
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

Managing IoT Cyber-Security using
Programmable Telemetry and Machine Learning

Arunan Sivanathan, Hassan Habibi Gharakheili, and Vijay Sivaraman

Abstract—Cyber-security risks for Internet of Things (IoT)
devices sourced from a diversity of vendors and deployed in
large numbers, are growing rapidly. Therefore, management of
these devices is becoming increasingly important to network op-
erators. Existing network monitoring technologies perform traffic
analysis using specialized acceleration on network switches, or
full inspection of packets in software, which can be complex,
expensive, inflexible, and unscalable.

In this paper, we use SDN paradigm combined with machine
learning to leverage the benefits of programmable flow-based
telemetry with flexible data-driven models to manage IoT devices
based on their network activity. Our contributions are three-fold:
(1) We analyze traffic traces of 17 real consumer IoT devices
collected in our lab over a six-month period and identify a set of
traffic flows (per-device) whose time-series attributes computed at
multiple timescales (from a minute to an hour) characterize the
network behavior of various IoT device types, and their operating
states (i.e., booting, actively interacted with user, or being idle);
(2) We develop a multi-stage architecture of inference models
that use flow-level attributes to automatically distinguish IoT
devices from non-IoTs, classify individual types of IoT devices,
and identify their states during normal operations. We train our
models and validate their efficacy using real traffic traces; and
(3) We quantify the trade-off between performance and cost of
our solution, and demonstrate how our monitoring scheme can
be used in operation for detecting behavioral changes (firmware
upgrade or cyber attacks).

Index Terms—IoT, device monitoring, flow characteristics,
machine learning.

I. INTRODUCTION

The Internet-of-Things (IoT) such as security cameras,
smart-lights, smoke-alarms, and smart-bins, continues its reach
to smart environments including homes, building, enterprise
campuses and even cities [2]. With 10 billion IoT devices
connected today, the installed base is expected to reach 22
billion in next five years [3]. However, research studies [4],
[5] have shown that this revolutionary network technology
comes with a glaring problem of cyber-security which cannot
be overlooked. Malware and botnets, such as Mirai, Persirai,
Reaper, and IoTroop [6]–[8], have been able to adversely affect
these devices and their networks, enabling destructive cyber-
campaigns.

The lack of effective security on IoTs [9]–[11] presents a
number of challenges for network operators of large organiza-
tions who are looking to bring these devices online at scale.

A. Sivanathan, H. Habibi Gharakheili, and V. Sivaraman are with the School
of Electrical Engineering and Telecommunications, University of New South
Wales, Sydney, NSW 2052, Australia (e-mails: a.sivanathan@unsw.edu.au,
h.habibi@unsw.edu.au, vijay@unsw.edu.au).

This submission is an extended and improved version of our paper presented
at the INFOCOM 2017 SmartCity Workshop [1].

Even governments recently started to develop cyber-security
guidelines and regulations [12]–[15] for manufacturers of
IoT devices, preventing unauthorized access, modification or
information disclosure. Implementing device-level security
would definitely help protect against automated attacks [16],
but its efficacy can vary across manufacturers and device
types depending upon devices capabilities and their mode
of operation [17]. In a parallel effort, IETF has approved
an Internet standard called “Manufacturer Usage Description”
(MUD) [18] to protect IoT devices. This framework allows
manufacturers to formally specify the intended behavior of
their devices that can be used to generate and enforce access
control lists (ACLs) [19] for IoT devices, limiting their net-
work behavior to only a tight set of services. Although MUD
policies can reduce the surface of attacks on IoTs they are still
insufficient, since ACL rules do not restrict temporal variation
of traffic flows (e.g., traffic with unwanted volume or pattern
cannot be prevented if endpoints and protocols conform to
MUD rules).

Therefore, it is crucial for organizations to maximize visi-
bility into their IoT infrastructure [20], and thus better manage
security risks of these vulnerable devices [6]. Network admin-
istrators need to know all connected devices and their expected
operations on the network, and continuously monitor their
activities ensuring IoTs behave “normally” [6]. Existing traffic
monitoring solutions are either purely software-based (hence
unscalable to high traffic rates), or customized hardware-based
(hence inflexible and expensive) [21]. Network operators,
today, widely use NetFlow [22] (an embedded switch instru-
mentation) to obtain aggregate measurement of traffic flows.
However, it comes at cost of CPU resources on the switch [23]
for generating, collating, and exporting flow records. To reduce
this overhead, operators statistically mirror packet samples
(e.g., sFlow [24]) to a remote collector for extracting flow
information that inevitably leads to reduced accuracy. On the
other hand, special-purpose hardware appliances (i.e., deep
packet inspection engines) offer both accuracy and perfor-
mance in traffic monitoring; but are prohibitively expensive
for many network operators.

In this paper, we aim to monitor behavior of IoT devices
on the network using a combination of Software Defined
Networking (SDN) telemetry and machine learning methods.
We believe that the SDN paradigm by its nature provides
flow-level isolation and visibility in a low-cost and scalable
manner. For accurate detection of devices and tracking of their
dynamic behaviors, we employ machine learning algorithms to
learn key patterns of traffic flows. Our first contribution is to
identify a set of TCP and UDP flows (for each IoT device) and



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

highlight characteristics attributes, computed from time-series
of flows at multiple time-scales, distinguishing various IoT
device types and their operating states (booting, active, or idle)
on the network. Our second contribution develops a multi-
stage architecture consisting of a set of inferencing models that
use flow-level attributes to automatically recognize traffic of
IoT devices from non-IoTs, classify types of IoT devices, and
identify operating states of each IoT during normal operation.
We train our models and validate their performance to obtain
high accuracy using real traffic traces. Finally, we demonstrate
the efficacy of our scheme in detecting network behavioral
changes due to firmware upgrade or cyber-attacks. Also, we
quantify the trade-off between performance and cost of our
monitoring solution for real-time deployment. Our solution
builds upon our preliminary work [1] by identifying cost-
effective attributes, and enhancing the architecture of inferenc-
ing that can detect changes in IoT devices. We believe that our
real-time monitoring solution empowers network operators to
better manage cyber-security risks of their IoT infrastructure.

The rest of this paper is organized as follows: §II describes
relevant prior work. In §III we present our dataset and traffic
flows, and characterize attributes of various IoT devices and
their operating states. We propose the architecture of IoT
traffic inference and evaluate its performance in §IV, followed
by a discussion on the operational trade-off and use of the
proposed system in §V. The paper is concluded in §VI.

II. RELATED WORK

Network Telemetry: Network traffic measurement has been
a subject of interest to academia and industry. Many different
methods have been proposed and practically used ranging from
traditional port-based counting using SNMP [25] and packet
sampling [24] to flow-based telemetry [21], [22] and WiFi
packet sniffing [26], [27].

Modern telemetry methods can be categorized into (a)
packet-based [24], [28], [29], and (b) flow-based [21], [22],
[30]. sFlow [24] is one of commonly used methods that
randomly samples (i.e., one in N) packets from the network
switches. Due to its random sampling, sFlow tends to collect
packets from elephant flows (those that carry heavy traffic
and are long in duration), and hence mice flows are likely to
get missed which results inaccurate measurement. To address
this issue, Everflow [28] proposes to collect specific packets
(e.g., TCP SYN, FIN, and RST) using the match and mirror
functionality of data-center switches. Planck [29] estimates the
throughput of flows at very tight time-scales by mirroring
traffic of multiple ports to a monitoring port at which a
collector performs high-rate sampling. Overall, packet-level
telemetry can only provide partial visibility into network traffic
flows.

Commercial switches equipped with NetFlow [22] engines
export flow records (IPFIX). Netflow capable switches have
the ability to export IPFIX records containing a rich set
of information [20] (e.g., port number, DNS, cipher suites)
from the network traffic. However, they come with two ma-
jor limitations: (a) they only export a flow record once it
expires (not real-time), and (b) computational cost is high

for updating and maintaining flow records inside the switch
[31]. FlowRadar [21] overcomes the limitations of Netflow by
incorporating an encoded hash table (data structure for flow
counters) with low memory overheads and exporting flows
periodically (e.g., 10 ms). However, FlowRadar is still not
supported by commercial switches available on the market.
In this work, we use flow-level telemetry provided by SDN
APIs [30] which enables us to measure traffic flows at low-cost
with reasonable resolutions.

Traffic Classification: Traffic classification is widely used
for various applications such as network management [32],
QoS [33], and cyber-security [34]. Over the past few years, IoT
traffic classification has attracted attention of researchers [35]
to identify IoT devices, their states, and detect their abnormal
behavior. Additionally, some works [36], [37] attempted to
infer user activities from the network traffic of IoT devices.

Work in [38] attempts to correlate network activities of
Nest Thermostat and Nest smoke-sensor to the user activity by
looking at the distribution of payload size for various network
flows. Similarly, authors of [39] show that the existence
of certain IoT devices (behind NAT) can be identified by
rate of traffic going to certain endpoints on the Internet.
However, these works do not automatically detect or classify
IoT devices.

Work in [40] develops a supervised machine learning model
using over 300 attributes (packet-level and flow-level) of IoT
traffic. Authors highlighted the most important attributes as
packets Time-To-Live (minimum, median, and average), ratio
of transmitted-bytes to received-bytes, total number packets
with reset flag, and the Alexa rank of servers which the
device communicates with. Work in [41] employs 16 binary
attributes (indicating the use of various protocols at applica-
tion, transport, network and link layers) along with remote IP
address/port numbers, and size and raw byte value of packets
from IoT traffic to train a supervised multi-class classifier.
Although these classifiers show a good performance in the
device classification, the cost of attribute extraction is high
since they involves packet inspections. Lastly, work in [42]
proposes a framework to group devices based on their seman-
tic type (e.g., camera, fitness/medical device, environmental
sensor). Grouping devices potentially results a model with
broad boundaries since often various devices of a given type
(e.g., cameras from different manufacturers) distinctly differ in
their network behavior. Therefore, broad models would yield
high rate of false classification during testing phase. In this
paper, instead, we tighten our models, and hence increase
the accuracy of classification and sensitivity of models to
behavioral changes, by choosing each class mapped to one
specific IoT device (e.g., camera of a specific manufacturer).

In the context of cyber-security, work in [43] claims that
machines can be trained to detect anomalies in IoT traffic
generated by DDoS attacks using attributes such as packet
size, inter-packet interval, average bandwidth and count of
distinct IP addresses observed during a short duration (i.e.,
10-seconds). Work in [44] develops a machine to detect
volumetric attacks by monitoring flow rules obtained from
MUD profile of IoT devices. Anomaly (and attack) detection
is beyond the scope of this paper, but we use attack traffic



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

TABLE I: Flow rules specific to each device, proactively inserted into SDN switch for real-time telemetry.
Flow description srcETH dstETH srcIP dstIP Protocol srcPort dstPort Priority Action

DNS query (DNS↑) <devMAC> * * * 17 * 53 100 forward
DNS response (DNS↓) * <devMAC> * * 17 53 * 100 forward
NTP query (NTP↑) <devMAC> * * * 17 * 123 100 forward
NTP response (NTP↓) * <devMAC> * * 17 123 * 100 forward
SSDP query (SSDP↑) <devMAC> * * * 17 * 1900 100 forward
outgoing remote (Rem.↑) <devMAC> <gwMAC> * * * * * 10 forward
incoming remote (Rem.↓) <gwMAC> <devMAC> * * * * * 10 forward
incoming local (Loc.↓) <devMAC> * * * * * * 1 forward

generated by authors of [44] to demonstrate how our traffic
monitoring engines enable network operators for further in-
vestigation (manually or by other systems).

III. TRAFFIC FLOWS AND ATTRIBUTES

In this section, we begin by analyzing real traffic traces
collected in our lab. We then identify traffic attributes to
distinguish IoT devices from non-IoTs, classify individual
IoTs, and determine their operating states.

A. Traffic Trace Dataset

We used two sets of full PCAP traffic traces collected from
our testbed. The first dataset (i.e., DATA1) was collected from
a network consisting of more than thirty IoT and non-IoT
devices for a duration of 6 months (i.e., 01-Oct-2016 to 31-
Mar-2017) [20]. We select 17 IoT devices, those whose trace
was present for at least 60 days in packet traces. These devices
include Amazon Echo, August doorbell, Awair air quality,
Belkin motion sensor, Belkin switch, Dropcam, HP printer,
LiFX bulb, NEST smoke sensor, Netatmo weather, Netatmo
camera, Hue bulb, Samsung smart camera, Smart Things,
Triby speaker, Withings sleep sensor, and Withings scale. Note
that our dataset contains traffic traces of six non-IoT devices
including Android phone, Android tablet, Windows laptop,
MacBook, and two iPhones. Our dataset constitutes: (a) traffic
generated by the devices autonomously (e.g., periodic NTP),

Fig. 1: System architecture of network telemetry and inference
engines.

and also (b) traffic generated due to users interacting with the
devices (e.g., Belkin motion sensor responding to detection
of movement, Amazon Echo responding to voice commands
issued by a user, LiFX lightbulb changing color and intensity
upon user request, and so on.

The second dataset (i.e., DATA2) consists of traces with
state annotation for selected IoT devices including Amazon
Echo, Belkin switch, Dropcam, and LiFX bulb. We developed
a software tool to automatically interact with these four devices
over two days and annotate their traffic traces. Annotations
indicate three operating states of IoT devices, namely “boot”
(i.e., getting connected to the network), “active” (i.e., in-
teracting with users), and “idle” (i.e., not being booted or
actively used). For the boot state, we used a TP-Link HS110
smart plug (whose traffic is not considered in our analysis)
supplying power to these four devices. We wrote a script
to automatically turn off/on this smart plug resulting a boot
state for the subjected IoT device. For the active state, we
used an app called “RepetiTouch Pro” and a text-to-speech
engine called espeak [45]. The former records and replays
interactions of a real user with three IoT devices including
Belkin switch, Google Dropcam camera, and LiFX lightbulb
via their manufacturer app – the user interactions (i.e., turning
on/off the switch, streaming video from the camera, and
turning on/off the bulb) were recorded on an Android tablet
which was connected to the local network of our testbed. The
latter periodically asks scripted questions (e.g., “How is the
weather in Sydney Australia”) from Amazon Echo. For the
idle state, we used all traffic traces that were annotated as
neither boot nor active, during data collection period.

B. Traffic Flows and Attributes
We showed in our prior work [1] that individual IoT

devices exhibit identifiable patterns in their traffic flows such
as DNS/NTP/SSDP signaling profiles, activity cycles, and
volume patterns. Inspired by recent proposals [46], [47] on
network telemetry using SDN, we consider a set of flow
rules that collectively characterize traffic signature of IoT
devices. For each device, these flow rules are pro-actively
inserted into SDN-enabled switch(es) to which IoT devices are
connected, as shown in Fig. 1. We use MAC address as the
identifier of a device – one may use IP address (without NAT),
physical port number, or VLAN for a one-to-one mapping of
a physical device to its traffic trace. For real-time monitoring,
in-built counters of these flow rules are periodically (i.e., every
minute) measured via the SDN controller that will form traffic
attributes of each device. Note that flow counters provided
by real SDN switches are highly accurate [47], though it



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

may vary across different vendors [48] due to customized
implementations.

Table I shows eight flow rules which we use to measure
network traffic of each IoT device with the following order:
(1,2) DNS outgoing queries and incoming responses on UDP
53, (3,4) NTP outgoing queries and incoming responses on
UDP 123, (5) SSDP outgoing queries on UDP 1900, (6,7)
other “remote” (e.g., Internet) traffic outgoing from and in-
coming to the device that passes through the gateway, and (8)
all “local” (i.e., LAN) traffic incoming to the device. Note that
we do not measure incoming SSDP traffic to IoT devices in
order to avoid capturing (and mixing with) discovery activities
of other devices on the local network. Note that rules priority
(the second last column in Table I) are used to split the
traffic of each device into three levels: signaling packets (i.e.,
priority 100), other remote packets (i.e., priority 10), and local
packets (i.e., priority 1). We note that SDN-enabled switches
that are currently available in the market typically support a
large number of flow rules without experiencing performance
degradation. For example, a NoviSwitch1 provides a massive
table with up to 1 million flow rules in TCAM for wildcard
matches while offering up to 400 Gbps throughput. This
means that with insertion of 8 OpenFlow rules, one switch
can essentially manage monitoring of more than 100K IoT
devices.

For each of eight flows (mentioned above), we use two key
attributes [1] namely average packet size and average rate.
Also, note that traffic attributes can better characterize network
behavior of individual devices if they are computed at multiple
time-scales [49]. We, therefore, collect packet counts and byte
counts per each flow every minute, and compute attributes at
time-granularities of 1-, 2-, 4-, 8-, 16-, 32-, 64-minutes. This
way, we generate fourteen attributes for each flow that means
a total of 112 attributes per device.

In order to synthesize flow rules, we wrote a native SDN
software switch emulator [50] that replays the network traffic
from PCAP traces, and performs packet-by-packet service
(matching packet headers against flow table entries, updating
statistics, applying required actions) inside a software SDN

1https://noviflow.com/noviswitch/

switch – prototype implementation on a physical SDN switch
is beyond the scope of this paper. The emulator records
counters of flow bytes and packets periodically (e.g., one
minute). We use another script to generate instances of traffic
attributes for each device every minute from the counter
outputs. An instance is a vector of 112 attributes with a label
(e.g., Amazon Echo:boot).

C. Traffic Characteristics of IoT Devices

We now highlight traffic characteristics of individual IoT
devices that can be learned to distinguish them from non-IoTs,
classify their device type, and identify their operating states.

IoT versus non-IoT: We begin with traffic attributes that
differentiate IoT devices from non-IoTs. Fig. 2 shows the
probability density of two representative attributes, namely
remote traffic volume at 32-minute resolution, and DNS query
count at 64-minute resolution. We can see in Fig. 2(a) that IoT
devices tend to transfer small volume of traffic from remote
(i.e., Internet) network and 90% of instances they download
less than 500 KB every half-an-hour. However, for non-IoTs
this value is widely spread between 10 KB to 100 MB and
mostly they transfer more than 500 KB. In terms of DNS
activity in Fig. 2(b), IoTs display identifiable patterns of query
count mostly less than 100 (e.g., 22% of instances with 4
queries per hour), while non-IoTs have a wider range of DNS
query count (i.e., 10 to 3000 DNS queries over an hour) with
almost equal probabilities.

IoT device types: Focusing on IoT devices, we now
consider three traffic attributes, namely NTP responses count
at 16-min resolution, upload volume of remote traffic at 8-min
resolution, and volume of SSDP responses at 8-min resolution,
as shown in Fig. 3. We quantitatively compare traffic charac-
teristics of four representative IoT devices from three different
manufacturers (i.e., Amazon, Belkin, and LiFX). It is observed
from Fig. 3(a) that LiFX bulb (depicted by solid green lines)
sends three NTP responses every 16-minute interval for more
than 90% of instances. This measure varies between 7 to 42
responses for Amazon Eco (depicted by dashed red lines). For
Belkin power switch and motion sensor (depicted by solid blue
and dotted pink lines), we see two significant peaks at count
of 1 and 2 NTP responses, each with a different probability –

✶�
✵

✶�
✷

✶�
✹

✶�
✻

❳✁ ✂✄☎✆✝✞ ✄✟ ✠✡☛✄✝✠✡☞ ✌✞✝✄✍✞ ✎✏✑✒

�

�✓�✔

�✓✶

�✓✶✔

�✓✕

�✓✕✔

P
✖✗
✘
✙
✘
✚✛
✚✜
✢
✣
P
✤✥
✗
✛✦
✧
★
✩
✪
✫

■✬✭

♥✬♥✮■✬✭

(a) Volume of remote traffic at 32-mins resolution.

✶�
✵

✶�
✁

✶�
✷

✶�
✸

✶�
✹

❳✂ ✄☎✆✝✞ ☎✟ ✠✡☛ ☞✆✌✍✎

�

�✏�✑

�✏✶

�✏✶✑

�✏✒

�✏✒✑

P
✓✔
✕
✖
✕
✗✘
✗✙
✚
✛
P
✜✢
✔
✣
✤
✙
✥
✦
✧

■★✩

♥★♥✪■★✩

(b) Count of DNS query packets at 64-mins resolution.

Fig. 2: Histogram of traffic profile to compare IoT and non-IoT devices: (a) remote traffic volume over 32-minute, and (b)
DNS query count over 64-minute.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

✶�
✵

✶�
✁

✶�
✷

❳✂ ✄☎✆✝✞ ☎✟ ✠✡☛ ☞✌✍✎☎✝✍✌

�

�✏✑

�✏✒

�✏✓

�✏✔

✶

P
✕✖
✗
✘
✗
✙✚
✙✛
✜
✢
P
✣✤
✖
✥
✦
✛
✧
★
✩

❆✪✫✬✭✮ ✯✰✱✭

❇✲✳✴✸✮ ✹✺✸✻✰✱

❇✲✳✴✸✮ ✪✭✻✸✭✮

▲✸✼✽ ✾✿✳✾

(a) Count of NTP response packets (16-min).

✶�
✵

✶�
✷

✶�
✹

✶�
✻

❳✁ ✂✄☎✆✝✞ ✄✟ ✄✆✠✡✄☛☞✡ ✌✞✝✄✠✞ ✍✎✏✠✞✑✒

�

�✓✔

�✓✕

�✓✖

�✓✗

✶

P
✘✙
✚
✛
✚
✜✢
✜✣
✤
✥
P
✦✧
✙
✢★
✩
✪
✫
✬
✭

❆✮✯✰✱✲ ✳✴✸✱

❇✺✼✽✾✲ ✿❀✾❁✴✸

❇✺✼✽✾✲ ✮✱❁✾✱✲

▲✾❂❃ ❄❅✼❄

(b) Volume of remote traffic (8-min).

✶�
✵

✶�
✷

✶�
✹

✶�
✻

❳✁ ✂✄☎✆✝✞ ✄✟ ✄✆✠✡✄☛☞✡ ✌✌✍✎ ✏✑✒✠✞✓✔

�

�✕✖

�✕✗

�✕✘

�✕✙

✶

P
✚✛
✜
✢
✜
✣✤
✣✥
✦
✧
P
★✩
✛
✤✪
✫
✬
✭
✮
✯

❆✰✱✲✳✴ ✸✺✼✳

❇✽✾✿❀✴ ❁❂❀❃✺✼

❇✽✾✿❀✴ ✰✳❃❀✳✴

▲❀❄❅ ❈❉✾❈

(c) Volume of SSDP traffic (8-min).

Fig. 3: Histogram of traffic profile for representative IoT devices: (a) NTP response count, (b) download volume of remote
traffic, and (c) upload volume of SSDP traffic.

✶�
✵

✶�
✷

✶�
✹

✶�
✻

❳✁ ✂✄☎✆✝✞ ✄✟ ✠✡☛✄✝✠✡☞ ✌✞✝✄✍✞ ✎✏✑✍✞✒✓

�

�✔✶

�✔✕

�✔✖

�✔✗

�✔✘

�✔✙

�✔✚

P
✛✜
✢
✣
✢
✤✥
✤✦
✧
★
P
✩✪
✜
✥✫
✬
✭
✮
✯
✰

❇✱✱✲

❆✳✲✴✸✺

■✼✽✺

(a) Amazon Echo: remote traffic (2-min).

✶�
✵

✶�
✷

✶�
✹

✶�
✻

❳✁ ✂✄☎✆✝✞ ✄✟ ✠✡☛✄✝✠✡☞ ☎✄☛✌☎ ✍✎✏✑✞✒✓

�

�✔✶

�✔✕

�✔✖

�✔✗

�✔✘

�✔✙

�✔✚

P
✛✜
✢
✣
✢
✤✥
✤✦
✧
★
P
✩✪
✜
✥✫
✬
✭
✮
✯
✰

❇✱✱✲

❆✳✲✴✸✺

■✼✽✺

(b) Belkin switch: local traffic (1-min).

✶�
✵

✶�
✷

✶�
✹

✶�
✻

❳✁ ✂✄☎✆✝✞ ✄✟ ✄✆✠✡✄☛☞✡ ✌✞✝✄✠✞ ✍✎✏✠✞✑✒

�

�✓✶

�✓✔

�✓✕

�✓✖

�✓✗

�✓✘

�✓✙

P
✚✛
✜
✢
✜
✣✤
✣✥
✦
✧
P
★✩
✛
✤✪
✫
✬
✭
✮
✯

❇✰✰✱

❆✲✱✳✴✸

■✺✼✸

(c) Dropcam: remote traffic (2-min)

Fig. 4: Histogram of traffic profile for IoT devices at three operating states: (a) Amazon Echo, (b) Belkin switch, and (c)
Dropcam.

Belkin switch seems more active (compared to Belkin motion),
with 70% probability of generating 2 NTP responses at 16-
minute resolution.

For download volume of remote traffic attribute at 8-minute
resolution, shown in Fig. 3(b), we see a relatively unique
pattern in the probability density function for each of these
four devices: for Belkin switch and Belkin motion it peaks
at 573 bytes and 3KB, respectively, while LiFX bulb and
Amazon Echo each exhibits a range of values, [0.5, 3] KB
and [7, 33] KB, respectively.

Considering upload volume of SSDP traffic in Fig. 3(c),
Belkin switch seems distinctive from Belkin motion (i.e., prob-
ability of 82% for 8 KB volume in Belkin switch compared to
73% chance for 800 bytes volume in Belkin motion). Amazon
Echo displays a strong pattern with peak of 100% at volume
of 650 bytes. Lastly, we observe that LiFX does not use SSDP
protocol at all, and thus lacks this attribute in its traffic profile.

Operating states of IoT: We now look at selected traffic
attributes of Amazon Echo, Belkin switch, and Dropcam at the
three operating states, shown in Fig. 4. We focus on: download
volume of remote traffic for Amazon Echo since it frequently
communicates with its cloud servers; download volume of
local traffic for Belkin switch since it receives command
from user mobile app connected to the local network; and
upload volume of remote traffic for Dropcam since it tends
to send videos to its cloud servers. We can see that the three
operating states are fairly distinct in chosen attributes shown

in Fig. 4. It is observed that all three devices exchange smaller
volume of traffic during their idle state (shown by dashed green
lines) compared to active and boot states. As an example,for
Amazon Echo, shown in Fig. 4(a), 75% of idle instances
receive between [0.5, 1] KB from remote servers at 2-minute
resolution, while the probability density function for boot and
active instances peaks at 30 KB and 70 KB, respectively.
Additionally, we observe for Belkin switch that the volume of
local traffic during boot state is larger than active state. This
is because this device sends SSDP discovery when it boots
up that results in arrival of responses from all SSDP-capable
devices on the network. Therefore, a peak at 110 KB is seen
for boot state (dotted red line) in Fig. 4(b).

IV. IOT TRAFFIC INFERENCE ENGINES

In this section, we develop a multi-stage architecture to
automatically inferring IoT traffic, train a set of models, and
evaluate their performance.

A. Inference Architecture

For a given device on the network, we have three objectives:
(a) to determine if the device is IoT or non-IoT, and if it is
detected as IoT: (b) to classify its device type (e.g., Amazon
Echo, Dropcam) and (c) to identify the operating state of IoT
(i.e., boot, active, idle). To meet these objectives we need
a set of trained models: a bi-class classifier to distinguish



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

!"#

$%&%'&"()

!"#

*+,--./.%(

01%'.,+.2%3

0&,&%)*+,--./.%(-

!"!#$"%

$"%

&'()"!*+,-"

./"0,('

12345!*6758,-

95:; <=3< $("1',4

0&,&%)*+,--./.%(

54,2"6)7'8"

0&,&%)*+,--./.%(

>

+,-"*<""8

+,-"*(,85?2

+,-"*5@32

9,&'8):+";-

! .ABC*!"#$%&'# ()*+# ! BB.DC*!"#$%&'# ()*+#

! .ABE*!"#$%&'# ()*+# ! F2'"82C*!"#$%&'#,()*+#

! A%DC*!"#$%&'# ()*+# ! F2'"82E*!"#$%&'#,()*+#

! A%DE*!"#$%&'# ()*+# ! 9",(3E*!"#$%&'#,()*+#

<,&)=>)?>)@>)A>)=B>)C?>)B@D4.6E

<,&)=>)?>)@D4.6E

>

0&,&%-

./"0,(' <""8

./"0,(' (,85?2

./"0,(' 5@32

.2?5,2*8/(GG5,

H(88/5<=826I H(88/5<=826I

H(88/5<=826I

Fig. 5: Hierarchical architecture of IoT traffic inference engines.

IoT devices from non-IoTs (i.e., IoT detector), a multi-class
classifier to determine the type of a given IoT device (i.e.,
IoT classifier), and a set of multi-class classifiers to identify
IoT operating states (i.e., a state classifier for each device
type). Note that state classifiers are specialized models, each
learns traffic patterns of one device in the three states of
operation. State classifiers tend to have narrower views, and
hence become more sensitive to change of behavior for their
respective devices (compared to the device classifier with
a broader view). It is important to note that minor traffic
variations in different operating states can only be well learned
with device-specialist models training a model of states
classifier with instances from various devices will lead to an
inaccurate prediction. Therefore, these specialized models are
able to enhance the visibility of network operators into subtle
changes [51] in their IoT infrastructure.

There exist a number of techniques [52] such as Neural
Networks, Support Vector Machines (SVMs), and Decision
Trees that can be used to train models to infer predefined
classes. Neural networks have proven to be very effective in
classifying input data with high dimensions, but they demand
a large amount of training data. Also, neural networks are seen
as black-box models since it becomes difficult to interpret their
reasoning process. Performance of SVMs is very sensitive to
selection of hyper-parameters, and hence it becomes difficult
to train an accurate model. On the other hand, decision tree-
based techniques are widely used since it is easier to generate
(reasonably) accurate models with relatively small amount of
data. Importantly they generate trees which can be readily
interpreted. Note that decision tree algorithms are prone to
over-fitting which can be avoided by use of ensemble decision
trees. In this work, we employ Random Forest [53] which
builds an ensemble of decision trees, each uses a random
subset of attributes. It is best known for its performance in
various classification tasks [20], [47], [54].

Fig. 5 illustrates our hierarchical architecture for IoT traffic
inference. It consists of three layers of random-forest classi-
fiers (i.e., an IoT detector, an IoT classifier, and a set of IoT
state classifiers). Once a new device connects to the network,

the programmable switch is pushed by additional flow rules
(Table I) pertinent to the device. We first feed the IoT detector
model by full set of periodic flow-level attributes (i.e., at time-
scales of powers of 2 between 1-min to 64-min). It is important
to note that our inference engine does not rely on a single
output of the IoT detector for instances of a given device.
Instead, it develops its trust to the detector (the model in the
first layer) by receiving consistent outputs for a sequence of
instances (at least 30 instances in §IV-B). Upon confirmation
of an IoT device with sufficiently enough monitoring time, the
second model (i.e., IoT classifier) is called by the full set of
attributes – a device will not be checked by the second layer of
inference, if it is confirmed as non-IoT at the first layer. The
confirmation of the IoT classifier output triggers a pertinent
state classifier at the third layer of our architecture. Our state
classifier models consume a subset of attributes, only up to 4-
minute resolution. This is because that change of states (e.g.,
boot) results in short-term effect on device traffic pattern –
considering long-term attributes may reduce the ability of the
model to accurately detecting the operating state in real-time.

B. Models Training and Performance Evaluation

We now label instances to train our classifiers, and generate
models needed for the three layers of the inference architec-
ture, shown in Fig. 5. We next evaluate their performance
using test instances. For both training and testing the traffic
classifiers we use Weka [55] tool.

Instances: Recall from §III-B that our instances are com-
puted every minute. Since two of our models consume full-set
attributes (i.e., 1-min to 64-min) we downsample our instances
by the factor of 15 to avoid over-fitting for the IoT detector
and the IoT classifier – it is likely to have heavily-correlated
instances generated within 15 minutes. Note that the risk of
over-fitting is less for the state classifiers given that they only
use short timescale attributes.

We have collected a total of 115,237 instances of IoT and
non-IoT devices from our DATA1 (in §III-A) and 10,423
instances of four IoT devices (i.e., Amazon Echo, Belkin



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

✾�✁✂

✷✁✷

✶✁✄

✾✂✁�

■☎
✆

♥☎
♥✝
■☎
✆

✞✟✠

✡✟✡☛✞✟✠

✵

✷✵

✹✵

✻✵

�✵

✶✵✵

Fig. 6: Confusion matrix
of the IoT detector.

TABLE II: Performance metrics of the IoT detector model.

IoT/non-IoT TP FN FP Precision Recall F1

TP avg.
confidence

FN avg.
confidence

IoT 0.987 0.013 0.022 0.979 0.987 0.983 0.968 0.635
non-IoT 0.978 0.022 0.013 0.987 0.978 0.983 0.947 0.701

switch, Dropcam, and LiFX bulb) with state annotation from
our DATA2 (in §III-A). We have different number of instances
across various devices in our dataset, depending upon their
presence and activity on the testbed, and their interactions with
the lab users. Among all devices, NEST smoke-sensor has the
lowest number (i.e., 865) of instances since it communicates
once a day for a short period of time. The highest count of
belongs to Dropccam with 11,873 instances as it was online
more than 90% of days during the 6-month period of packet
capture and it frequently communicates with its cloud-servers
whenever it is on the network.

Metrics: Since classes are not evenly distributed in our
datasets, we use three metrics including weighted “precision”,
“recall”, and “F1 score” along with confusion matrix to
evaluate the performance of each model. These metrics are
defined as follows:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1 =
2× precision× recall

precision+ recall
(3)

where TP is the rate of true positive, FP is the rate of false
positive, and FN is the rate of false negative. Note that F1

conveys the balance between precision and recall values and is
computed by the harmonic mean of these two values in Eq. 3.
All metrics take a value between 0 and 1. For each class in
our multi-class models, we obtain FP and FN by summation
across all “incorrect” labels (i.e., false alarms).

In addition to correctness of classification, we record
confidence-level of our random-forest models for all instances,
correctly classified and incorrectly classified ones. Ideally, we
expect our models to display high confidence (i.e., close to 1)
when they predict a correct class for an input instance, and
low confidence (i.e., close to 0) when they predict an incorrect
class. Lack of confidence indicates that the tested instance
contains attributes different from those that were learned
before (i.e., new or unseen pattern). We next look at individual
models at various layers of the inference architecture

IoT Detector: In our DATA1, there exist 1212 instances
labeled as non-IoT and 114,025 instances labeled as 17 types
of IoT. For training set, we randomly choose 800 instances

✾�✁�

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁✵

✵✁✄

✵✁✵

✵✁✵

✵✁✵

✵✁☎

✾✆✁☎

✆✁✽

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁✵

✵✁✄

✵✁✄

✵✁✄

✵✁✵

✵✁✄

✵✁✄

✵✁✵

✵✁✵

✵✁✾

��✁✄

✵✁✵

✵✁✵

✵✁✄

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✾✾✁✽

✵✁✵

✵✁✄

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✄

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✽

✵✁✵

✵✁✵

✵✁✝

✄✵✵✁✵

✵✁✵

✂✾✁✆

✵✁✾

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁☎

✵✁✵

✵✁✄

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✾✾✁✄

✵✁✵

✵✁✄

✵✁✵

✵✁✵

✵✁✄

✵✁✄

✵✁✵

✵✁✵

✵✁✵

✵✁✄

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

☎✆✁✾

✵✁✾

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✂

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✄

✄✁✄

✾�✁�

✵✁✵

✵✁✵

✵✁✵

✵✁✄

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✄

✵✁✵

✆✽✁✽

✵✁✝

✵✁✝

✵✁✵

✵✁✝

✵✁✄

✵✁✵

✵✁✄

✵✁✂

✵✁✄

✵✁✄

✵✁✽

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✾✾✁�

✄✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁�

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✂

✵✁✵

✵✁✵

✾�✁✞

✵✁✞

✵✁✵

✄✁✾

✵✁✞

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✄

✵✁✽

✾✂✁✵

✄✁✝

✵✁☎

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

☎✁✆

✾✆✁✂

✽✁✂

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁✄

✵✁✵

✾✄✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✄

✵✁✂

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✾✞✁✾

✄✁✵

✵✁✝

✵✁✵

✵✁✂

✵✁✂

✵✁✵

✵✁✵

✵✁✞

✵✁✵

✵✁✵

✵✁�

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✂✁✝

✾☎✁�

✵✁✝

✵✁✂

✵✁✵

✄✂✁✵

✵✁✄

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✄✝✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✽

✝✁✞

✾✆✁☎

❆✟
✠✡
☛☞

✌✍
✎☛

❆✏
✑✏
✒✓
✔☛
☛✕
✖✗
✘✘

❆✙
✠✚✕

✠✚✕
✛✜
✏✠
✘✚✓✢

❇✗
✘✣✚
☞ ✟

☛✓✚
☛☞
✛✒
✗☞
✒☛
✕

❇✗
✘✣✚
☞ ✒
✙✚
✓✍✎

❉✕
☛✤
✍✠
✟

❍✥
✤✕
✚☞✓
✗✕

▲✚✦
✧
✖✏
✘✖

◆✌
★✩

✒✟
☛✣
✗✛
✒✗
☞✒
☛✕

◆✗
✓✠
✓✟
☛ ✙

✗✠
✓✎
✗✕

◆✗
✓✠✓
✟
☛
✍✠
✟
✗✕
✠

❍✏
✗ ✖

✏✘✖

★✠
✟
✒✏
☞✑

✒✟
✠✕
✓✛✍
✠✟

★✟
✠✕
✓ ✩
✎✚☞
✑✒

✩✕
✚✖✢

✒✤
✗✠
✣✗
✕

❲
✚✓✎
✚☞✑

✒ ✒
✘✗✗

✤✛
✒✗
☞✒
☛✕

❲
✚✓✎
✚☞✑
✒ ✒
✍✠
✘✗

✪✫✬✭✮✯ ✰✱✲✮

✪✳✴✳✶✷ ✸✮✮✹✺✻✼✼

✪✿✬❀✹ ✬❀✹❁❂✳✬✼❀✷❃

❄✻✼❅❀✯ ✫✮✷❀✮✯❁✶✻✯✶✮✹

❄✻✼❅❀✯ ✶✿❀✷✱✲

❈✹✮❊✱✬✫

❋● ❊✹❀✯✷✻✹

■❀❏❑ ✺✳✼✺

▼✰❖P ✶✫✮❅✻❁✶✻✯✶✮✹

▼✻✷✬✷✫✮ ✿✻✬✷✲✻✹

▼✻✷✬✷✫✮ ✱✬✫✻✹✬

❋✳✻ ✺✳✼✺

❖✬✫✶✳✯✴ ✶✫✬✹✷❁✱✬✫

❖✫✬✹✷ P✲❀✯✴✶

P✹❀✺❃ ✶❊✻✬❅✻✹

◗❀✷✲❀✯✴✶ ✶✼✻✻❊❁✶✻✯✶✮✹

◗❀✷✲❀✯✴✶ ✶✱✬✼✻
❘

❙❘

❚❘

❯❘

❱❘

❳❘

❨❘

❩❘

❬❘

❭❘

Fig. 7: Confusion matrix of IoT classifier trained by the first three months worth of data.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

■�✁✂✄�☎✆ ✝✄✂✆

✵✵✞

✶✵✞

✷✵✞

✸✵✞

✹✵✞

✺✵✞

✻✵✞

✼✵✞

✽✵✞

✾✵✞

✶✵✵✞

(a) HP printer.

■�✁✂✄�☎✆ ✝✄✂✆

✵✵✞

✶✵✞

✷✵✞

✸✵✞

✹✵✞

✺✵✞

✻✵✞

✼✵✞

✽✵✞

✾✵✞

✶✵✵✞

(b) Hue light-bulb.

Fig. 8: Time trace of IoT classifier outputs with test traffic instances from: (a) HP printer, and (b) Hue light-bulb.

✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺

❳� ✁✂✄☎✆✝✞✟ ✠✡✝✟✂✆☛☞✌

✶✵
✲✍

✶✵
✲✎

✶✵
✲✏

✶✵
✑

❈
❈
✒
✓
✔
✕
✖✗
✘
✙✚
✛
✖✜
✢✣
✗
✤
✥
✦
✧

Fig. 9: CCDF of duration of continuously mis-detecting IoT
from non-IoT.

(i.e., 66%) from non-IoT and 50 instances from each class
of IoT device (i.e., a total of 850). Remaining instances in
DATA1 are used to test this bi-class classifier.

Fig. 6 shows the confusion matrix of the IoT detector model.
The rows show actual labels (i.e., IoT or non-IoT), columns
show predicted labels, and cell numbers are in percentage
rounded to single decimal point. Table II shows all perfor-
mance metrics of this model. It is seen that 98.7% of IoT test
instances and 97.8% of non-IoT test instances are correctly
classified, as shown by diagonal values of the confusion matrix
in Fig. 6. Looking at the last two columns of Table II, the
confidence-level of this model is fairly high on average (i.e.,
0.968 and 0.947) for correct classification and is relatively low
on average (i.e., 0.635 and 0.701) for incorrect classification.
Also, the three performance metrics namely precision, recall,
and F1 all indicate reasonable high values on average as 0.983,
0.982, and 0.983 respectively. To check consistency of the IoT
detector model (mentioned in §IV-A), we plot in Fig. 9 the
CCDF of duration of continuously mis-detecting IoTs from
non-IoTs. It can be seen that continuous mis-detection for
more than 15 minutes is extremely rare (with probability of
0.1%). Therefore, we only conclude from the IoT detector if
it gives consistent output for at least 30 successive instances.

IoT Classifier: For this model, we split IoT instances of the
DATA1 into chronological sets of training and testing, given
sufficient number of instances available in our dataset over
six-month period. This way the performance of the model is
evaluated over time. We, therefore, use instances collected dur-
ing the first 3 months (i.e., 01-Oct-2016 to 31-Dec-2016) for
training and the remaining instances (i.e., collected between
01-Jan-2017 and 31-Mar-2017) for testing.

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵

❳� ✁✂✄☎✆✝✞✄✁✞ ✟✠✡

✶✵
✲☛

✶✵
✲☞

✶✵
✌

❈
❈
✍
✎
✏
✑
✒✓
✔
✕✖
✓
✗
✘✙
✚
✛
✗
✖
✛
✜
✢
✣

❑✤✥✦✤ ✧✤★✩✪✤✫✬★

❯✤✭✤✥✦✤ ✧✤★✩✪✤✫✬★

Fig. 10: CCDF of classifier’s confidence-level for unknown
and known device types.

Fig. 7 depicts the confusion matrix of the IoT classifier. We
observe that the model performs well in predicting most of
classes. For example, the correct prediction rate for Amazon
Echo, August doorbell, Belkin switch, or Dropcamp is more
than 97%. However, the model performance does not seem ac-
ceptable for certain classes. For example, it is seen that 12.0%
of NEST smoke-sensor instances are misclassified as Withings
scale and 39.8% of HP printer instances are misclassified as
Belkin switch. Additionally, for Awair air-quality sensor only
77.1% of test instances are correctly classified while 8.6%
and 13.0% are misclassified as August doorbell and Withings
scale, respectively. We note that the model displays a low
confidence on average for incorrect prediction of these three
classes, i.e., 0.485 for Awair air-quality, 0.535 for HP printer,
and 0.389 for NEST sensor – due to space constraints we omit
detailed table of performance metrics per individual classes.
Additionally, we find that even though 94.0% of Hue bulb
instances are correctly classified but the average confidence
of our model is 0.572 (i.e., undesirably low).

To better analyze the poor performance of the model in
certain classes, we plot in Fig. 8 the time trace of model
outputs with test traffic instances from HP printer and Hue
light-bulb. Each circle represents an instance and its color
shows the model confidence. A color bar on the right side
of plots shows the mapping of confidence values to colors
– dark green indicates high confidence and yellow indicates
low confidence. Starting from Fig. 8(a), we observe that
instances of HP printer from first week of January are mostly
classified correctly supported by high confidence levels (i.e.,
dark green circles). The printer goes offline for about a month
and comes back online on 11-Feb-2017, since then its traffic



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

TABLE III: Performance metrics of the IoT classier model (after re-training).
IoT/Non-IoT TP FN FP Precision Recall F1 TP avg. confidence FN avg. confidence

Amazon Echo 0.977 0.023 0.000 1.000 0.977 0.989 0.994 0.430
August doorbell 0.989 0.011 0.001 0.999 0.989 0.994 0.974 0.509
Awair air-quality 0.936 0.064 0.002 0.998 0.936 0.966 0.850 0.616
Belkin motion-sensor 0.996 0.004 0.000 1.000 0.996 0.998 0.825 0.340
Belkin switch 0.999 0.001 0.001 0.999 0.999 0.999 0.990 0.604
Dropcam 0.990 0.010 0.001 0.999 0.990 0.994 0.987 0.462
HP printer 0.977 0.023 0.001 0.999 0.977 0.988 0.985 0.591
LiFX bulb 0.980 0.020 0.001 0.999 0.980 0.990 0.892 0.617
NEST smoke-sensor 0.976 0.024 0.001 0.999 0.976 0.987 0.818 0.472
Netatmo weather 0.997 0.003 0.002 0.998 0.997 0.997 0.935 0.824
Netatmo camera 0.973 0.027 0.001 0.999 0.973 0.986 0.980 0.371
Hue bulb 0.917 0.083 0.001 0.999 0.917 0.956 0.975 0.505
Samsung smart-cam 0.997 0.003 0.006 0.994 0.997 0.996 0.989 0.367
Smart Things 0.969 0.031 0.001 0.999 0.969 0.984 0.980 0.437
Triby speaker 0.941 0.059 0.001 0.999 0.941 0.969 0.785 0.452
Withings sleep-sensor 0.957 0.043 0.004 0.996 0.957 0.976 0.968 0.504
Withings scale 0.979 0.021 0.003 0.997 0.979 0.988 0.953 0.560

is mostly misclassified as Belkin switch with consistently low
confidence levels from the model (i.e., light green circles). This
clearly shows that the behavior of HP printer changed when
it restarted in mid-February – we manually inspected traffic
traces and verified that it was due to a legitimate firmware
upgrade (i.e., benign changes). Moving to Fig. 8(b), we see
classifier outputs for Hue bulb traffic instances during the
whole testing period. Though instances are mostly predicted
correctly, the confidence level starts falling, from an average of
0.93 to average 0.50, on 15-Feb-2017. Again this behavioral
change led to a manual inspection by which we verified that
it was legitimate.

Given these observations, we augment our training set with
two weeks of data (i.e., from 12-Feb-2017 to 25-Feb-2017) for

duration over which new legitimate traffic patterns emerged.
Fig. 11 shows the performance of the IoT classifier after it
is re-trained. It is seen that the confusion matrix is almost
diagonal with the TP rate of more than 90% for all classes
(i.e., on average 97.4%). We list in Table III all performance
metrics of the IoT classifier after re-training. We observe that
the model average confidence is boosted across all classes –
specifically it reaches to 0.975 for Hue bulb instances. Also,
three performance metrics consistently display an acceptable
performance of classification with 0.998, 0.973, and 0.986
for average precision, recall, and F1 score. It is important to
note that there might be some similarities in traffic generated
from different device types sourced from one manufacturer
or different manufacturers [20] (e.g., DNS queries or NTP

✾�✁�

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁✵

✵✁✵

✵✁✵

✵✁✄

✾☎✁✾

✂✁✂

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✆

✵✁✵

✵✁✂

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁✝

✵✁✄

✵✁✵

✵✁✾

✾✆✁✞

✵✁✵

✵✁✵

✵✁✂

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁☎

✵✁✵

✵✁✵

✵✁✵

✾✾✁✞

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✆

✵✁✵

✵✁✵

✵✁✝

✾✾✁✾

✵✁✵

✵✁�

✵✁✵

✵✁✆

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✆

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✆

✵✁✵

✾✾✁✵

✵✁✵

✵✁✂

✵✁✵

✵✁✵

✵✁✝

✵✁✂

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✄

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✾�✁�

✂✁✞

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✟

✵✁✆

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✂✁✆

✾☎✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁✵

✾�✁✞

✵✁✝

✵✁✝

✵✁✵

✵✁✵

✵✁✂

✵✁✵

✵✁✂

✵✁✵

✵✁✂

✵✁✵

✵✁☎

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✆

✾✾✁�

✂✁✆

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✆

✵✁✵

✵✁✵

✾�✁✆

✵✁✂

✵✁✵

✝✁✵

✵✁✄

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✞

✾✂✁�

✵✁✂

✵✁�

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

�✁�

✾✾✁�

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✆

✵✁✝

✵✁✝

✾✞✁✾

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁✂

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✾✄✁✂

✂✁✵

✵✁✝

✵✁✂

✵✁✂

✵✁✄

✵✁✵

✵✁✵

✵✁✞

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✂

✵✁✵

✵✁✵

✵✁✵

✆✁✾

✾✟✁�

✵✁✞

✵✁✆

✵✁✵

✄✁✝

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✂✁✄

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✵

✵✁✟

✝✁✆

✾�✁✾

❆✠
✡☛
☞✌

✍✎
✏☞

❆✑
✒✑
✓✔
✕☞

☞✖
✗✘
✙✙

❆✚
✡✛✖

✡✛✖
✜✢
✑✡
✙✛✔✣

❇✘
✙✤✛
✌ ✠

☞✔✛
☞✌
✜✓
✘✌
✓☞
✖

❇✘
✙✤✛
✌ ✓✚

✛✔✎
✏

❉✖
☞✥
✎✡
✠

❍✦
✥✖
✛✌✔
✘✖

▲✛✧
★
✗✑
✙✗

◆✍
✩✪

✓✠
☞✤
✘✜
✓✘
✌✓
☞✖

◆✘
✔✡
✔✠
☞ ✚

✘✡
✔✏
✘✖

◆✘
✔✡✔
✠
☞
✎✡
✠
✘✖
✡

❍✑
✘ ✗

✑✙✗

✩✡
✠
✓✑
✌✒

✓✠
✡✖
✔✜✎
✡✠

✩✠
✡✖
✔ ✪

✏✛✌
✒✓

✪✖
✛✗✣

✓✥
✘✡
✤✘
✖

❲
✛✔✏
✛✌✒

✓ ✓
✙✘✘

✥✜
✓✘
✌✓
☞✖

❲
✛✔✏
✛✌✒

✓ ✓
✎✡
✙✘

✫✬✭✮✯✰ ✱✲✳✯

✫✴✶✴✷✸ ✹✯✯✺✻✼✽✽

✫✿✭❀✺ ✭❀✺❁❂✴✭✽❀✸❃

❄✼✽❅❀✰ ✬✯✸❀✯✰❁✷✼✰✷✯✺

❄✼✽❅❀✰ ✷✿❀✸✲✳

❈✺✯❊✲✭✬

❋● ❊✺❀✰✸✼✺

■❀❏❑ ✻✴✽✻

▼✱❖P ✷✬✯❅✼❁✷✼✰✷✯✺

▼✼✸✭✸✬✯ ✿✼✭✸✳✼✺

▼✼✸✭✸✬✯ ✲✭✬✼✺✭

❋✴✼ ✻✴✽✻

❖✭✬✷✴✰✶ ✷✬✭✺✸❁✲✭✬

❖✬✭✺✸ P✳❀✰✶✷

P✺❀✻❃ ✷❊✼✭❅✼✺

◗❀✸✳❀✰✶✷ ✷✽✼✼❊❁✷✼✰✷✯✺

◗❀✸✳❀✰✶✷ ✷✲✭✽✼
❘

❙❘

❚❘

❯❘

❱❘

❳❘

❨❘

❩❘

❬❘

❭❘

Fig. 11: Confusion matrix of IoT device classification re-trained by additional data.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

✾�✁✂

✵✁✵

✷✁✄

✵✁✵

✄✵✵✁✵

✂✁✵

✸✁�

✵✁✵

✾✂✁✵

❇
☎☎
✆

❆
✝✆
✞✟
✠

■✡
☛✠

☞✌✌✍

✎✏✍✑✒✓

✔✕✖✓

✗

✘✗

✹✗

✻✗

✽✗

✶✗✗

(a) Amazon Echo.

✾�✁✂

✵✁✵

✂✁✂

✵✁✵

✾✄✁✄

✷✁✾

✽✁☎

✂✁✄

✾✷✁✆

❇
✝✝
✞

❆
✟✞
✠✡
☛

■☞
✌☛

✍✎✎✏

✑✒✏✓✔✕

✖✗✘✕

✙

✚✙

✹✙

✻✙

✛✙

✶✙✙

(b) Belkin switch.

✾�✁✂

✵✁✵

✂✁�

✵✁✵

✂✵✵✁✵

✷✁✷

✂✁✾

✵✁✵

✾✄✁✵

❇
☎☎
✆

❆
✝✆
✞✟
✠

■✡
☛✠

☞✌✌✍

✎✏✍✑✒✓

✔✕✖✓

✗

✘✗

✹✗

✻✗

✽✗

✶✗✗

(c) Dropcam.

✾�✁✂

✵✁✵

✼✁✄

✵✁✵

✶✵✵✁✵

�✁✷

✼✁✂

✵✁✵

✽✾✁✾

❇
☎☎
✆

❆
✝✆
✞✟
✠

■✡
☛✠

☞✌✌✍

✎✏✍✑✒✓

✔✕✖✓

✗

✘✗

✹✗

✻✗

✙✗

✚✗✗

(d) LiFX.

Fig. 12: Confusion matrix of IoT state classifiers: (a) Amazon Echo, (b) Belkin switch, (c) Dropcam, and (d) LiFX bulb.

frequency of Belkin motion sensors and power switch), but
the collection of our attributes have strong predictive power in
uniquely identifying devices based on their flow-level network
activity.

Classifying Unknown IoT: Let us now consider a scenario
where an unknown device type is presented to our IoT
classifier. To evaluate the performance of classifier against
unknown devices, we generate a set of device classification
models (17 models) each is trained by 16 classes – we exclude
one device type from training dataset of individual models.
This enables us to test each model with corresponding known
device types and an unknown device type (the one which is
excluded in training). Unsurprisingly, our classifiers display
low confidence-level when tested with unknown instances. We
plot in Fig. 10 the CCDF of confidence-level of all classifiers
for known and unknown device types separately. It is clearly
seen that 90% of unknown instances give confidence less than
80%, while 92% of known instances yield a confidence-level
greater than 80%. We will see in §V-B how low-confidence
classification would trigger an investigation by the network
administrator.

IoT State Classifiers: From our DATA2, we generated
different number of instances of four IoT devices with state
labels including: Amazon Echo (boot: 208, active: 74, idle:
1795), Belkin switch (boot: 110, active: 84, idle: 2688),
Dropcam (boot: 145, active: 98, idle: 2639) and LiFX bulb
(boot: 160, active: 84, idle: 2338). To train individual device-
specific models, we randomly choose 40 instances from each
of their respective states – remaining instances are used to test
the models.

Fig. 12 shows the confusion maps of the four IoT state
classifiers. Our first observation is that all four models well
predict the active state – 100.0% TP rate in three models

(Amazon Echo, Dropcamp, and LiFX bulb), and 95.5% TP
rate in Belkin switch. Next, we see that boot instances are
prone to be misclassified as idle, and vice versa (e.g., 8.6% and
7.5% of boot instances respectively in Belkin switch and LiFX
bulb are misclassified as idle). This misclassification could be
possibly because instances pertinent to state transitions (e.g.,
boot to idle) are not precisely annotated.

V. PRACTICAL AND OPERATIONAL CONSIDERATIONS

In previous section, we evaluated the performance of our
inference engines using all traffic attributes of devices during
their normal operation. In this section, we first quantify
the cost of our scheme in practice and show how we can
optimize the trade-off between cost and performance. Next, we
demonstrate how network operators can interpret the outputs
of inference engines, managing their cyber-security risk.

A. Cost of Attributes

In order to quantify the cost of our scheme, we begin by
examining the impact of individual attributes on the perfor-
mance of traffic inference. Note that some of these attributes
could be highly correlated, and hence become redundant. Also,
some attributes may not be very relevant to class prediction,
and hence can be removed.

Redundant Attributes: We use a selection algorithm called
Correlation-based Feature Subset (CFS) [56] with best-first
searching method. CFS is a filter that uses a correlation-based
heuristic to find a subset of attributes with the highest merit –
i.e., attributes highly-correlated with the class, yet uncorrelated
with each other.

Importance of Attributes: In decision tree-based machine
learning, Information Gain (IG) method is used to measure the

✸�✁✸

✶�✂✂

✸�✁✂

✷�✁✄

✁�✸✶

✁�✷✵

✁�✸✸

✁�✷✁

✁�✸✷

✁�✷✁

✁�✷✷

✁�✷✷

✁�✷✷

✁�✷✷

✁�☎☎

✁�☎☎

✸�✷✸

✷�✁☎

✸�✶✆

✷�✸☎

✁�☎☎

✁�☎✄

✁�✝✂

✁�✸✄

✁�✝☎

✁�✸✝

✁�✸✸

✁�✸✸

✁�✸✸

✁�✸✸

✁�✂✵

✁�✂✵

✸�✸✷

✷�✸✵

✸�✷☎

✷�☎✶

✁�✆☎

✁�✆✸

✶�✁✝

✁�☎✆

✶�✁✝

✁�☎✵

✁�✝☎

✁�✝☎

✁�✝☎

✁�✝☎

✁�✆✂

✁�✆✝

✸�✷✵

✷�✝✸

✸�✸☎

✷�✆✝

✁�✆✂

✁�✆✄

✶�☎✵

✶�✁✆

✶�✂✶

✶�✁✵

✁�✆✄

✁�✆✄

✁�✆✄

✁�✆✄

✁�✵✁

✁�✆✵

✸�✶✝

✷�☎✆

✸�✸✶

✷�✵✁

✁�✆✂

✁�✆✄

✷�✶✵

✶�✸✂

✷�✷✁

✶�✸✆

✶�✶✶

✶�✶✶

✶�✶✶

✶�✶✶

✁�✵✸

✁�✵✷

✷�✆☎

✷�☎✂

✸�✷✁

✷�✵✄

✁�✵✁

✁�✆✵

✷�☎✶

✶�✆✷

✷�✂✁

✶�✆✸

✶�✸✁

✶�✸✁

✶�✷✵

✶�✷✵

✶�✁✁

✶�✁✁

✷�✂✂

✷�☎✆

✸�✁✶

✷�✵✁

✁�✵✂

✁�✵✄

✷�✵✸

✷�✶✸

✸�✶✶

✷�✶✸

✶�✝✄

✶�✝✄

✶�✝✶

✶�✝✶

✶�✶✵

✶�✶✵

✞
✟
✠✡

☛
✟
✠✡

✹
✟
✠✡

✽
✟
✠✡

✞
☞
✟
✠✡

✌
☛
✟
✠✡

☞
✹
✟
✠✡

❘✍✎� ✏

❘✍✎� ✑

❘✍✎� ✏

❘✍✎� ✑

▲✒✓� ✏

▲✒✓� ✑

❉✔✕ ✏

❉✔✕ ✑

❉✔✕ ✏

❉✔✕ ✑

✔◆✑ ✏

✔◆✑ ✑

✔◆✑ ✏

✔◆✑ ✑

✕✕❉✑ ✏

✕✕❉✑ ✑

✖✗✘

✙

✙✗✘

✚

✚✗✘

✛

■✜
✢✣
✤✥
✦
✧★
✣
✜
✩
✦
★✜

(a) All attributes.

✸�✁✸

✸�✁✂

✷�✁✄

✷�✁☎

✸�✆✝

✷�✸☎

✷�✸✞

✷�☎✆

✁�✝☎

✁�✝✵

✷�✵✸

✸�✸☎

✆�✂✆

✁�✞✁

✷�☎✝

✷�✞✁

✁�✝✂

✷�✆✞

✷�✷✁

✷�☎✂

✷�✞✄

✷�✂✁

✆�✝✸

✆�✷✞

✷�✂✂

✷�☎✝

✸�✁✆

✷�✞✸

✷�✆✸

✸�✆✆

✆�✵✄

✆�✵✄

✆�✵✆

✆�✆✞

✆�✆✞

✶
✟
✠✡

☛
✟
✠✡

✹
✟
✠✡

✽
✟
✠✡

✶
☞
✟
✠✡

✌
☛
✟
✠✡

☞
✹
✟
✠✡

❘✍✎� ✏

❘✍✎� ✑

❘✍✎� ✏

❘✍✎� ✑

▲✒✓� ✏

▲✒✓� ✑

❉✔✕ ✏

❉✔✕ ✑

❉✔✕ ✏

❉✔✕ ✑

✔◆✑ ✏

✔◆✑ ✑

✔◆✑ ✏

✔◆✑ ✑

✕✕❉✑ ✏

✕✕❉✑ ✑
✖

✖✗✘

✙

✙✗✘

✚

■✛
✜✢
✣✤
✥
✦✧
✢
✛
★
✥
✧✛

(b) Subset of nonredundant attributes.

Fig. 13: Information gain value of: (a) all attributes, and (b) CFS-selected attributes, for the IoT classifier.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

✵�✁✂

✵�✄✂

✵�☎✵

✵�✄✆

✵�✄✆

✵�✝✂

✶
✞
✟✠

✷
✞
✟✠

✹
✞
✟✠

❘✡☛� ☞

❘✡☛� ✌

❘✡☛� ☞

❘✡☛� ✌

▲✍✎� ☞

▲✍✎� ✌

❉✏✑ ☞

❉✏✑ ✌

❉✏✑ ☞

❉✏✑ ✌

✏◆✌ ☞

✏◆✌ ✌

✏◆✌ ☞

✏◆✌ ✌

✑✑❉✌ ☞

✑✑❉✌ ✌
✒✓✔

✒✓✔✔

✒✓✔✕

✒✓✔✖

✒✓✔✗

✒✓✘

✒✓✘✔

✒✓✘✕

✒✓✘✖

✒✓✘✗

✒✓✕

■✙
✚✛
✜✢
✣
✤✥
✛
✙
✦
✣
✥✙

(a) Amazon Echo.

✵�✁✂

✵�✵✂

✵�✁✄

✵�✁✄

✵�✁✄

✵�✁✁

✵�✄✁

✵�✁☎

✶
✆
✝✞

✷
✆
✝✞

✹
✆
✝✞

❘✟✠� ✡

❘✟✠� ☛

❘✟✠� ✡

❘✟✠� ☛

▲☞✌� ✡

▲☞✌� ☛

❉✍✎ ✡

❉✍✎ ☛

❉✍✎ ✡

❉✍✎ ☛

✍◆☛ ✡

✍◆☛ ☛

✍◆☛ ✡

✍◆☛ ☛

✎✎❉☛ ✡

✎✎❉☛ ☛
✏✑✏✒

✏✑✓

✏✑✓✔

✏✑✓✕

✏✑✓✖

✏✑✓✒

✏✑✔

■✗
✘✙
✚✛
✜
✢✣
✙
✗
✤
✜
✣✗

(b) Belkin switch.

✵�✁✂

✵�✄☎

✵�✄✆

✵�✁✵

✵�✄✝

✶
✞
✟✠

✷
✞
✟✠

✹
✞
✟✠

❘✡☛� ☞

❘✡☛� ✌

❘✡☛� ☞

❘✡☛� ✌

▲✍✎� ☞

▲✍✎� ✌

❉✏✑ ☞

❉✏✑ ✌

❉✏✑ ☞

❉✏✑ ✌

✏◆✌ ☞

✏◆✌ ✌

✏◆✌ ☞

✏◆✌ ✌

✑✑❉✌ ☞

✑✑❉✌ ✌
✒✓✔✕

✒✓✔✖

✒✓✔✗

✒✓✘

✒✓✘✘

✒✓✘✕

■✙
✚✛
✜✢
✣
✤✥
✛
✙
✦
✣
✥✙

(c) Dropcam.

✵�✁✂

✵�✁✄

✵�✁☎

✵�✁✆

✵�✵✝

✵�✞✁

✵�✁✟

✵�✵✝

✵�✞✄

✵�✞✠

✵�✵✠

✶
✡
☛☞

✷
✡
☛☞

✹
✡
☛☞

❘✌✍� ✎

❘✌✍� ✏

❘✌✍� ✎

❘✌✍� ✏

▲✑✒� ✎

▲✑✒� ✏

❉✓✔ ✎

❉✓✔ ✏

❉✓✔ ✎

❉✓✔ ✏

✓◆✏ ✎

✓◆✏ ✏

✓◆✏ ✎

✓◆✏ ✏

✔✔❉✏ ✎

✔✔❉✏ ✏
✕✖✕✗

✕✖✘

✕✖✘✙

✕✖✘✚

✕✖✘✛

✕✖✘✗

✕✖✙

✕✖✙✙

✕✖✙✚

✕✖✙✛

■✜
✢✣
✤✥
✦
✧★
✣
✜
✩
✦
★✜

(d) LiFX bulb.

Fig. 14: Information gain of non-redundant attributes for state classier models: (a) Amazon Echo, (b) Belkin switch, (c)
Dropcamp, and (d) LiFX bulb.

TABLE IV: Flow entries (per-device) needed for non-redundant attributes set.

Inference model Rem.↑ Rem.↓ Loc.↓ DNS↑ DNS↓ NTP↑ NTP↓ SSDP↑ Num. of flow entries
IoT detector X X X X X 4
IoT classifier X X X X X X X X 8
State classifier - Amazon Echo X X X X 4
State classifier - Belkin Switch X X X v X X 6
State classifier - Dropcam X X X 3
State classifier - LiFX X X X X X 5

wight of various attributes in accurate prediction. Important
attributes carry more information (i.e., large IG value) to dis-
tinguish classes, and unrelated attributes have no information.
We now compute the IG value of attributes used for each of
the three classifier types.

To better visualize the merit of various attributes, we illus-
trate in Fig. 13(a) the IG values computed for all 112 attributes
used by the IoT classifier. Each cell represents an attribute (i.e.,
rows are flow counters and columns are various timescales),
and is labeled (and color coded) by its IG value – the darker the
cell, the higher the IG value. Fig. 13(b) shows a subset of 35
attributes selected by the CFS algorithm eliminating correlated
(i.e., redundant) attributes. Note that this subset still results the
same performance of prediction as presented in the previous
section.

We observe that the highest IG value 3.36 corresponds
to “outgoing remote byte-count over 8-minute” followed by
“incoming remote byte-count over 4-minute” with IG 3.32. An-
other observation is that byte-count of both incoming/outgoing

remote over mid-term timescales (i.e., 4-, 8-, 16-min) have
higher information compared to other attributes, as shown by
darker cells. Also, DNS counters over longer timescales (i.e.,
32- and 64-min) display a relatively high gain of information
in predicting class of IoT devices.

Overall, attributes of two flow rules related to incoming
local traffic and outgoing SSDP queries seem to have minimal
impacts in IoT device classification. This is mainly because
only a few of IoT devices in our lab (e.g., Hue bulb, Bekin
motion, Amazon Echo) communicate on the local network or
send SSDP queries. Even though these flow rules (and asso-
ciated attributes) may not seem important across all devices,
they can precisely characterize and help identify devices which
use them in their network traffic.

Moreover, we have analyzed the impact of attributes for
other two types of classifiers. Fig. 14 shows the information
gain value of non-redundant attributes for state classification
models. We observe, for example, in Fig. 14(a) that attributes
of only 4 flow rules (i.e., incoming remote, outgoing remote,

✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺

◆�✁✂✄☎ ✆✝ ✞✟✠✞✡✁✄☎✟☛ ☞☛☛☎✟✂�☛✄✌

✽✵

✽✷

✽✍

✽✎

✽✽

✾✵

✾✷

✾✍

✾✎

✾✽

✶✵✵

P
✏
✑✒
✏
✓
✔✕
✖
✏
✗✘
✙

✚✛✜✢✣✤✣✥✦
❘✜✢✧★★
❋✩ ✪✢✥✛✜

(a) Performance metrics of classification.

✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺

◆�✁✂✄☎ ✆✝ ✞✟✠✞✡✁✄☎✟☛ ☞☛☛☎✟✂�☛✄✌

✵

✷✵✵✵

✹✵✵✵

✻✵✵✵

✽✵✵✵

❙
✍
✎
✏
✑
✏
✒
✓
✍
✔✑
✕
✖✗
✘
✍
✑
✙
✚
✑
✛
✖✏
✑
✜✢
✘
✗✑
✣
✤

✵

✷

✹

✻

✽

✥
✦
✧
★
✩
✪
✪✫
✩
✬
✭
✮
✯✰
✱✭
✲
✳
✭
✰
✴
✭
✼
✱✾
✭

✿❀❁❂❃ ❂❄❅❀❆❃❇❈❉❊

❋●❅❍ ❄■ ■❆❄❏ ❃❑❉▲❈❃▼

(b) Cost of attributes and flow rules.

Fig. 15: Impact of attributes on: (a) performance, (b) cost, for the IoT classifier.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

(a) IoT classifier with Belkin switch traffic. (b) IoT classifier with Amazon Echo traffic.

Fig. 16: Time trace of device classifier outputs with benign and attack traffic of: (a) Belkin switch, and (b) Amazon Echo.

(a) IoT classifier with LiFX bulb traffic. (b) LiFX state classifier with LiFX bulb traffic.

Fig. 17: Time trace of outputs for: (a) device classifier, and (b) state classifier, with benign and attack traffic of LiFx bulb.

incoming DNS, incoming NTP) are needed for the state
classification of Amazon Echo – there is no attribute selected
for other 4 flows. Another observation is that attributes over
very short timescales (i.e., 1-min and 2-min) become important
in classifying operating states of IoT devices. Also, we note
that the variation of IG values for non-redundant attributes
is less (i.e., between 0.1 and 0.3) compared to the IoT
classifier model (i.e., between 0.86 and 3.36). For the IoT
detector model, we found that attributes over longer timescale
(i.e., outgoing/incoming byte-count over 32-min and 64-min)
have higher impact – we omit detailed results due to space
constraints.

Cost versus Performance: There exist two sources of cost
in our inference scheme: (1) number of flow entries, and (2)
space complexity of computing attributes. Given fixed size of
TCAM on programmable (SDN) switches, efficient manage-
ment of flow entries [57] becomes crucial to scale of scheme
for deployment in a network with large number of IoT devices.
Since our attributes are computed at multiple timescales up to
64-minute, we need to maintain time-series of flow counters
accordingly (i.e., 64 data-points each corresponds to a minute).

We, therefore, aim to reduce the cost by decreasing at-
tributes, without significantly affecting performance. Table IV
shows the number of flow entries needed by each inference
model with non-redundant set of attributes – check-marked
cells indicate the flows needed for attributes of models in
each row. It clearly shows room for optimizing our approach
by dynamic management of flow entries on the programmable
switch. For example, the IoT detector model only needs 4 flow

rules per device. Once a device is detected as IoT, additional
4 flows are needed by the IoT classifier (i.e., a total of 8
flows). Once the IoT device is successfully classified, it may
need less number of flows depending upon its specialized state
classifier (some flows can be removed from the switch). The
state classifier of Amazon Echo, Belkin switch, Dropcam, and
LiFX respectively need 4, 6, 3, and 5 flow entries per each
unit of device.

We further optimize by a careful trade-off between cost
of performance. We: (a) first sort non-redundant attributes
in descending order, (b) then accumulate attributes one-by-
one from the sorted list, and (c) lastly, quantify the cost and
performance at each step. Let us visualize this process for the
IoT classifier in Fig. 15. We plot performance metrics and
cost signals, each as a function of cumulative set of high-
merit attributes. With 35 non-redundant attributes, it is seen:
in Fig. 15(a) that average wighted precision, recall, F1 score
reach to 97.5%, 97.3%, 97.4% respectively, and in Fig. 15(b)
that total cost per device would reach to 8KB of memory and 8
flow entries. We compute the space complexity by considering
8-byte values for a flow counter that can be stored as an
unsigned long variable type. We note that with top 25 attributes
we can achieve about 97% in all performance metrics which
can save 4 flow entries (i.e., 50% saving) and reduce the space
complexity to 5KB (i.e., 37% reduction). Obviously, operators
of IoT networks may choose different strategies to balance
their cost and performance depending upon their environment
and resources.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

B. Use of Inference Engines in Real-Time

We now demonstrate the potential of our scheme that
can help network operators detect behavioral changes due to
malicious network activities or cyber-attacks.

Note that unlike general-purpose connected devices (e.g.,
computers, phones), IoT devices display a limited number of
identifiable states in their behavioral profile, and do not change
their behavior (unless a firmware upgrade) during normal
operation interacting with users and environment. This allows
network operators to train data-driven inference engines that
capture intended (normal) states of their IoT infrastructure,
and hence better manage security risks by real-time moni-
toring the network behavior of devices. We discussed earlier
in §IV-B how legitimate firmware upgrade can be detected
by our solution (i.e., consistent misclassification and/or low
confidence), as shown by Fig. 8. Note that sudden changes in
outputs of inference models (if persist) for given device(s)
can trigger an investigation by network administrators or
inspection appliances.

We now test our classier models with attack traffic on IoT
devices. We use a set of publicly available PCAP traces [44]
that contain both benign and attack traffic (clearly annotated)
corresponding to a few IoT devices we use in this work.

In Figures 16 and 17 we present results of three representa-
tive scenarios: (1) the output label of the IoT classifier changes
persistently (i.e., repeatedly misclassifying) accompanied by
a sudden drop in confidence, (2) the output label of the
IoT classifier does not change, but its confidence drops and
persistently stays at low levels, and (3) the output of the
IoT classifier remains normal (expected label with reasonable
confidence), but the respective state classifier mis-behaves. In
these plots, red crosses indicate time periods over which attack
traffic is launched to the respective IoT device, and blue circles
show purely benign traffic instances.

Fig. 16(a) illustrates the scenario 1 for Belkin switch.
This time trace displays a situation where the IoT device
experiences TCP SYN reflection attack twice, each for a
duration of 10 minutes. It is seen that during attack periods
(shown by red cross markers) the predicted label changes from
Belkin switch to Netatmo camera with confidence less than
70%. Right after the attack, the output comes back to its
original label and the confidence starts rising gradually.

Fig. 16(b) (representative of the scenario 2) displays a time
trace of our monitoring scheme for Amazon Echo under UDP-
based DoS attack over two periods of 10-minute each. We
observe that these attacks do not change the predicted label
of the IoT classifier, but cause the model confidence to decay
rapidly (and remains below 80% persistently).

Lastly, Fig. 17(a) (representative of the scenario 3) illus-
trates a situation where attack traffic is not intense (i.e., ping
of death attack on LiFX bulb), and hence does not affect the
broad view of the IoT classifier model. However, the special-
ized model of state classifier is significantly affected. During
attacks period, LiFX bulb is persistently seen in active state
which is not normal for a light-bulb since its activity (turning
on/off or changing color) is expected to be relatively short.
Additionally, the confidence of the state classifier quickly falls
to a level of about 50% which is not normal again.

VI. CONCLUSION

Operators of smart environments face mounting pressure
to enhance their visibility into their IoT infrastructure with
many vulnerable devices. This paper developed a real-time
monitoring solution for IoT devices using SDN-based flow-
level telemetry combined with machine learning. We identified
traffic flows that can collectively characterize the network
behavior of IoT devices and their states such as booting,
user interaction or idle. We then trained a set of classification
models for a three-stage inference architecture using real traffic
traces of 17 IoT devices collected over a period of 6 months.
We validate their efficacy in detecting IoT devices from non-
IoTs, classifying their type, and identifying their operating
state. Lastly, we showed how we balance the trade-off between
cost and performance of our scheme, and demonstrated how
operators can use it to detect IoT behavioral changes (both
legitimate and malicious).

REFERENCES

[1] A. Sivanathan, D. Sherratt, Habibi Gharakheili, H. , A. Radford and
C. Wijenayake, A. Vishwanath and V. Sivaraman, “Characterizing and
classifying iot traffic in smart cities and campuses,” in Proc. IEEE
Infocom workshop on smart cities and urban computing, Atlanta, USA,
May 2017.

[2] J. Gubbi et al., “Internet of Things (IoT): A vision, architectural
elements, and future directions,” Future Generation Computer Systems,
vol. 29, no. 7, pp. 1645–1660, 2013.

[3] IoT Analytics. State of the IoT 2018: Number of IoT devices. https:
//bit.ly/2sR4eCI.

[4] HP, “HP Study Reveals 70 Percent of Internet of Things Devices
Vulnerable to Attack,” http://bit.ly/38mNK4h, 2014.

[5] F. Loi, A. Sivanathan, H. Habibi Gharakheili, A. Radford and V.
Sivaraman, “Systematically evaluating security and privacy for consumer
iot devices,” in Proc. ACM CCS workshop on IoT Security and Privacy
(IoT S&P), Texas, USA, Nov 2017.

[6] Cisco, “Cisco 2017 Midyear Cybersecurity Report,” Tech. Rep., 2017.
[7] ——, “Cisco 2018 Annual Cybersecurity Report,” Tech. Rep., 2018.
[8] M. J. Farooq and Q. Zhu, “Modeling, Analysis, and Mitigation of

Dynamic Botnet Formation in Wireless IoT Networks,” IEEE TIFS,
vol. 14, no. 9, pp. 2412–2426, Sep 2019.

[9] H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the internet of things:
A review,” Proc. ICCSEE 2012, vol. 3, pp. 648–651, 2012.

[10] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the
Internet of Things: perspectives and challenges,” Wireless Networks,
vol. 20, no. 8, pp. 2481–2501, 2014.

[11] I. Andrea, C. Chrysostomou and G. Hadjichristofi, “Internet of things:
Security vulnerabilities and challenges,” in ISCC, July 2015.

[12] Innovation-AUS, “Call to regulate the IoT sector,” https://bit.ly/
2qEMYMe, Nov 2018.

[13] IEEE-Spectrum, “Japan to Probe IoT Devices and Then Prod Users to
Smarten Up,” https://bit.ly/2I3RrBL, Feb 2019.

[14] InformationAge, “US Congress is introducing a new bill for IoT
security,” https://bit.ly/2CYE4zL, Apr 2019.

[15] Forbes, “UK To Introduce New Law For IoT Device Security,” https:
//bit.ly/2WpUI73, May 2019.

[16] I. Ali, S. Sabir, and Z. Ullah, “Internet of Things Security, Device
Authentication and Access Control: A Review,” 2019. [Online].
Available: http://arxiv.org/abs/1901.07309

[17] V. Sivaraman, H. Habibi Gharakheili, A. Vishwanath, R. Boreli, and
O. Mehani, “Network-level security and privacy control for smart-home
iot devices,” in Proc. IEEE WiMob, Abu Dhabi, UAE, Oct 2015.

[18] E. Lear, R. Droms, and D. Romascanu, “Manufacturer Usage
Description Specification,” RFC 8520, Mar 2019. [Online]. Available:
https://www.rfc-editor.org/info/rfc8520

[19] A. Hamza, H. Habibi Gharakheili, and V. Sivaraman, “Combining MUD
Policies with SDN for IoT Intrusion Detection,” in Proc. ACM IoT
Security and Privacy (IoT S&P), Budapest, Hungary, Aug 2018.

[20] A. Sivanathan, H. Habibi Gharakheili, F. Loi, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Classifying IoT Devices
in Smart Environments Using Network Traffic Characteristics,” IEEE
Transactions on Mobile Computing, 2018.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

[21] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A Better NetFlow for
Data Centers,” in Proc. USENIX NSDI, Santa Clara, CA, Mar 2016.

[22] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954, Oct 2004. [Online]. Available: https://www.rfc-editor.org/info/
rfc3954

[23] SolarWinds, “NetFlow Basics and Deployment Strategies,” https://bit.ly/
2K4EZ6Q, Oct 2010.

[24] sFlow, https://sflow.org/about/index.php.
[25] D. Levi, P. Meyer, and B. Stewart, “Simple network management

protocol (snmp) applications,” United States, Tech. Rep., 2002.
[26] V. Srinivasan, J. Stankovic, and K. Whitehouse, “Protecting your daily

in-home activity information from a wireless snooping attack,” Proc.
UbiComp ’08, p. 202, 2008.

[27] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and A. S. Uluagac, “Peek-a-boo: I see your
smart home activities, even encrypted!” CoRR, 2018.

[28] Y. Zhu, B. Y. Zhao, H. Zheng, N. Kang, J. Cao, A. Greenberg, G. Lu,
R. Mahajan, D. Maltz, L. Yuan, and M. Zhang, “Packet-Level Telemetry
in Large Datacenter Networks,” in Proc. SIGCOMM. New York, New
York, USA: ACM Press, 2015, pp. 479–491.

[29] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca, “Planck: Millisecond-scale Monitoring and
Control for Commodity Networks,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 407–418, aug 2014.

[30] N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, and S. Louis, “OpenFlow: Enabling
Innovation in Campus Networks,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 2, pp. 69–74, mar 2008.

[31] R. Hofstede, I. Drago, A. Sperotto, R. Sadre, and A. Pras, “Measurement
artifacts in netflow data,” in Proc. PAM. Berlin, Heidelberg: Springer-
Verlag, 2013, pp. 1–10.

[32] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, and N, “Class-of-
service Mapping for QoS: A Statistical Signature-based Approach to
IP Traffic Classification,” in Proc. SIGCOMM Conference on Internet
Measurement, ser. IMC ’04, vol. 25. New York, NY, USA: ACM, 2004,
pp. 135–148.

[33] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, “Network
Traffic Classification Using Correlation Information,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 1, pp. 104–117, jan
2013.

[34] M. Lyu, H. Habibi Gharakheili, C. Russell, and V. Sivaraman, “Mapping
an Enterprise Network by Analyzing DNS Traffic,” in Passive and Active
Measurement, D. Choffnes and M. Barcellos, Eds. Cham: Springer
International Publishing, 2019, pp. 129–144.

[35] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,
“Network Traffic Classifier with Convolutional and Recurrent Neural
Networks for Internet of Things,” IEEE Access, vol. 5, pp. 18 042–
18 050, 2017.

[36] P. Junges et al., “Passive Inference of User Actions through IoT Gateway
Encrypted Traffic Analysis,” in IFIP/IEEE Symposium on Integrated
Network and Service Management, April 2019, pp. 7–12.

[37] A. K. Das et al., “Uncovering Privacy Leakage in BLE Network Traffic
of Wearable Fitness Trackers,” in Proc. International Workshop on
Mobile Computing Systems and Applications (HotMobile ’16). St.
Augustine, Florida, USA: ACM, 2016.

[38] B. Copos, K. Levitt, M. Bishop, and J. Rowe, “Is Anybody Home?
Inferring Activity from Smart Home Network Traffic,” Proc. SPW 2016,
pp. 245–251, 2016.

[39] N. Apthorpe, D. Reisman, and N. Feamster, “A Smart Home is No
Castle: Privacy Vulnerabilities of Encrypted IoT Traffic,” in Workshop
on Data and Algorithmic Transparency, 05 2017.

[40] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. Tippenhauer, J. D.
Guarnizo, and Y. Elovici, “Detection of Unauthorized IoT Devices
Using Machine Learning Techniques,” arXiv, 2017. [Online]. Available:
http://arxiv.org/abs/1709.04647

[41] M. Miettinen et al., “IoT SENTINEL: Automated Device-Type Identi-
fication for Security Enforcement in IoT,” in Proc. ICDCS, June 2017.

[42] L. Bai et al., “Automatic Device Classification from Network Traffic
Streams of Internet of Things,” in Proc. IEEE LCN, Chicago, Illinois,
United States, Oct 2018.

[43] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW), May 2018, pp. 29–35.

[44] A. Hamza et al., “Detecting Volumetric Attacks on IoT Devices via
SDN-Based Monitoring of MUD Activity,” in Proc. ACM SOSR, San
Jose, California, USA, Apr 2019.

[45] “eSpeak: Speech Synthesizer.” [Online]. Available: http://espeak.
sourceforge.net/

[46] A. Sivanathan et al., “Low-Cost Flow-Based Security Solutions for
Smart-Home IoT Devices,” in Proc. IEEE ANTS, Banglore, India, Nov
2016.

[47] H. Habibi Gharakheili et al., “iTeleScope: Softwarized Network Middle-
Box for Real-Time Video Telemetry and Classification,” IEEE Transac-
tions on Network and Service Mangement, vol. 16, no. 3, pp. 1071 –
1085, Jul 2019.

[48] L. Hendriks and other, “Assessing the Quality of Flow Measurements
from OpenFlow Devices,” in Proc. IEEE TMA, Louvain La Neuve,
Belgium, Apr 2016.

[49] H. Jiang and C. Dovrolis, “Why is the internet traffic bursty in short time
scales?” SIGMETRICS Perform. Eval. Rev., vol. 33, no. 1, pp. 241–252,
June 2005.

[50] A. Sivanathan, “SDN Sim,” https://github.com/arunmir/sdn-sim, 2018.
[51] EY, “Cybersecurity compromise diagnostic: Hunting for evidence of

cyber attackers,” https://go.ey.com/2X7yTIS, Apr 2017.
[52] R. Caruana and A. Niculescu-Mizil, “An Empirical Comparison of

Supervised Learning Algorithms,” in Proc. ICML, Pittsburgh, Pennsyl-
vania, USA, Jun 2006.

[53] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct 2001.

[54] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust Network
Traffic Classification,” IEEE/ACM Transactions on Networking, vol. 23,
no. 4, pp. 1257–1270, Aug 2015.

[55] E. Frank, M. A. Hall, and I. H. Witten, The WEKA Workbench. Online
Appendix for “Data Mining: Practical Machine Learning Tools and
Techniques”, fourth edition ed. Morgan Kaufmann, 2016.

[56] M. A. Hall, “Correlation-based feature subset selection for machine
learning,” Ph.D. dissertation, University of Waikato, Hamilton, New
Zealand, 1998.

[57] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya, “Effective Switch
Memory Management in OpenFlow Networks,” in Proc. ACM DEBS,
Mumbai, India, May 2014.

Arunan Sivanathan is currently pursuing his PhD
in the School of Electrical and Telecommunication
Engineering at the University of New South Wales
(UNSW Sydney). He obtained his bachelors degree
from the University of Peradeniya, Sri Lanka in
2012. He later joined the University of Jaffna, Sri
Lanka, as a Lecturer from 2013 to 2016. His primary
research interests include security of Internet of
Things and data analytics on machine-to-machine
communication.

Hassan Habibi Gharakheili received his B.Sc. and
M.Sc. degrees of Electrical Engineering from the
Sharif University of Technology in Tehran, Iran in
2001 and 2004 respectively, and his Ph.D. in Elec-
trical Engineering and Telecommunications from the
University of New South Wales (UNSW Sydney) in
Australia in 2015. He is now a lecturer at UNSW
Sydney. His current research interests include pro-
grammable networks, learning-based networked sys-
tems, and data analytics in computer systems.

Vijay Sivaraman received his B. Tech. from the
Indian Institute of Technology in Delhi, India, in
1994, his M.S. from North Carolina State University
in 1996, and his Ph.D. from the University of
California at Los Angeles in 2000. He has worked
at Bell-Labs as a student Fellow, in a silicon valley
start-up manufacturing optical switch-routers, and
as a Senior Research Engineer at the CSIRO in
Australia. He is now a Professor at the University of
New South Wales in Sydney, Australia. His research
interests include Software Defined Networking, net-

work architectures, and cyber-security particularly for IoT networks.


