithms: J48 uses 4 instances per-leaf for the best
accuracy of 99.4521%, and MLP uses 5 hidden layers for the
accuracy of 97.3577%.

3) Off-Line Accuracy: Having tuned the various algorithms
to maximize their performance, we now conduct an off-line
evaluation of their accuracy on our lab dataset (for which
the ground truth is known). A ten-fold cross-validation is
performed over the entire dataset, and results are depicted in
the form of a confusion matrix, in which rows denote the
ground truth and columns the machine output. Fig. 11 shows
the accuracy of the video identification machine from the
three machine learning algorithms. J48 and Random Forest
correctly identify video flows over 90% of the time, while
MLP has a poor true positive rate of 77%. We believe this
is because the geometry of our training instances is more
suitable for decision-tree-based classifiers (J48 and Random
forest) than for neural-network-based classifiers (MLP). The
identification of non-video flows has higher accuracy with all
the methods, with J48 and Random Forest being above 96%
and MLP nearly 95%. We believe the higher false-positive
rate for video flows (than non-video flows) is because they
can sometimes change their profile (due to network conditions
and rebuffering), especially at higher resolutions, making them
look closer to downloads.

Fig. 12 shows the confusion matrix for the resolution
classifier. All three machine learning models yield a fairly
high accuracy, being over 99% at low resolutions, and drop-
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(b) Resolution classification.

Fig. 13: Real-time accuracy of (a) video identification, and (b) video resolution classification.

Fig. 14: Network load (31920 flows arrive at the rate of 280
flows-per-second).

ping somewhat at higher resolutions. J48 and Random Forest
outperform MLP at higher resolutions, though they all tend
to sometimes classify ultra-high resolution videos as high
resolution, and medium resolution videos as high resolution.
These errors (of about a few percent) are not surprising, since
the attributes of the high resolution videos overlap with those
of medium and ultra-high resolution flows, as depicted in
Fig. 9 – specifically, the two most important attributes, idle-
time and average rate, have significant overlaps.

4) Real-Time Accuracy: Recall that certain attributes (such
as burstiness at time-scales of 8 and 16 seconds) become avail-
able only after the flow has been active for a certain duration.
We now evaluate the accuracy of our classification methods
when they operate in real-time, namely as and when flow “sub-
profiles” become available from the first 16 seconds to the past
one minute over their two-minute lifespan. Fig. 13(a) shows
the time evolution of real-time classification accuracy – video
streams are identified with an accuracy of about 60% if only
the first 16 seconds worth of their profile is available to the
classifier. This is also because video flows tend to buffer in
the beginning, which makes them less distinguishable from
downloads in the initial few seconds. As the length of sub-
profiles increases, so does the accuracy – after 48 seconds,
80% accuracy is achieved, and this rises to 95% for J48 and
Random Forest at about a minute-and-a-half.

Similarly, Fig. 13(b) shows that the accuracy of the resolu-
tion classifier increases rapidly with the length of sub-profile.
This is not surprising, as various attributes computed during

Fig. 15: Flow statistics (31920 flows arrive at the rate of 280
flows-per-second).

the first 16 seconds do not perfectly identify/classify video
flows due to their initial buffering. For example, an ultra-high
resolution video (Fig. 3(d)) is very similar to a large download
if one considers the idle-time, average rate and burstiness for
only the initial 16 or 32 seconds of the profile. The attributes
σ8/µ and σ16/µ become available respectively only after 32
and 64 seconds of stream activity, and are fairly important for
the classification, leading to a very rapid rise in accuracy at
around the minute mark.

Summary: Our system uses a judicious combination of
software and hardware to isolate elephant flows and monitor
their individual behavior. Flow attributes such as idle-time
fraction, average rate, and burstiness at various time-scales
are extracted without packet-level inspection, and fed to a
machine learning model. Video flows can be identified by
our machine with 70% certainty within 30 seconds, rising to
over 90% within two minutes, while video resolution can be
correctly deduced with 80% accuracy in 30 seconds, rising to
over 95% within two minutes. In what follows we evaluate the
scalability of our system and discuss insights obtained from a
real deployment.

V. EVALUATION AND DEPLOYMENT

We briefly evaluate the scalability of our system to large
flow numbers and high arrival rates (§V-A), and describe
insights obtained from a trial deployment (§V-B).

A. Scalability Test

We subject our system to stress-testing with emulated ele-
phant flows from a traffic generator. We connect a Spirent [44]
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Fig. 16: Distribution of Dorm video consumption.

TestCenter chassis SPT-11U (firmware v4.24.1026), which is
a high-precision commercial-grade hardware traffic generator
equipped with a 12-port GE HyperMetric test module, to our
NoviSwitch on two ports. One port of the Spirent generates
traffic streams representative of video servers, while the other
port receives traffic back from our system to represent end-
user clients. We wrote TCL scripts to automate the process of
traffic emulation: 14 pairs of transmitter/receiver were created,
each allocated a distinct /28 public-IP address, and each pair
establishes 20 parallel stream blocks each of a separate layer-4
(TCP) port number, thereby generating 280 concurrent flows
per second. Further, the port number of each stream block
kept circulating each second over a range of 114, resulting in
a total of 31920 flows. Each flow sends traffic at a constant rate
uniformly distributed between [0.8, 1.2] Mbps (representative
of a 360p video). The emulation was run for 300 sec.

Fig. 14 depicts the link load (purple line) and mirror load
(brown line) at 1s intervals. The measured loads (deduced
from OpenFlow counters) corroborate very well with the actual
loads (reported by Spirent), being within 1.7% of each other,
confirming that our system measures flow rates accurately.
Further, the mirror traffic load (sent for software processing) is
initially at 100% of offered load, but gradually drops to zero
(over a period of 210 seconds) as the reactive flow entries
are pushed into the OpenFlow switch to stop the mirroring of
elephant flows. Fig. 15 shows the ramp-up in the number of
reactive flow-table entries, being pushed at the rate of around
280 flow-mods per-second. The stress-test is meant to ensure
that our system is scalable to large number of active elephant
flows (31920 in this case), and to handle high rate of new flows
in the switch hardware (280 new flows per-second), ensuring
proper operation in real networks, as described next.

B. Campus Deployment

Our iTeleScope system has been deployed and operational
for several months in a university network serving hundreds
of students resident in the on-campus dorm. The University
IT department provisioned a full feed of the dorm traffic to
our system, and we obtained ethics clearance (UNSW Human
Research Ethics Advisory Panel approval number HC16712)
from our organization in order to conduct this trial, since it
gives us access to all network traffic.

Our system not only displays video flow information (end-
point, provider, duration, rate, resolution) in real-time at:
https://telescope-core.sdn.unsw.edu.au/, but also

records video flow information into an InfluxDB that can be
analysed post-facto. In what follows we highlight some of the
insights we obtained from our system’s flow database over
a one month period during the academic term. In Fig. 16(a)
we show a pie-chart of the fraction of streams from the most
popular video content providers – not surprisingly, Youtube
and Facebook video streams dominante at 44% and 17%
respectively. The gaming video platform Twitch contributes
3% of streams, more than Netflix (2%), most likely because
students tend to prefer free over paid content. Around 8%
of video flows are sourced from Akamai media servers (i.e.,

akamai.net and akamaiedge.net). Lastly, our system
allowed identification of many other video providers such
as Tencent, Youku, Amazon, Yahoo, Instagram, Fastly, Al-
ibaba, Baidu, Huya, Battlenet, HLtv, OurDvs, and Dailymotion
(grouped under “Others” in Fig. 16(a)) that collectively consti-
tute 23% of video streams during the month. This break-down
of video streams by provider elicited much interest from the
IT department, who had no prior visibility into video viewing
patterns (especially for less popular video providers) in the
campus dorm.

The day-by-day video consumption pattern over the month
is shown in Fig. 16(b). It is seen that there is substantial
fluctuation in the relative proportion of video providers from
day to day, and interestingly, the dorm residents tend to watch
Twitch gaming videos more on weekends than weekdays. In
Fig. 16(c) we plot the fraction of video streams at different
resolutions on an hourly basis (averaged over the selected
month). Surprisingly, a majority of videos are playing at
medium resolution and only a small fraction of videos are at
ultra-high resolution, though the campus network has abundant
bandwidth and rarely experiences congestion. We believe that
this is because most of the free content on Youtube and
Facebook is only available at medium or lower resolution (i.e.,
144p, 240p, 360p, 480p and 720p).

Our system also lets us analyze mid-stream resolution
changes – in Fig. 16(d) we plot the CCDF of resolution
changes (normalized to a per-hour basis) in video streams
from Youtube, Facebook, Netflix and Twitch. Unsurprisingly,
Youtube videos are the most aggressive in adapting their
resolution, with 20% of streams adapting their resolution at
least 20 times per hour (i.e., once every 3 minutes on average),
and 1% of streams adapting once per minute. Facebook videos
are generally shorter (more on this next), yet 11% adapt their
resolution on average every 3 minutes. Netflix videos tend to
adapt their resolution less frequently, with only 7% of videos
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Fig. 17: CCDF of Dorm video characteristics.

changing their resolution every 3 minutes on average. Twitch
videos show the least adaptation, with 85% of them never
changing their resolution during their entire playback (which
can be reasonably long).

Further insights into the dorm video viewing patterns are
shown in Fig. 17, depicting the CCDFs of playback duration
and average bit-rates for the 4 popular content providers
(Facebook, Youtube, Twitch, and Netflix) over the selected
month. Fig. 17(a) confirms that Netflix and Twitch videos
are watched for reasonably long durations (nearly 40% of
streams last longer than 10 minutes), followed by Youtube
and Facebook for which 7% and 2% of videos are respectively
watched for longer than 10 minutes by dorm residents. The
average bit-rates shown in Fig. 17(b) also confirm that Twitch
and Netflix videos are more bandwidth intensive than Youtube
and Facebook videos – Twitch and Netflix use on average
6.6 Mbps while this measure is 2.8 Mbps and 1.5 Mbps for
Youtube and Facebook respectively.

Our system is in commercial pilot with a Tier-1 carrier, and
is providing real-time video traffic visibility as well as off-
line reporting of video consumption patterns; the outputs are
comparable to those from a commercial DPI appliance, but at
lower cost by virtue of white-box hardware. Confidentiality
requirements unfortunately prevent us from disclosing any
findings from the trial.

VI. CONCLUSION

Video traffic dominates enterprise and carrier network traf-
fic, yet operators have limited visibility into the number,
duration, and quality of video flows traversing their network.
Existing solutions are either hardware-based and expensive,
or software-based and unscalable. Our solution, iTelescope,
judiciously combines software packet-level inspection with
hardware flow-level telemetry to isolate elephant flows and
extract flow attributes, that are used in conjunction with
machine learning to identify and classify video flows in real-
time at low-cost. We have built our solution using off-the-shelf
SDN hardware and open-source software. We have trained and
validated the accuracy of our machine learning algorithms

in the lab, demonstrated our system scalability to tens of
thousands of concurrent streams, and deployed it in a live
network serving hundreds of real users. Our solution provides
unprecedented visibility to network operators, and has the
potential to become a platform for actively managing video
delivery quality on a per-stream basis in the near future.
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