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Forensic Verification of Health Data From Wearable
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Abstract—The use of wearable devices, such as smartwatches,
glasses, clothes, and fitness bracelets is increasing at an ever-
growing pace. Major corporations and insurance companies have
started mandating their use for their employees and clients. Data
from such devices have begun to feature in settlement claims and
as evidence in courts as well, requiring it to be irrefutable and
tamper-proof. Lack of protection for personal data as well as
the contextual information such as location tracking and its use
by law enforcement agencies is raising serious privacy concerns
among the general public and civil liberty advocates. In this arti-
cle, we propose a novel scheme to secure the wearable sensor’s
communication through its crowdsourced logging by neighboring
wearable and smart devices called witnesses preserving the con-
textual information (such as time and location) as well. To ensure
witness privacy, gateway and witness devices use the reciprocity
property of wireless medium between them to generate pairs
of closely matching link signatures, which not only provide the
proof of presence for the witnesses in the vicinity but also act as
their time-varying pseudonyms. We demonstrate the feasibility
and efficacy of our scheme through the prototype implementation
using real wireless devices, and via simulation and experimental
results.

Index Terms—Body sensor networks, crowdsourcing, forensics,
Internet of Things, network security, wearable sensors.

I. INTRODUCTION

THE USE of the wearable technology, such as smart-
watches, activity trackers, fitness monitors, and healthcare

devices, is becoming commonplace in daily life. Devices, such
as the Fitbit, Jawbone, Apple Watch, and Nike Fuelband, have
a variety of built-in sensors, which measure users’ location
and physical activity in real time and relay this data to the
cloud where various trends about our health and habits may
be identified, tracked, and shared. According to a report by
International Data Corporation (IDC) [1], around 113.2 mil-
lion wearable devices were shipped in 2017 and this number is
expected to double to an estimated 222.3 million units by 2021.
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Employers and health insurers are actively developing
strategies to integrate this new technology into their poli-
cies. Retail giant target recently distributed Fitbit trackers
to 335 000 U.S. employees and IBM to 40 000 employ-
ees [2]. Insurance firms, such as John Hancock Insurance [3],
United HealthCare Group [4], and MLC [5], now offer their
customers free wearable sensing devices together with finan-
cial incentives and discounts on premiums to keep active
and meet wellness goals. Self-insured employers, such as
Appirio, have saved significantly on insurance premiums after
sharing detailed activity records of employees with their
insurers [2].

These devices also provide an investigative advantage to law
enforcement agencies. Data from wearable devices have begun
to feature as evidence in courts. For instance, a Canadian law
firm used a client’s Fitbit activity records in a personal injury
compensation case to successfully prove that she had reduced
activity levels even after four years of suffering injury [6].
Likewise data from a man’s pacemaker have been used in a
court in Ohio to discredit his testimony and charge him with
aggravated arson and insurance fraud [7]. During the time he
claimed to be asleep, his activity data revealed that he was
physically active and, as per a cardiologist’s testimony, it was
highly improbable that he personally rescued a large number
of heavy household items as per his statement.

Indeed, the overwhelming popularity of sensing devices
deployed in the home and on the body has prompted some
forensics experts to contend that criminal cases will now con-
sist of a strong “digital component” [8]. Efforts are therefore
underway to assess the legal position of these devices as
admissible alibis in court [9], [10]. The major concern of stake-
holders, i.e., doctors, users, insurers, and prosecutors, is the
reliability and security of these devices.

Researchers have demonstrated the ease and extent of hack-
ing wearable devices and tampering with their data. For
instance, in our previous work, we compromised the Withings
Pulse tracker and showed how users could easily backfill activ-
ity records (e.g., step count) by tampering with the clock
on their mobile phones [11]. Fereidooni et al. [12] hacked
Fitbit and demonstrated that malicious users could generate
false activity records with altered timelines. These, and sev-
eral similar examples (such as [13]–[16]), reinforce the need
to protect the data these devices are collecting about our health
and activity.

In prior work, we introduced a novel crowdsourced log-
ging technique in which wireless devices in the vicinity can
confirm the presence of a wearable device and probabilistically
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attest to its data transmissions [17]. This article was moti-
vated by the fact that IoT devices are being deployed within
buildings, vehicles, and carried by people in ever-growing
numbers, and this increasing density enables these devices
to overhear and record wireless transmissions of neighbor-
ing devices. Our solution enables opportunistic binding of
a device’s communications to location and time and allows
forensic experts to verify a wearable’s whereabouts and read-
ings by querying records generated by neighboring devices
(called witnesses).

Whereas this approach shows promising results, the increas-
ing adoption of wearable devices raises considerable privacy
concerns. These concerns are being articulated by the research
community [9], [18] as well as public interest groups and
watchdog bodies [19]. In a recent survey of 1000 British work-
ers [20], 67% of respondents expressed the fear that wearables
would usher in a “big brother” surveillance culture.

Motti and Caine [21] documented that users are also par-
ticularly wary of “surveillance,” i.e., the practice whereby
activities are recorded by participants themselves, typically
using wearable devices. A key concern here is that in group
scenarios, the data of other participants may be recorded and
shared online without their express knowledge or consent.

To reconcile these conflicting concerns of verification
and user privacy, in this article, we introduce the concept
of pseudonymous witnesses. For this purpose, we leverage
another recent innovation in the research literature, which
relies on the spatiotemporal characteristics of the wireless link
to generate unique and symmetrical link signatures between
two communicating parties [22]. These signatures augment
our crowdsourced logging solution by effectively masking the
identity of witness devices in the environment while at the
same time, confirming their presence in the environment.

We make the following specific contributions in this article.
1) We describe a scheme that attests to the communications

of wearable devices in a pseudonymous and verifiable
manner by relying on wireless smart devices in the
vicinity.

2) We develop an analytic model for forensics investiga-
tors to quantify trust in these witness records and we
demonstrate how to tune system design parameters for
various witness devices based on their capabilities and
environment.

3) We implement our scheme on real wireless devices
(MicaZ motes) and demonstrate its feasibility and
efficacy with results from a real office environment
scenario.

The remainder of the article is organized as follows.
Section II presents representative examples to motivate our
solution. Section III summarizes the link signature and crowd-
sourced logging primitives upon which we build our solution.
In Section IV, we describe in detail the protocols comprising
our solution, followed by an analysis of its security proper-
ties. Section V presents the analytical trust model for witness
records and tuning of design parameters of our solution
followed by Section VI which discusses the experiments and
their results. We conclude in Section VII.

II. BACKGROUND

A. Motivation

In this section, we present certain representative scenarios to
motivate our pseudonymous logging scheme. These scenarios,
based on real-life instances, indicate the potential for abuse of
data generated by wearables as well as the novel challenges
faced by investigators working with these devices.

The ecosystem typically consists of the following parties:
users wear these devices to monitor health or fitness. These
devices typically use a base station device, such as a smart-
phone or an Internet gateway to communicate their data to
servers in the cloud. Here, the data may be accessed by
healthcare services and medical practitioners and mined using
machine learning algorithms to identify patterns and trends.
Insurance providers may also access this data to tailor policies
for their clients and check for compliance. Ideally, gateway
devices also maintain detailed logs of network activity to assist
forensics investigators in the event of an incident.

1) Scenario #1: Alice is murdered in her home at night.
According to the statement of her husband Bob, a masked
intruder broke into their house and knocked Bob unconscious
and then killed Alice. To corroborate his account, Bob shows
his head wound and offers the data from his wearable fit-
ness monitor. However, investigators do not find compelling
evidence for a break-in and they also discover that Bob has
a financial interest in his wife’s death in the form of a
large insurance payout. They are therefore forced to consider
the possibility that Bob may have killed Alice and inflicted
the head wound himself and tampered with the data of his
wearable device.

This case is inspired by a real-life murder case from
Connecticut in 2017 [23]. However, in that instance, it was
data collected from the murdered wife’s Fitbit exercise tracker
which discredited her husband’s testimony. The device showed
that, during the time the husband claimed they were attacked
and then restrained, his wife was walking around the house and
was far more active than compared to her husband’s account.

However, tampering with wearables to create a desired out-
come is not very difficult. Due to their small form factor
these devices have restricted processing capabilities and are
not able to run comprehensive security protocols. As noted
earlier, Fereidooni et al. [12] have demonstrated the ease with
which malicious users can inject false activity records into
their Fitbit data. Wearables also typically depend on paired
smartphones for clock synchronization, thereby opening up
new attack vectors. We, in our previous work, have described
attacks where users can backfill activity records in Withings
Pulse trackers [11].

In less technical yet clever ways, users have already been
doctoring their activity records by attaching their Fitbits to
their pets, to electric fans, to active toddlers, etc., usually with
an intent to exaggerate their activity to their peers, to win
office competitions, or to secure insurance benefits [24]. These
examples raise serious concerns about using data generated by
wearable devices as admissible evidence in court proceedings.

2) Scenario #2: Alice suffers a debilitating work injury
and, as a result, her physical activity is extremely limited after
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the incident. She files a claim for worker compensation but her
claim is rejected and she takes her insurer to court. To support
her claim, Alice presents activity records from her wearable
device to prove her movement has been extremely limited after
the incident. However, the insurance company presents alter-
native records acquired from the servers belonging to Alice’s
healthcare service which negate her account and display nor-
mal activity levels. Both sides accuse each other of tampering
with the data. The court needs to ascertain which party is
telling the truth.

This scenario draws on the real-life example mentioned in
Section I, where a party in Canada won a personal injury com-
pensation claim using her Fitbit activity records to demonstrate
continued reduced activity levels years after the accident. Real-
life instances also indicate that data tampering in these cases
is not uniquely associated with users. Insurers too have the
incentive to tamper with client records. In 2016, Australian
insurer, CommInsure, was found tampering with the medical
record of their clients, in collusion with healthcare providers,
in order to dismiss their insurance claims [25].

To motivate anonymization of witnesses, we consider
another emerging trend in law enforcement, one in which
detectives are now using location traces from the cloud to
identify persons of interest in criminal investigations. In a
recent murder investigation in Raleigh, North Carolina, police
used search warrants to force Google to release Google
account details of all mobile users in a particular geographic
zone (demarcated by GPS coordinates) at specific points in
time [26]. Raleigh police have made similar inquiries in at
least four instances in 2017 to investigate the homicide, sex-
ual assault, and arson [27]. For the arson investigation, police
requested Google to disclose “anonymized information” about
users’ accounts along with their timestamped location coordi-
nates. According to detectives, this strategy will help narrow
down the list of suspects, for whom they will then demand
Google to release user names, details, and, as they wrote,
“contextual data points with points of travel outside of the
geographical area” for extended periods of time.

Public and civil liberty advocates have aired serious con-
cerns over such practices, noting that these searches covered
several acres of area, including several homes and businesses,
and revealed private information of several users [27]. There is
also the concern that this practice is an imposition on people
who may be reluctant to participate in criminal investigations.
Indeed there have been many instances in the past where legit-
imate witnesses did not come forward due to unwillingness to
deal with the police, or fear of loss of reputation or loss of
life. Examples include an instance where two teenaged boys
were murdered in a house party attended by approximately a
hundred people [28], and a case where a seven-year-old girl
was murdered during a gang fight in front of a crowd that did
not testify [29].

These and similar cases have motivated the introduction of
the Criminal Evidence (Witness Anonymity) Amendment Bill
of 2018 in U.K. parliament, which would allow a judge in an
investigation to keep a witness hidden from the jury as well
as the defendant [30]. Our solution assists the forensic inves-
tigator to determine the ground truth in these new emerging

scenarios while assigning potential witnesses with pseudonyms
to protect their identity.

B. Prior Work

In this section, we discuss prior work in this domain.
Forensics investigators rely on provenance solutions (such

as event logs or cryptographic mechanisms) to determine the
ground truth in their investigations. Provenance may be defined
simply as metadata that tracks the origin and evolution of a
data item within a system. In terms of wearable devices, this
may consist of the time, location, and context within which a
data reading has been generated and how that item was then
transmitted, stored, and shared.

However, the granularity with which the provenance is gath-
ered depends upon the application and device capabilities. For
example, Pohly et al. [31] presented a high-fidelity kernel-level
provenance system that is capable of providing fine-grained
forensic analysis for enterprise-level networks. However, for
resource-constrained wearable devices, such detailed operation
logs and analysis are hard to achieve and we may have to rely
on digital signatures and timestamps. Moreover, it may not
be possible to express provenance in binary in certain cases
such as large multihop sensor networks where it might make
more sense to give confidence in sensor data in the form of a
probability value [32] or a trust score [33], [34].

Braun et al. [35] have convincingly argued that the secu-
rity of this provenance data is a vital concern with its own
distinct threat model. This concern is particularly highlighted
when we consider that data from wearables are now considered
admissible evidence in courtroom proceedings [9].

In this context, researchers have designed tools to demon-
strate the feasibility of misleading forensics investigations.
Even unskilled users can easily create false alibis on com-
puters [36] or smartphones [37] using automation tools
that generate fake activity patterns on user devices as well
as online on social media platforms. On the other hand,
Castiglione et al. [38] have shown that digital evidence may
be selectively and securely deleted from a computer with little
effort. As we mentioned earlier in this article, many wearable
devices have been hacked [39]. Fereidooni et al. [12] have
described how activity traces may be forged on a Fitbit tracker.

Secure logging solutions typically provide security proper-
ties such as confidentiality, integrity, and auditability during
the storage and transmission of sensitive data. A compre-
hensive review of these techniques may be found in [40].
However, the vast majority of these techniques only focuses on
individual security properties and specific use cases, and entail
power and compute requirements that are far too expensive for
resource-constrained wearable devices.

We are aware of only two contributions in the literature
for holistic and secure logging solutions aimed at wearable
devices. First, De La Piedra et al. [41] described a system
in which messages from multiple wearable devices are linked
together by a gateway or base station by hash chaining their
relative timestamps to form a “threaded authentication tree”
(an extension of the Merkle tree). A central server higher up
in the hierarchy collects and binds together messages collected
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from multiple gateways. This scheme claims to provide
authentication, confidentiality, and data integrity. However, it
does not provide protection in the case where the gateway or
central server is malicious or if different parties collude to
tamper with the data.

A second relevant scheme is a lightweight logging solution
we proposed, which relies on witness devices in the vicinity
to ensure a range of security properties [17]. We discuss this
solution (and its shortcomings) in detail in Section III.

1) Data Provenance Solutions: Provenance solutions in the
literature also typically focus on individual security properties.
For instance, Hasan et al. [42] presented WORAL, a secure
location-stamping solution for mobile nodes that also relies
on witness devices in the vicinity to generate tamper-evident
location proofs. Users and witnesses register their true identity
with location authorities but communicate anonymously with
each other using cryptographic identities. The scheme provides
the location proof for the users running a mobile app in their
smartphones from the volunteered co-located witnesses run-
ning the same app in their smartphones. The scheme requires
a location authority in the area that supports the service and
communicates with the service provider. Our scheme not only
attests to the location of the user but also verifies the physi-
ological data, such as heart rate and blood pressure, and any
other contextual data being produced by the sensory network
in the area and does so in a simpler manner. Our scheme is
not limited to only human worn or carried devices but utilizes
stationary smart devices in the vicinity for additional proofs
regarding the location and data verification.

Shebaro et al. [43] described a path-verification solution for
multihop sensor networks where network nodes insert identify-
ing information in Bloom filters appended to each data packet
that they forward in the network. This approach, extended by
Sultana et al. [44], [45], can identify malicious nodes in the
network but relies on a trusted infrastructure and does not
defend against colluding nodes.

In our previous work, we describe a provenance solu-
tion specifically for wearable sensing devices which relies
on the spatiotemporal characteristics of the wireless radio
channel to securely fingerprint communications between two
devices [22]. We discuss this solution (and its shortcomings)
in detail in Section III.

Our scheme, described in Section IV, provides a broad
range of security properties, including data integrity, chrono-
logical ordering, localization, auditability, protection against
retroactive data tampering, and verification, and protects wit-
ness identity in a lightweight manner ideally suited for
resource-constrained devices.

III. APPROACH

Our solution utilizes two building blocks: 1) the link
signature primitive and 2) the crowdsourced logging primitive.

A. Link Signature Primitive

We define a link signature as a unique and closely match-
ing bitstring generated by two communicating parties based

Fig. 1. Example of the level crossing quantization technique.

on the reciprocity property of the wireless link [46]–[48]. The
wireless channel between two devices is symmetric in nature
and highly sensitive to the orientation and movement of the
devices and objects in the environment. If two communicat-
ing parties, Alice and Bob, were to independently measure
characteristics of the wireless channel between them, they can
each derive a bitstring which uniquely identifies their com-
munication session. As research has demonstrated, the radio
signal decorelates rapidly with distance and this bitstring can-
not be deduced by an adversary who is situated at a distance
greater than one radio wavelength from Alice and Bob (for
the 2.4-GHz band, this equates to approximately 13 cm) [49].
This phenomenon has also been investigated for body-worn
wearable devices in various studies and has been proposed
as a lightweight alternative to cryptographic key exchange
protocols [49]–[51].

This process consists of three key steps.
1) Channel Sampling: Both communicating parties sample

the channel over a period of time to measure chan-
nel characteristics. Received signal strength (RSS) is
the most convenient and popular feature used for this
purpose in the literature. However, other characteristics,
such as the magnitude and phase of the wireless channel
have been used as well. This process results in a series
of raw values on both sides.

2) Quantization: Both parties then apply a quantization
process to convert the RSS measurements into a bit
string. Various quantization mechanisms have been
investigated for this purpose, including level crossing
and ranking techniques [22]. The choice of the quanti-
zation technique depends on application constraints with
a typical tradeoff between generating bits faster versus a
larger rate of mismatching bits on both sides. An exam-
ple of digitization using a level crossing quantization
technique is given in Fig. 1. Raw RSSI values are first
plotted for a time window and then we compute the
mean and two thresholds, q+ and q−, which depend on
the standard deviation of the values. These are marked
in the figure using solid and dotted lines, respectively.
Using a window size of 5 in this example, RSSI values
lying above the q+ threshold are encoded as 1 whereas
the ones below q− are encoded as 0.
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3) Reconciliation: Some bits may differ at both endpoints
due to channel degradation or thermal effects. To harmo-
nize the strings generated by both parties, an interactive
information reconciliation protocol is used, which iden-
tifies and then discards or corrects the bits which differ
at both ends.

4) Privacy Amplification: To further improve the secrecy of
the bitstring, both parties decide to discard certain bits
or undertake a transformation operation that enhances
the key entropy. This process further helps to mask any
information about the string that might have leaked to
adversaries during the reconciliation process.

The previous work investigating this technique for body-
worn devices has proposed using filtering techniques (e.g., the
Savitzky–Golay filter) to minimize noise and asymmetric com-
ponents in the channel measurements at both ends and improve
the correlation of RSS values [52]. This allows both parties to
dispense with the information reconciliation process, avoiding
significant implementation and processing costs.

The majority of prior work uses this technique to generate
shared secret keys between two devices [47], [53]. However,
Ali et al. [54] have demonstrated that this shared bitstring
can be effectively used to determine data provenance. The
matching bitstring, or “link signature,” at both ends uniquely
associates a data session with a wireless link in a way that
is verifiable by third parties at a later stage. Forensic inves-
tigators can use this signature to determine with confidence
that specific data were indeed communicated over a spe-
cific wireless link between two parties at a particular point
in time.

We leverage this particular application of link signatures
in our solution. For wearable devices, this enables experts
to verify data offload points (e.g., gateway devices in the
home, office, gym, etc.), and thereby approximate the device’s
location and the subject’s activities, and allow for the con-
textualization of data collected by the device. In case of an
incident, this information can be used to verify the data trail
and identify erroneous factors.

B. Crowdsourced Logging Primitive

In our previous work [17], we have explored the idea of
crowdsourcing the security of data logs by the use of witnesses,
i.e., smart devices in the vicinity of a wearable device which
can later attest to its communication with the gateway. Due to
the broadcast nature of the wireless medium, these witnesses
overhear communications between the wearable device and
the gateway and record fingerprints of this conversation in
a lightweight and space-efficient manner using Bloom filters
(shown in Fig. 2).

A Bloom filter is a probabilistic data structure that allows
for compact storage of data items and efficient membership
enquiries [55]. The filter is a bit array of predefined size with
all bits initialized to 0. A data item to be stored in the filter is
first passed through a set of hash functions whose outputs are
uniformly distributed over the length of the filter. The outputs
of the hash functions are used to set the corresponding bits
of the Bloom filter to 1. To resolve a membership enquiry,
the same hash functions are run on the item to locate the

Fig. 2. Crowdsourcing of secure logging.

corresponding bits of the Bloom filter to check their value.
If all the corresponding bits are 1, it indicates that the item was
likely stored in the Bloom filter. However, if even a single 0
bit features in these locations, it results in a “no membership”
outcome. A Bloom filter yields false positives with a given
probability, depending on the size of the filter, the number of
entries, and the number of hash functions used. However, a
Bloom filter does not produce false negatives.

In our previous crowdsourced logging solution, these wit-
ness devices populate their Bloom filters with conversations
they overhear and, at preset intervals, digitally sign and submit
the filters to a central medical server where they are stored in
a timestamped log. This log is replicated in multiple locations
to prevent retroactive tampering with the data. A forensics
investigator can later verify with high confidence individual
data entries in the log by querying the Bloom filters of vari-
ous witnesses to see if they overheard those communications
at that point in time.

IV. OUR SOLUTION

The network consists of the following entities.
1) Wearable devices, such as fitness trackers and health

monitors which record users’ data.
2) A healthcare server in the cloud which stores data

recorded by the wearable device and makes it acces-
sible to concerned parties, such as medical personnel,
etc.

3) Smart devices in the vicinity, such as smartphones,
smoke alarms, other wearables, etc., which serve as
witnesses.

4) A gateway device which is typically a WiFi access point
(AP) that provides local area networking and Internet
access for these various devices in a star topology, and
maintains detailed logs of all data communications and
network events.

5) An anonymizing service in the cloud which authen-
ticates statements recorded by witness devices,
anonymizes them, and makes them available to
forensics investigators.

The solution comprises two protocols: 1) a pseudonymous
testimonial protocol and 2) a verification protocol. We describe
these next.
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Fig. 3. Creation of gateway log containing data and link signatures.

A. Pseudonymous Testimonial Protocol

This protocol runs on the gateway device and smart devices
in the vicinity to enable corroboration of the communications
of wearable devices. The process can be summarized as fol-
lows: the gateway maintains a detailed and timestamped log of
all data communications over the network. Simultaneously, to
enable an independent check on this log, smart devices record
fingerprints of packets they overhear belonging to the target
wearable device. These data logs and fingerprints are signed
and stored separately in two different locations. In the event of
an incident, a forensics investigator can retrieve these records
and compare them to verify the data communications of the
wearables device. The process flow closely follows that of
our crowdsourced logging primitive described earlier (detailed
in [17]) and is modified to include link signatures which enable
pseudonymity for witnesses as well as generate the proof of
their presence in the vicinity. We describe the process next.

1) The gateway maintains a packet-level record of com-
munications with all devices, including the wearable
device. This record is referred to as the gateway log.
At periodic intervals or epochs, this recorded data are
bundled together into a batch or block and forwarded to
the healthcare server.

2) To prevent retroactive tampering, our solution adapts
techniques from the literature on the secure timestamp-
ing and blockchain technology. Each block is digitally
signed by the gateway device, thereby ensuring source
authentication. The individual blocks of the gateway log
are also chained together (as depicted in Fig. 3), such
that each new block contains the header of the previous
block, i.e., a hash value computed over the previous
block, thereby preserving the integrity of the entire
log. Furthermore, the log may be replicated in var-
ious locations controlled by other stakeholders, e.g.,
insurance service, cloud backup server, etc., thereby
making it harder for an adversary to tamper with the
log undetected.

3) The previous block header computed by the gateway
device also serves as a unique identifier for the current
epoch (an epoch identifier) which enables all network

devices to synchronize without reliance on a dedi-
cated timestamping service. At the start of every epoch,
the gateway device broadcasts this header value to all
devices in the network.

4) By the virtue of sharing the wireless broadcast domain,
smart devices in the vicinity overhear communications
between the wearable and the gateway device and,
as witnesses, maintain an independent record against
which the gateway log may be corroborated. However,
to reduce the memory and communication overheads,
instead of logging entire packets, these devices only
record a fingerprint of each packet by inserting it into
a Bloom filter. We refer to this as the witness statement
(shown in Fig. 4). The parameters of the Bloom filter are
chosen by the witness device a priori depending upon
multiple factors which we discuss in Section V.

5) In parallel with this process, the gateway and all con-
nected devices generate link signatures for their shared
wireless link in the course of their routine communi-
cations (as discussed in Section III-A). This results in
unique, closely matching bitstrings at both endpoints
(i.e., at the gateway and the individual devices) which
are very difficult to forge.

6) At the conclusion of each epoch, the gateway compiles
the current block and sends it to the healthcare server.
The block also includes link signatures computed by the
gateway for other devices it communicated within the
epoch (shown in Fig. 3). These signatures serve two pur-
poses: first, forensics investigators can use these to later
ascertain that the witness devices were indeed physically
present in the vicinity during this period; and second,
they uniquely identify the wireless link and they vary
over time, thereby serving as effective pseudonyms that
mask the real identity of the witness.

7) Smart devices in the vicinity independently prepare their
witness testimony consisting of the identity of the gate-
way, an epoch identifier, their link signature with the
gateway and their witness statement (packet format is
shown in Fig. 5). Each witness digitally signs its wit-
ness record and dispatches it over an encrypted link to
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Fig. 4. Creation of witness testimonies (witness statements and link signatures).

Fig. 5. Packet format of witness testimony.

the anonymizing service, as shown in Fig. 6. The signa-
tures ensure nonrepudiation while the encryption keeps
the identity of the witness confidential from the gateway
device and the forensics investigators.

8) The anonymizing service decrypts the records, verifies
the validity of the digital signatures, and then strips off
the signatures, prior to making the records available to
forensics investigators. This sanitization step effectively
conceals the identity of the witness device.

B. Forensics Verification Protocol

In the event of an incident, a forensic investigator may
later use these witness statements to independently verify the
data recorded by the wearable device and/or the integrity of
the gateway log in a privacy-preserving manner. The archi-
tecture is shown in Fig. 7 and the process is detailed as
follows.

1) The forensic investigator identifies the epoch for the par-
ticular data items he wishes to verify. This is done by
examining the gateway log maintained on the healthcare
server and extracting the relevant epoch identifier.

2) From the gateway log, the investigator also obtains the
link signatures computed by the gateway device for wit-
ness devices in the vicinity. These serve as identifiers
and proofs of location for the witnesses.

3) The investigator then approaches the anonymizing ser-
vice and requests all witness statements recorded for the
specific gateway device and particular epoch identifier.
He compares the link signatures for these records against
those recorded by the gateway device to ascertain that
the witnesses were physically present at the time of the
incident.

4) The investigator verifies individual data items recorded
by the wearable or gateway device by querying the
witness Bloom filters.

5) Using the witness statements, the investigator may also
compute a numerical measure of confidence or “trust” in
the data items as we describe in (7) in Section V. He can
also verify the chronological ordering of the data with
the help of various epoch lengths adopted by different
witnesses, as detailed in Section V.

C. Security Properties and Exposition

To discuss the security properties of our solution, we first
revisit the scenarios presented in Section II, and explore how
our solution assists forensics investigators. Next, we discuss
additional useful properties and possible enhancements.

We earlier considered the hypothetical case (scenario #2)
where Bob may have murdered his wife for insurance benefits
and later tampered with the activity records of his wearable
device to deceive the authorities. In scenario #2, Alice and her
insurer produced two conflicting activity records while contest-
ing a personal injury compensation claim. If our crowdsourced
logging solution were to be deployed, in both instances, the
witness statements would serve as extra reference points from
which investigators could derive confidence in the evidence
collected from the wearable.

Apart from corroborating wearable communications, this
scheme also provides a form of location proof [56]. For
instance, if Bob were to claim that he was not at home at
the time of the crime, but was instead working late at his
office, the investigator could verify his account by confirming
that his wearable’s link signatures match with those that have
been forwarded by the office gateway device. Furthermore,
the data readings are verified by other witness devices in the
office, which lends further credence to Bob’s testimony.

The previous work has demonstrated how wearable devices
may be hacked to backfill healthcare data [11], but to subvert
our scheme and cheat the investigators, an attacker would also
have to compromise the gateway and all the witness devices
and falsify their statements. Furthermore, this must be done
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Fig. 6. Witness testimonies forwarded to anonymizing service after each epoch.

Fig. 7. Forensic verification.

within the narrow time window of the epoch. When an epoch
concludes, the witness statements are signed by the respective
witnesses and dispatched to the anonymizing service. Digital
signatures on epoch-level data blocks and witness records
ensure nonrepudiation and integrity of forensic data, while
hash chaining these items preserves chronological ordering.

Distributing trust in this manner to neighboring devices and
third parties thereby enables effective accountability of major
stakeholders. The scheme is tamper evident in that if any
party later alters the data, the alteration can be detected with
very high probability. Furthermore, in such cases, it may assist
forensic investigators in determining liabilities. For example,
in the earlier scenario where Alice accused her insurance
company and healthcare service of tampering with her fit-
ness records, investigators can use the witness statements to
determine the correct account.

Furthermore, our scheme significantly improves on the
shortcomings of the individual primitives we deploy (described
in Section III). The link signature primitive secures data prove-
nance across a single hop but notably cannot protect against
the case where both communicating parties collude to tamper
with the provenance record. On the other hand, the crowd-
sourced logging primitive does not preserve the privacy of the
witnesses, nor does it provide any guarantee that the witnesses
are indeed genuine.

In our case, however, collusion may be detected by using
the witness record. Likewise the hash chained log resists
retroactive data tampering. The link signature imparts inves-
tigators with confidence that witnesses were indeed physi-
cally present on the scene during the epoch. Furthermore,
the signature acts as a credible pseudonym for wit-
ness devices that effectively dissociates witness statements
across epochs, thereby providing the important property of
unlinkability.

Our scheme relies on the presence of wireless witness
devices in the vicinity of a wireless transaction. Our scheme
would not work if there is no such device around to log the
transaction, however, a single witness would suffice to ver-
ify data. While there is already a high penetration of such
devices in urban society with an even higher growth rate [57],
the lack of smart devices in rural areas is quickly diminish-
ing as well. Governments are pushing to deploy telemedicine
or mHealth solutions for rural healthcare [58] due to their
potential socio-economic benefits [59]. Smart farming [60]
is another promising application of the modern technology
that will give rise to the density of smart devices in rural
areas. For instance, Australian researchers, with government
help, carried out a number of smart farming projects and
reported considerable benefits in productivity, quality, and
management [60].

Here, we briefly discuss the practicability of our solution.
Our scheme is lightweight as it exploits the passive radio scan-
ning activity of wireless devices. It does not require frequent
use of expensive cryptographic techniques (we provide energy
estimates in Section V). There is no reliance on specialized
hardware, such as the GPS unit and tracking technology that
one might typically deploy in a solution that provides location
proofs.

The regarding network architecture, most of these entities
we describe already exist in typical home deployments of
wearables and smart devices. Our solution expands the role
of the other entities to log messages they overhear. This may
be easily accomplished using software patches on the gateway
and smart devices. Our solution adds only one new entity to
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the network, i.e., the anonymizing service, whose role is to
safeguard the privacy of witnesses.

The anonymizing service we describe is inspired by a simi-
lar trend toward outsourcing security, evidenced most recently
in proposals, such as blockchain notaries (SilentNotary [61],
Stampd [62], etc.), key directories (such as KeyBase [63]), and
cryptocurrency tumblers [64]. Moreover, we anticipate the fea-
sibility of such a service in the wake of recent EU General
Data Protection Regulation (GDPR) which prescribes strict
guidelines on the collection and handling of user data. This
service could be operated by third parties in compliance with
regulations by relevant industry or watchdog bodies.

An obvious question that arises at this point is with regard
to the trustworthiness of this anonymizing service. The ser-
vice may tamper with the witness statements on its own or
in collusion with other parties to support a false narrative.
While there is no guarantee that this service is honest, there
are cryptographic mechanisms that can be deployed to reduce
the probability of fraud. For instance, threshold cryptography
may be used to distribute the decryption of witness statements
among multiple parties on the assumption that at least one of
these parties will be honest. The only change necessitated, in
this case, would be to switch to a suitable cryptosystem, such
as the Paillier scheme [65] or elliptic curve digital signature
algorithm (ECDSA).

Another interesting strategy is randomized partial checking
which splits processing into two or more stages undertaken
using mixnets, which may then be publicly audited for fair-
ness [66]. This strategy has been deployed for auditing
purposes in various well-known electronic voting protocols,
including Scantegrity [67], Prêt à Voter [68], and Wombat [69].
In this situation, the decryption process consists of two or more
mixes connected in series, such that the outputs of one mix
serve as the inputs of the next mix. The ciphertext, i.e., the
witness statements, would have multiple layers of public-key
encryption, each corresponding to the credentials of a partic-
ular mix. As the ciphertext passes through the mixnet, each
mix strips away a layer of encryption and permutes the inputs
before passing them on to the next mix. The process can be
audited with very high confidence by an observer who ran-
domly selects certain outputs of the mixes which are then
revealed by the mix operator and verified. It is important
that the maximum number of outputs be checked in this way
while ensuring that no end-to-end path through the mixnet is
revealed.

When compared to the crowdsourced logging scheme
described in [17], our current solution preserves witnesses’
privacy at the cost of additional processing and introduction of
an anonymizing service. The process of link signature genera-
tion between the gateway and the witness devices hardly adds
an extra cost as the RSS values are mostly sampled when rou-
tine data are transmitted. (We adapt the ultralightweight link
signature generation strategy described in [52].) Furthermore,
encrypting a witness record with the anonymizing service’s
public key costs 52 mJ of energy (for MicaZ motes, as dis-
cussed later in Section V-C3), which is an infrequent operation
that occurs only once each epoch. Moreover, the crowdsourced
logging scheme does not preserve the privacy of the witnesses.

Any third party can examine the witness logs and infer cer-
tain information about the witnesses, including their identities,
their connectivity, location, movements, etc. We have sought
to address this shortcoming in this article. The anonymizing
service conceals witness identities and patterns while the link
signatures provide hard guarantees regarding the authenticity
and integrity of the witness logs. We believe people are more
likely to buy a smart device that lets them support a foren-
sic investigation anonymously than one that may implicate
them in an active investigation. This hunch is supported by
real-life examples that we mention in Section II-A where two
teenage boys were murdered in a house party attended by
approximately a hundred people [28], and the case where a-
seven-year old girl was murdered during a gang fight in front
of a crowd [29]. In both cases, no witness was willing to
testify.

Regarding the motivation and deployment for our solution,
we believe an ecosystem such as we have described in this
article is already emerging. We have noted in Section I that
large companies are incentivizing wearables for their employ-
ees and that some insurance companies are also encouraging
this technology. Indeed, John Hancock, one of the oldest and
largest insurers in the U.S. has now stopped offering traditional
life insurance and has switched entirely to interactive policies
that mandate wearable devices [70]. Likewise these devices
are starting to feature prominently in criminal investigations.
Given how vulnerable these devices are, with increasing inte-
gration into our lives, it is only a matter of time before pressure
builds for innovative solutions to secure these devices. It is
entirely possible that employers and insurers may bundle such
a solution as part of their policies in the near future.

V. TRUST MODEL AND SYSTEM DESIGN PARAMETERS

In this section, we develop an analytical model to compute
trust in the presence of witnesses as well as their state-
ments. We further discuss various design parameters, namely,
the length of link signatures, their bit agreement, size of
Bloom filter for witness statements, energy cost to generate
witness statements, granularity of time with which an occur-
rence (reading) can be verified, and how these parameters are
affected by epoch length. We also discuss the parameters’ var-
ious tradeoffs helpful in selecting optimum values of these
parameters in devices of varying capabilities and resources.

A. Computation of Trust in Witness Presence

Here, we develop an analytical model to quantify the con-
fidence in the presence of a witness in the environment where
the incident happened. As discussed earlier in Section IV
that the witnesses generate link signatures with the gateway
to prove their presence in the vicinity. It is well docu-
mented in [52], [53], and [71] also shown in Section VI that
these link signatures cannot be forged by an eavesdropper
as they are generated based on unique spatiotemporal vari-
ations in the wireless channel between two parties (discussed
in Section III). The confidence in such a proof of presence can
only be undermined by the possibility that an attacker might
successfully replicate the signatures by chance by choosing a
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random bitstring with a similar or better match than that of the
genuine witness, the probability of which we call “replication
probability” g that can be expressed as follows:

g = 1

2l

l∑

i=s

(
l

i

)
; 0 ≤ s ≤ l. (1)

Here, l is the length of the link signature and the term 2l

represents the number of all possible selections of a random
bitstring while the term

∑l
i=s

(l
i

)
is the number of random

selection of strings that have the same or better match than
that of the genuine witness. The parameter s here represents
the number of matching bits between the link signatures of
the gateway and the genuine witness. We note that, with a
randomly chosen bitstring, a 50% bit match is more likely
(which is the lowest match considered) and that the probability
of match decreases symmetrically around 50% bit match, e.g.,
the probabilities of a 30% and 70% bit match are same. To
shift the reference, we double the probability while we only
consider the match of more than 50% bits. Equation (1) can
be rewritten as follows:

g = 1

2l−1

l∑

i=s

(
l

i

)
; l/2 ≤ s ≤ l. (2)

Also, since
(l

i

) = ( l
l−i

)
, with the change of limits, (2) becomes

g = 1

2l−1

l−s∑

i=0

(
l

i

)
; l/2 ≤ s ≤ l. (3)

Probability that an attacker cannot replicate the link signa-
tures successfully can be translated as the trust in the witness
presence and can be represented as follows:

τp = 1 − g = 1 − 1

2l−1

l−s∑

i=0

(
l

i

)
; l/2 ≤ s ≤ l. (4)

Based on the above trust function, Fig. 8 shows an exam-
ple of how trust changes with the varying number of bits
in agreement for a given length of link signature (101 b in
this example). We note that the value of the trust approaches
0.99999 (five 9s, the desired value) at the bit agreement of
approximately 73%.

In order to further explore the behavior of the trust function
[given in (4)] and to validate it, we calculate the trust at the
boundary values of the parameter s (the number of matching
bits). For s = l, i.e., when all the bits are matching, the value
of trust reduces to

τp = 1 − 1

2l−1
; when s = l. (5)

The above relation shows that the value of trust increases
with the length of the link signatures and approaches 0.99999
(five 9s, the desired value) at the link signature length of 18.

However, at s = l/2, i.e., when half the bits match, the
value of trust becomes

τp = 1 − 1

2l−1

l/2∑

i=0

(
l

i

)
; when s = l/2.

Fig. 8. Value of trust in witness presence having 101-b link signature with
varying number of bits in agreement.

Since the sequence of binomial coefficients of
∑l

i=0

(l
i

)
is sym-

metric and we know that
∑l

i=0

(l
i

) = 2l, hence
∑l/2

i=0

(l
i

) ≈
(2l/2) = 2l−1, that leads to

τp ≈ 0; when s = l/2

which conforms to the intuitive expectation as 50% is the
lowest match.

B. Computation of Trust in Witness Statement

Data verification through Bloom filters comes with a prob-
ability of false positive, which affects our trust in the witness
statements. This probability of false verification f in Bloom
filters, well documented in [72], can be computed from the
following relation:

f ≈ e− m(ln2)2

n (6)

where n is the number of packets inserted in the Bloom filter,
while m is the size of the Bloom filter in bits. The witnesses
include these parameters in their testimony headers to be used
by investigators to compute probability of false positive. Trust
in the witness statement can be represented as follows:

τd = 1 − f ≈ e− m(ln2)2

n . (7)

C. System Design Parameters Tuning

In Section IV, we have described that our scheme uses a
system-level epoch, which is a set time interval. After each
such interval, the gateway forms a data block and hash chains
it to the previous block to create the gateway log. Similarly, the
link signatures between the gateway and the witnesses, and the
witness statements by the witnesses are also generated every
epoch and forwarded to the servers. In this section, we discuss
how different system parameters depend upon the epoch size
and how it might impact the witnesses.

1) Link Signature Parameters: Link signature parameters—
length and bit agreement—are the sole contributors in estab-
lishing the trust in the witness presence, as evident from (4)
and plot in Fig. 8. For a given bit agreement, the trust in
the witness presence τp increases with the increase of link
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Fig. 9. Value of trust in witness presence in a high and low activity
environments against epoch length.

signature length. That said, a higher trust in witness pres-
ence requires a longer link signature, however, for a longer
link signature, sufficient time (a longer epoch) is needed. In
a representative work on wearable devices by Ali et al. [52],
it is shown that the length of the link signature and the bit
agreement depends upon the dynamics of the environment.
Ali et al. [52] performed experiments to generate link sig-
natures between a gateway and a wearable device with low
and high physical activity (mobility) of the subject wearing
the device. They listed the values of performance metrics,
such as bit agreement and secret bit rate of link signatures for
those scenarios. They also demonstrated the effect of filtering
and the variation of activity threshold θ on the performance
metrics.

Let us consider a low physical activity environment such as
a hospital ward. From [52], we know the performance metrics
of link signature generation for such an environment. In a low
activity environment (for activity threshold θ = 2), there is
a 100% bit agreement with a secret bit rate of 0.036 b/s. In
Fig. 9, the broken line shows the trust in the witness presence
τp in a low activity environment against the varying epoch
length. We note that a minimum nine minutes of epoch length
is required for trust to reach five 9s and beyond in the low
activity environment.

Similarly, for a high activity environment such as a gym,
there is 99.88% bit agreement with an increased secret
bit rate of 0.101 b/s (for activity threshold θ = 2) [52],
as a slight movement causes variation in the channel
between two parties that results in higher bit rate. In
Fig. 9, the solid line shows the trust in the witness pres-
ence τp in high activity environment against varying epoch
length, which shows that for high activity environment, only
3 min of epoch length is required for trust value to reach
five 9s.

2) Bloom Filter Size: The size of the Bloom filter is set
considering two main factors: 1) the anticipated number of
inserted items and 2) the targeted probability of false positive.
The size of the Bloom filter, as per standard calculation [72],
is given in the following expression:

m ≈ −n ln(f )

(ln2)2
. (8)

Fig. 10. Bloom filter size versus epoch length at r = 1 packet/s and f = 1%.

Here, m is the size of the Bloom filter in bits, while n is
the number of items inserted and f is the probability of false
positive.

The witnesses set the Bloom filter and epoch length a priori
at the start of the epoch, so they estimate the number of items
to be inserted from the average data transmission they over-
hear. Let t be the epoch length and r be the rate at which a
witness is overhearing packets, such that n = rt. Equation (8)
can be rewritten as follows:

m ≈ − rt ln(f )

(ln2)2
. (9)

Normalizing the filter size by the packet reception rate r
(packet/s), the above equation can be expressed as

μ = m

r
≈ − ln(f )

(ln2)2
t (10)

which is a linear expression for a targeted probability of false
positive f .

Fig. 10 plots the normalized Bloom filter size μ (in kB) for a
targeted probability of false positive of 1%. A given reception
rate r is multiplied by the normalized size to get the required
Bloom filter size. A larger Bloom filter size may be undesirable
for certain wearable devices due to memory limitations—
a concern quickly being diminished due to advancement in
technology offering cheap and compact storage.

3) Energy Cost: Energy cost is the most crucial param-
eter when it comes to wearable devices due to their size
limitations, which is the primary reason why a complete
cryptographic security protocols suite cannot be implemented
on these devices, which in turn makes them vulnerable to
security threats. Here, we only provide the energy estimates
for the witness devices, as the gateway devices are usu-
ally rich in resources and energy consumption for such a
lightweight protocol is not a major concern for them. As
detailed in Section IV, our solution is lightweight as most of
its operations either use the ongoing routine procedures run by
wearable devices or implement light cryptographic operations
only scarcely. For link signature generation, the RSS values
are mostly sampled when routine data are transmitted by the
wearable device to the gateway and its acknowledgment is
received by the device.
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The rest of the protocol has the following energy costs
for the witnesses: 1) logging overheard packets in the wit-
ness statement (Bloom filter); 2) digitally signing the witness
testimony [link signatures + witness statement]; 3) encrypt-
ing the witness testimony with the public key of anonymizing
server; and 4) transmitting the witness testimony to anonymiz-
ing server via gateway. For witness statements, the ongoing
radio scanning by these wireless devices allows them to wit-
ness packets generated by the neighboring devices. To insert
these packets into Bloom filter, they are hashed with an appro-
priate hash function. For MicaZ motes—that we use in our
experiment in Section VI—the cost of SHA-1 hash for one
packet is 154 μJ [73], however, the hardware implementa-
tion of the hash function reduces the cost dramatically. For
example, Kaps and Sunar [74] implemented SHA-1 hash for
RFID tags and wireless sensors that only consumed 21.65-nJ
energy (26.73 μW at 500 kHz in 405 cycles). To digitally sign
the witness testimony, the ECDSA with a public-key size of
160 b in MicaZ mote costs 52 mJ of energy [75]. Public-key
encryption of witness testimony consumes the same energy as
a digital signature, which is 52 mJ [75]. As far as the trans-
mission of witness record is concerned, transmitting 1 b costs
0.6 μJ of energy in MicaZ mote [75].

Let us revisit these costs to see which one of these affects
the total cost if the length of the epoch is varied. In other
words which cost is linear in time and does not depend upon
the epoch length and vice versa. We note that the logging cost
is linear as it only depends upon the rate at which it receives
the packets. Moreover, since the size of the Bloom filter is
proportional to the epoch length, as given in (9), the cost of
transmitting a witness statement is also linear in time and does
not depend upon the epoch length. The only significant costs
that are affected by the epoch length are the ones for digi-
tal signature and encryption of witness testimonies, operations
that happen once every epoch.

Let us take a scenario where a witness device is receiving
packets at a rate of 1 packet/s. It uses three hash functions to
log these packets into a Bloom filter. The size of the Bloom fil-
ter depends upon the epoch length it chooses. Let us calculate
the total energy costs over a period of 1 h from logging the
witness data to its transmission by varying the epoch length
from 1 min to 1 h. Fig. 11 shows the total energy cost of
implementing the witness testimonial protocol on a MicaZ
mote. The solid line graph shows the total cost using the exist-
ing SHA-1 implementation while the dotted line graph uses
the hardware implementation cost of SHA-1 given in [74].
We note that the logging and transmission costs are constant
over various epoch lengths being 564.75 and 10.43 mJ, respec-
tively, for two implementations while the digital signature and
encryption costs reduce by selecting longer epoch lengths.

4) Time Granularity: The time interval in which a sensor
reading is verified is determined by the epoch length. A wit-
ness creates witness testimony (that contains a Bloom filter)
every epoch, hash chains it with the previous epoch, and for-
wards to the servers. While the testimonies are timestamped
and an epoch-level chronological ordering is preserved due to
hash chaining, the ordering of individual packets within an
epoch is lost when inserted into the Bloom filter. A forensic

Fig. 11. Total energy cost over the period of 1 h in MicaZ mote.

investigator can verify the individual packets in a Bloom filter
and can verify an event happing during that epoch, however,
the time granularity of the event (sensor reading) depends upon
the epoch length. The shorter the epoch length is the more
fine-grained timing information is.

5) Epoch Length: The above discussion reveals that all the
system parameters, namely, link signature length, the bit agree-
ment and hence the trust in witness presence, Bloom filter
size, energy consumption, and time granularity depends upon
the selection of the epoch length. If we look at the graphs in
Figs. 9–11, we note that a lower epoch length is limited by
two factors: 1) lower trust in witness presence and 2) higher
energy cost. We note that for a low and high activity environ-
ments, a witness device needs to have a minimum of 9 and
3 min of epoch lengths, respectively, to prove their presence in
the vicinity. However, a resource-constrained device might not
be able to sign and transmit witness statements that frequently.
Moreover, larger epoch lengths are limited by the memory size
used by the Bloom filter. We also note that many IoT devices
in the vicinity, such as smoke sensors and smartphones can
easily meet the energy demand for using the shortest allow-
able epochs that could provide more time granularity to the
provenance data.

Based on the above discussion, we propose to keep a
system-level epoch of fixed duration (e.g., 1 h), however, dif-
ferent devices can divide the system epoch into subepochs and
can decide a priori the appropriate subepoch length based on
their energy and memory resources, mobility profile, and data
rate in the environment providing different levels of time gran-
ularity that could help the forensic investigator reconstruct and
verify the events with greater precision.

VI. EXPERIMENTS AND SIMULATIONS

A. Prototype Experiment

We implemented our scheme using IEEE 802.15.4 compli-
ant 2.4-GHz MicaZ wireless motes. Our experiment involved
a human subject wearing a MicaZ mote on his right arm emu-
lating a fitness monitor transmitting at the rate of 1 packet/s.
The subject walked within an office environment with cubicles
(shown in Fig. 12) for approximately 15 min. A stationary
gateway in the middle of the office hall not only received
and logged the wearable sensor data but also generated the
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Fig. 12. Layout of the prototype experimental setup.

TABLE I
PERFORMANCE PARAMETERS AND TRUST IN THE WITNESS TESTIMONIES

IN THE PROTOTYPE EXPERIMENT

link signature with the wearable device. Three such wearable
devices in the vicinity witnessed the fitness tracker’s communi-
cation with the gateway and generated the witness statements
containing the fingerprint of the communication. They also
generated the link signatures for that epoch with the gateway
to prove their presence in the vicinity.

The subject wearing the sensor device usually sats in his
cubicle and occasionally walked a bit in the office that we
classify as having medium mobility. One of the witnesses (wit-
ness #2) mostly sat in his chair and moved three times only
slightly during the entire experiment and is classified as hav-
ing low mobility. However, the rest of the two witnesses had
high mobility and walked in the office for the entirety of the
experiment.

The sensor wearable device and the three witness devices
generated with the gateway, the link signatures of varying
length, and bit agreement depending upon their mobility as
shown in Table I. The channel between the gateway and the
wearable devices was sampled at both ends for RSS values.
At the gateway end, the sampling was done when the packet
was received while at the wearable device end, it was done
when it received acknowledgments of the packets from the
gateway. The witnesses generated their witness statements as
well based on what they overheard from the sensor communi-
cation. They used a 1-kB Bloom filter each with five Murmur3
hash functions. We calculated the trust in the presence of each

Fig. 13. Percentage of packets verified by witnesses.

TABLE II
BIT AGREEMENT AMONG THE LINK SIGNATURES OF WIRELESS

WEARABLE DEVICES

witness τp, as well as in their witness statements τd, as given
in Table I.

We verified the sensor data (packets logged by the gateway)
by checking the witness statements of all three witnesses. We
found that none of the packets remained unheard and all the
packets verified by at least one witness, as depicted in Fig. 13.

In our prototype experiment, we considered the malicious
behavior of the witnesses as well in which they tried to
generate the sensor’s link signatures in an attempt to fake
more devices with the same link signatures undermining
the uniqueness of the link signatures as we claimed earlier.
They did so by sampling the RSS values of the acknowl-
edgment packets from the gateway to the sensor that they
witnessed. However, we found out that these fake link signa-
tures had a match of around 50% bits (50.08%, 50.32%, and
51.19%, respectively) with the gateway-sensor link signatures
as compared to their genuine 99.34% match.

In Table II, we have listed the bit agreement among the
link signatures of wireless wearable devices that they gener-
ated with the gateway. It is evident from the table that their
signatures are completely independent from each other with
nearly 50% bit agreement between any two link signatures
created during the prototype experiment.
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Fig. 14. Average number of witnesses and standard deviation during the epoch 4 P.M.–5 P.M.

B. Experiment for Office Environment

We revisit scenario #2 presented in Section II where a com-
pany employee Alice injures herself while in office, says she
falls from one of the office stairs while no eyewitnesses hap-
pened to be around. As discussed earlier, Alice claims a huge
compensation and uses data from her activity tracker in court
to prove her lack of activity after the incident. The forensic
investigator needs to confirm whether the incident happened
in the office during the claimed time (say between 4 P.M. and
5 P.M.) or not. We simulate the situation in a multistorey uni-
versity building full of students and staff whom we model as
representing the company employees. Their wireless gadgets,
such as smartphones and laptops represent smart wearable
devices. The building has six storeys, namely, lower ground,
ground, and 1–4 and is equipped with 30 Cisco wireless APs
mounted at different levels for full coverage of service. With
the help of root access to the APs, we managed to get the
statistics of all the wireless connections with the APs for a
single day.

With the help of this real trace data, we simulate our
scheme using Python language. We make the assumption that
the clients connected to a certain APs are within the broad-
cast domain of each other and can act as the witnesses to
each other’s communications. We divide the day (24 h) into
24 epochs of 1 h each. The wireless clients and the APs
(gateways) implement the anonymous testimonial protocol
discussed in Section IV. The clients and their respective APs
generate link signatures for each epoch and forward to a cen-
tral database at its conclusion. Moreover, the clients manage
witness statements (Bloom filters) for each epoch, which they
populate with the transmissions they overhear from neighbor-
ing devices and forward them to a central database at the
conclusion of each epoch. In our simulation, we assume that

all the clients (wearable devices) transmit one packet every
10 s (0.1 packet/s). The size of Bloom filters (witness state-
ments) is set 1 kB for each client with three Murmur3 hash
functions used to insert overheard packets.

From trace data that we got from the APs, we worked out
the average number of witnesses Alice could have if she were
connected to a given AP during epoch 4 P.M.–5 P.M., which
is shown in plots given in Fig. 14 together with their standard
deviations.

It is apparent from the plots that the witnesses are not uni-
formly distributed across the APs due to the apparent reasons
of the clustering of students in certain areas (lecture rooms,
labs, etc.). The witnesses on average can go as high as 92 if
Alice is connected to the AP “eeblgap4.” The APs such as
“eeb4ap4” that has no witnesses and “eebgap3” with one wit-
ness are located in parts of the building not being used by the
students or staff during the epoch. However, given Alice is
connected to any random AP, the probability of Alice having
more than five witnesses is more than 93%. In our simulation,
we randomly chose a client to emulate Alice’s fitness tracker,
which happened to be connected to the gateway “eeb2ap4”
for the epoch 4 P.M.–5 P.M. The probability of having a given
number of witnesses for a packet transmitted by Alice’s fitness
tracker is given by the graph in Fig. 15. The average number
of witnesses per packet is 10 with a maximum of 14 witnesses.

The job of the forensic expert is to verify Alice’s fit-
ness tracker data (proving a fall from the stairs) from the
witness statements of neighboring smart devices. We imple-
ment forensic verification protocol discussed in Section IV for
this purpose. In summary, we gather the packets Alice gen-
erated during the epoch 4 P.M.–5 P.M. as well as the link
signatures that Alice’s gateway eeb2ap4 had generated with
all the devices connected to it during the epoch. In order to

Authorized licensed use limited to: UNSW Library. Downloaded on July 04,2022 at 07:41:51 UTC from IEEE Xplore.  Restrictions apply. 



SIDDIQI et al.: FORENSIC VERIFICATION OF HEALTH DATA FROM WEARABLE DEVICES USING ANONYMOUS WITNESSES 10759

Fig. 15. Probability of the number of witnesses during the epoch
4 P.M.–5 P.M. given Alice is connected to eeb2ap4 gateway.

TABLE III
FINDINGS BY FORENSIC INVESTIGATOR

identify the potential witnesses, against each link signature
posted by the gateway during the epoch, we searched for the
best match from the list of all the link signatures posted by
each individual device in the building for that epoch. We then
verified Alice data from the witness statements associated with
the matching link signatures of the witnesses in the previous
step. Table III lists the findings during the forensic investiga-
tion, including the trust in the presence τp, trust in the witness
statement τd, and the percentage of packets verified by each
individual witness of total 14 identified by the protocol. The
line chart in Fig. 16 (complementary CDF plot) shows the per-
centage of packets verified by the least number of witnesses
while the column chart (PDF plot) shows the packets veri-
fied by the exact number of witnesses. It is apparent from the
graphs that at least seven witnesses verified all the data and
29.4% packets found the most (11) witnesses.

VII. CONCLUSION

Due to the increased popularity and usage of wearable tech-
nology by individuals, data from these devices have started to
facilitate healthcare providers, insurance companies, and law

Fig. 16. Packets verified by witnesses during the epoch 4 P.M.–5 P.M.
(column chart: PDF and line chart: CCDF).

enforcement agencies. To ensure the correctness of data and its
admissibility as evidence in courts, novel solutions are required
to secure the data against tampering by various stakeholders,
such as patients/users, doctors, insurers, and prosecutors. In
this article, we have proposed a crowdsourced secure log-
ging scheme in which the smart devices in the vicinity of the
wearable sensor record its communication and ensure its con-
textual correctness in a lightweight manner, acting as witnesses
to the sensor’s transaction. To prove the witness presence in
the vicinity and to ensure its privacy, our scheme has used
nonforgeable link signatures between the gateway and witness
devices based on the unique wireless channel between them.
We implemented the prototype solution of our scheme using
real wireless devices in real-life environments. Furthermore,
we simulated our scheme using real data from wireless devices
in a university building emulating an office environment with
results that validated the feasibility and efficacy of our scheme.

In future work, we intend to undertake research in the
following directions.

First, there is a potential of further optimization for our
crowdsourced logging scheme. The cost of digital signatures
could be amortized by using an aggregate signature scheme
like the one proposed by Ali et al. [76] that uses a Merkle hash
tree. Witnesses can only sign the root of the statements’ tree
after its formation and an individual witness statement could
be authenticated with the help of the authentication path to the
root. Such a solution has the potential to significantly reduce
the energy costs of our scheme.

Second, to add further context and enhance the secu-
rity guarantees, our scheme could be integrated with other
secure localization schemes such as the one described by
Saroiu and Wolman [56]. Those witnesses equipped with GPS
could insert a more precise location proof in addition to
the loose form of localization our scheme provides. We will
also examine the possibilities of integrating our scheme with
biometric authentication methods [77].

Third, we intend to make law enforcement agencies
accountable by notifying the mobile users whose data are
accessed by the police without consent. This is inspired by
the idea of “making decryption accountable” presented by
Ryan [78], who proposed a scheme whereby a decrypting
agent cannot undertake a decryption operation without leaving
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a trace in the log. We intend to explore ways in which an
access event log could be maintained for any use of such
provenance data to curb the abuse of users’ privacy.

We believe the above-mentioned research directions could
considerably improve our scheme, increase its effectiveness,
and lead to greater adoption and better utilization of wearable
technology.
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