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Abstract—Enterprise networks continue to grow in scale and
complexity, encompassing a wide range of Internet-connected
end-points including web servers/proxies, DNS/VPN/mail servers,
and other special-purpose devices. Monitoring this dynamically
evolving set of assets, for the purposes of ensuring operational
efficiency and cyber security, poses a significant challenge for IT
personnel. In this paper, we develop a system that automatically
classifies enterprise Internet-connected assets in a continuous
manner by analyzing their network activity, thereby reducing
blind spots for organizational IT departments. Our contributions
are three-fold: (1) We analyze over 3 billion packets from a
large enterprise network to deduce network behavioral profiles
of the popular asset types like website servers, DNS servers,
and file storage systems and transport-layer patterns of less
popular ones such as non-typical TCP/UDP servers, proxies, and
NAT gateways; (2) We systematically develop host-level graph
structure, identify a rich set of behavioral attributes, balance
the computational cost against predictive power, train classifiers
in a dual-grained classification scheme to categorize assets, and
evaluate them via cross-fold validation as well as open set;
and (3) We prototype our system on multiple 10Gbps Internet
links of a campus network, and present insights over a month,
such as the ability to identify hundreds of typical servers as
well as thousands of non-typical assets, track their utilization,
and highlight anomalous behaviors pertinent to possible cyber-
threats. Our solution provides a dynamic and scalable way for
IT personnel to effectively track enterprise assets.

Index Terms—Host classification, network traffic analysis,
machine learning, programmable networks.

I. INTRODUCTION

Enterprise networks host a variety of Internet-connected de-
vices ranging from website servers, web proxies, DNS proxies,
mail servers, and VPN servers to remote computing platforms
and desktops. Organizational IT departments struggle to keep
track of their complex environment [6], [33], which contin-
uously evolves as assets get decommissioned, and new ones
are added. Consequently, it is common for organizations to
be unaware of under-utilized and orphaned assets contributing
to operational inefficiencies, as well as diverse device-specific
vulnerabilities exposing the organization to cyber threats, as
reported by AT&T Cybersecurity [11].

Industry guidelines for IT security and management rec-
ommend best practices to enforce a standard operating en-
vironment (SOE), such as controlled naming and address
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assignment, strict access control rules, and administrative per-
missions to onboard devices. However, first-hand experience
has shown that the problem is particularly acute in less
controlled enterprise networks such as Universities, wherein
connected assets are managed in a loosely federated manner
across departments, bespoke dynamic and complex network
requirements of sub-departments limit the ability to enforce a
strict SOE. Besides, the culture is attuned to staff and students
connecting their own devices into the campus network. These
blind spots have handicapped IT departments and exposed
Universities to cyber-risks ranging from malware and botnets
to DDoS attacks [30].

Large organizations often invest in a number of solid secu-
rity tools, but they still report visibility gaps [14]. Maintaining
an up-to-date inventory of Internet-connected assets' is very
challenging in dynamic enterprise environments. Manually
updated spreadsheets become obsolete quickly and are rarely
synchronized across IT team members, let alone across the
organization. For example, Facility Management in our Uni-
versity deploys security cameras and smart monitors, and IT
only finds out later. Network managers have built home-grown
tools to track assets by ingesting logs from various network
services like DHCP servers, RADIUS authentication servers,
DNS servers, firewalls, and web proxies; however, each of
these only provides a narrow and independent view of the
connected assets [9], [32], leaving many hosts undiscovered.
This can be very problematic, given that network operators
largely rely on device-specific rules (e.g., access control lists)
on their border security appliance (e.g., firewall) to protect
their assets, and having blind spots in their inventory can result
in exposure to a large attack surface [5], [18], [33].

Prior research works on host network behavioral monitoring
have relied on deducing end-to-end traffic graph patterns [46],
[23], [49], [51], [19]. Statistical techniques such as machine
learning (ML) are used to cluster/identify host types by corre-
lations of networked entities [52], [12], [19], [21], [45]. With
enterprise networked devices numbering tens of thousands and
traffic rates growing to tens of Gbps, constructing a reliable
graph structure of all network flows between internal hosts
and external services can be expensive computationally, thus,
impractical to be directly applied to a large network with high
traffic rates.

This paper focuses on those end-devices/hosts (each identified by their
IP address) that communicate with remote endpoints on the Internet. Hence,
our proposed network monitoring system is to be deployed at the edge of
enterprise networks. There may exist certain hosts which merely communicate
locally, and their traffic does not cross the edge of enterprise networks, and
thus, are beyond the scope of this work.



In this paper, we propose a dual-grained classification
method that leverages machine learning algorithms to clas-
sify and track the behavior of Internet-connected enterprise
assets by passively analyzing their network traffic in real-
time. Specifically, by analyzing the transport- and network-
layer behavior of all enterprise hosts, our method: (1) classi-
fies assets into fine-grained (specific) and/or coarse-grained
(generic) types. A fine-grained class of an asset (host) is
determined if it exhibits network patterns as one of N popular
types (e.g., web server, DNS server) specifically defined by the
enterprise operator. Otherwise (e.g., server operating on non-
typical services), it is classified as one of six coarse-grained
types that are generic for all enterprise networks; and (2)
conducts a deeper investigation of only a small dynamic subset
of hosts exhibiting unfamiliar behavior at both granularities to
identify their non-standard activities (e.g., generating attacks).
Our approach has the advantage of being encryption-resistant,
scalable, and easy to deploy without putting network opera-
tions at risk. We make three specific contributions elaborated
below:

First, in §III, by analyzing a large representative traffic
trace of over 3 billion packets collected from a University
campus network, we summarize the typical network behavior
of the ten most common host types in an enterprise, such
as web server, mail server, and DNS server. We identify the
presence of non-typical hosts such as servers that use less
common protocols or non-standard services (ports), and hosts
that serve multiple purposes. We further categorize enterprise
hosts into six coarse-grained types based on their distinct
behaviors at transport and network layers, including: TCP- and
UDP-dominant public-facing servers that provide enterprise
content to external users; TCP- and UDP-dominant proxies
that act as relays (e.g., for DNS and HTTPS); NAT gateways
that represent internal clients with private IP addresses; and
end-hosts that have unique public IP addresses.

Second, in §IV, we develop a dual-grained classification
scheme that employs a rich set of host-level attributes along
with supervised machine learning (ML) models to infer dy-
namic and diverse behaviors of enterprise hosts that may
not be necessarily feasible with a deterministic and relatively
static set of attributes. To this end, we first systematically
profile host network behavior using a host-specific rooted-
graph structure and identify descriptive attributes of network
behaviors. We then optimize our data structures and behav-
ioral attributes by balancing their predictive power against
computational cost. We lastly develop ML models by tuning
various algorithms, model parameters, input attribute sets, and
retention periods. Our fine-grained model classifies enterprise
hosts into N common specific types (N = 10 in our use-case),
and the coarse-grained model classifies hosts into six generic
types labeled by their dominant services, highlighting their
functionality. Well-tuned models yield a fairly high accuracy
(close to 99%) in cross-fold validation while providing cost-
effectiveness (scalable and practical).

Third, in §V, we prototype our system using a commodity
programmable switch and virtual network functions (VNF) on
a generic server. We deploy it at the edge of our University
network and highlight insights obtained over a one-month

trial period. Our system was able to uncover over 300 web
servers, along with several DNS servers, mail servers, NAT
gateways, and proxies. Additionally, our system was able to
detect unexpected behavior from several assets indicative of
scans and malware. We also profile the performance of our
solution in terms of CPU and memory usage, responsiveness,
and inspection load, validating that it can easily scale to large
enterprises.

The rest of this paper is organized as follows: prior relevant
works and our key novelties are summarized in §II. §III
describes insights from our traffic analysis of over 3 billion
packets captured from the Internet border router of our uni-
versity campus network. In §IV, we describe our dual-grained
scheme for enterprise host classification, attribute extraction,
ML model training, and evaluation. Our prototype design
and campus deployment are described in §V. Limitations and
future works are discussion in §VI. The paper is concluded in
SVII.

II. RELATED WORK

In this section, we discuss prior works and highlight the key
novelty of our work.

A. Analysis of Network Traffic

Analysis of network traffic has been a hot topic for more
than two decades. Port-based analysis methods [10], [22]
that map traffic type by source/destination transport-layer port
numbers are widely used in many commercial solutions, for its
low computational cost and high accuracy in identifying cer-
tain application types and servers like website (HTTP/HTTPS)
and name resolutions (DNS). However, with the complexity
of modern applications and host roles in using a variety
of transport services [3], purely port-based approaches fall
short in effectively classify all hosts in an enterprise network.
Analysis of network traffic using statistical methods such as
machine learning is increasingly gaining interest from the
research community [8], [40], [4]. Several works have been
done in detecting and classifying various types of traffic such
as video streaming [34], coflows from cloud computing [54],
DNS assets [31], IoT devices [45], and email service [26].
In addition, a recent work [35] employed explainable AI
techniques to analyze mobile traffic which becomes popular
in this field.

B. ML-based Classification of Host Behaviors

There are many research works on classifying host types
[25], [11, [19], [46], [23], [21], [17], [49] Authors of [25]
classify user traffic flows such as bulk download, video, web,
and interactive by characteristics of their network activities.
Work in [1] classifies encrypted traffic of mobile applications.
Work in [19] constructed networked graphs that represent
interconnections between hosts; G. Tan et al. [46] proposed
two effective algorithms in obtaining the similarity between
host communication patterns to identify their social groups;
and BLINC [23] classified host types using flow statistics
to summarize host roles including attackers and victims in



cyber-crimes. Authors of [21] utilized a stochastic block
model to identify pattern changes in the networked graph
of host connections for potential anomalous changes. Bay-
watch [17] identified malware-infected hosts in an enterprise
network by analyzing their beaconing behavior (the process
for infected hosts communicating with remote Command-and-
Control servers). Beehive [49] performed large-scale analysis
on logs collected from key IT infrastructures such as DHCP
servers, VPN gateways, and web proxies to detect suspicious
host activities.

C. Systems with Programmable Networking

Programmable networking techniques (i.e., SDN and NFV)
have been employed to address various research problems
such as dynamic telemetry and security enforcement [38].
Their use-cases range from measuring network-wide flow-level
statistics elastically [48], [28], satisfying operators’ dynamic
needs for network telemetry via general-purpose query-driven
system [15], identifying and fingerprinting specific network
traffic like video streaming [34], [16] to detecting network
attacks and threats reactively [13], [50], [27]. Inspired by
prior works, to achieve scalable real-time monitoring along
with reactive traffic isolation for less confidently classified
enterprise hosts, we develop our system using virtual net-
work functions on a generic server to process live traffic of
an enterprise network (i.e., up to 20Gbps), and leverage a
commodity programmable switch supported by controllers and
applications to reactively mirror traffic of selected hosts to an
off-the-shelf packet inspection engine for further diagnosis.

D. Our Key Novelty

The novelty of our work can be summarized in three key
aspects. First, we profile the network behavior of hosts by a
comprehensive set of descriptive attributes computed from a
rooted graph structure. They collectively capture packet and
flow statistics associated with internal/external active hosts
(IP addresses) and services (transport-layer port numbers).
Machine learning algorithms can readily use them for accurate
classification. Second, we systematically select cost-effective
yet predictive attributes and reduce the graph complexity to
achieve effective and scalable ML-based classification when
analyzing network traffic of a large-sized enterprise. Third, we
develop a robust data-driven method empowered by machine
learning algorithms that can map all possible asset profiles
(known and emerging). Given the dynamic nature of network
traffic, deterministic approaches fall short of expectations in
accurately modeling the behavior of diverse asset classes.
Our dual-grained classification scheme offers an extensible
model for inferring known specific host types (N fine-grained
classes) as well as a generic model for predicting the behavior
of emerging asset classes (six generic and coarse-grained
classes). Our method empowers network operators to map all
connected assets without leaving blind spots.

III. UNDERSTANDING NETWORK BEHAVIORS OF
ENTERPRISE HOSTS

By analyzing one-hour traffic trace captured from two
(one inbound and one outbound) 10 Gbps Internet border

links, in this section, we: (a) highlight traffic statistics at
the border of enterprise network in terms of distribution of
inbound/outbound TCP/UDP traffic across the entire IP block
of our organization and the variety of network services’
(by transport-layer protocols and port numbers) on which
internal hosts offer/access; (b) summarize network behavioral
patterns of ten types of common enterprise networked assets
(hosts) including website server, authoritative name server,
VPN server, remote computing server, file storage server,
email server, website proxy, recursive domain name resolver,
and NAT gateway. In addition to these common types, there
exist some non-typical assets with a diverse usage of cus-
tom transport-layer services. Therefore, we: (c) identify six
aggregate classes of enterprise hosts based on their behavior
regardless of the usage of transport services. These classes
include TCP and UDP public-facing servers, TCP and UDP
application proxies, NAT proxies, and end-hosts. Insights into
the behavioral profile of various asset classes obtained in this
section motivate our ML-based method (§IV) that precisely
and automatically captures a comprehensive set of statistical
(instead of deterministic) patterns found in our labeled dataset.

A. Overview of our PCAP Traces

To understand the behavioral profile of various enterprise
hosts, we collected one-hour full traffic trace (inbound and
outbound) from the two 10 Gbps Internet links outside the
border firewall of our university campus network. Appropriate
ethics clearances® were obtained for this study.

1) Basic Statistics of our Dataset: Our university owns
three IPv4 blocks of size /16, giving a total of more than
196K public addresses. Using tcpdump tool, the first 96 bytes
of all packets were recorded during the peak hour of a typical
weekday (9-10am on 11 March 2019) — we verified that only
0.1% of packets were missed during this measurement. All
headers of Ethernet, network, and transport layers are well-
preserved, resulting in a total of 1.1 billion packets inbound
and 1.6 billion packets outbound. The traffic rate of our
collected data was about 10 Gigabits-per-second (Gbps) with
an average 800K packets per second (pps).

2) Outgoing versus Incoming Traffic for Enterprise Hosts:
Focusing on the hosts inside the enterprise network, as illus-
trated in Fig. 1(a), we observe that some hosts have almost
equal amount of inbound and outbound packets (distributed
across line y=x), whereas many other internal hosts display
unbalanced behaviors. Also, there are “inactive” IP addresses
(within the enterprise IP space) which receive packets from
the Internet without sending any reply packet. For illustration
purpose, we overlay inactive addresses by red dots along the
y-axis in Fig. 1(a).

Fig. 1(b) shows the CCDF plot of the outgoing fraction
of total packets per each internal host. In this plot, we can
see three main regions: outgoing fraction (i.e., x-axis) less
than 0.4, between 0.4 and 0.6, and more than 0.6, partitioned

2We also use the term “transport service” to represent the combination of
transport-layer protocol and port number, such as TCP/443.

3UNSW Human Research Ethics Advisory Panel approval number
HC17499.
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Fig. 1: Dynamics of bidirectional traffic volume across internal
hosts of the enterprise network: (a) count of incoming versus
outgoing packets per host, and (b) CCDF of outgoing fraction
of packets per host.

by vertical dashed lines (blue and orange). The first region,
accounting for about 90% of internal IP addresses, represents
internal assets which are either completely inactive (zero
outgoing packet), or have much less number of outgoing
packets than incoming — they seem to be target of scans or
DoS attacks. The second region (i.e., 0.4 < outFrac < 0.6)
represents the majority of active internal hosts which have
almost same amount of incoming and outgoing packets —
such behavior is often normal and expected. Lastly, the third
region represents those enterprise hosts, each having a majority
of their packets leave the network (i.e., outFrac > 0.6) —
seemingly participating in malicious activities (scans or DoS)
which target external networks/hosts.

Note that a total of 217,708 internal IP addresses appeared
in our dataset, where only 21,258 of these addresses are
“active” hosts (i.e., sending at least a packet to external
entities) — most internal IP addresses did not respond to
incoming packets from external entities (possibly subject to
incoming scans from the Internet. For the rest of our analysis
in this paper, we produce a “cleaned dataset” by only including
packets of active hosts. Therefore, our study will be on those
21,258 enterprise hosts (IP addresses) with non-zero outgoing
packets.

3) Diversity in Transport-Layer Behavior: We now analyze
the headers of outgoing packets sent by internal hosts, and
zoom into their transport-layer services and source port num-
bers. This enables us to identify the role (i.e., client or server?)
of individual enterprise hosts at a high level, and infer the
type of services (e.g., HTTPS, SSH, or QUIC) they may offer.
Similar insights can also be obtained from incoming packets
and their destination port numbers — we omit this analysis to
avoid redundant explanations.

To better visualize the diversity of transport-layer services,
we use their word-cloud representation in Fig. 2. A weight is
associated to each internal service (TCP/UDP port numbers)
using the count of packets sent per service port number. It
can be seen that most frequently used port numbers are either
occupied by well-known services (ranging from 0 to 1023 [47]
like TCP/443 for HTTPS, assigned by the Internet standard
RFCs) or certain de-facto servers (e.g., UDP/443 used for
Cisco VPN application), or randomly selected client ports
(e.g., UDP/44247 and TCP/56392) for a variety of network
applications.
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(a) TCP port numbers. (b) UDP port numbers.

Fig. 2: Wordcloud of: (a) TCP, and (b) UDP, source port
numbers in outgoing traffic of the enterprise network to the
Internet.

Let us have a closer look at some of these transport-layer
ports which dominate our traffic trace. Considering TCP/443,
highlighted by dark green in Fig. 2(a), we observe that about
500 enterprise hosts serve close to 20000 unique external
hosts (IP addresses) by this top most popular web service.
We manually verified (by performing reverse DNS lookup
within the enterprise network) that 382 of these enterprise
hosts are public-facing servers (such as the main student web-
portal of university, VPN server, or web servers of various
faculties/schools). Interestingly, UDP/443, highlighted by yel-
low in Fig.2(b), is also among popular UDP services provided
by enterprise hosts to the public Internet — this port number
corresponds to Cisco AnyConnect VPN service, handling more
than 200 remote users during the one-hour traffic capture.
Note that QUIC (developed by Google and predominantly
used by Google servers) also operates on UDP/443 — our
university network, however, does not have any QUIC servers
in operation.

Port numbers greater than 1023 are typically used on the
client side (randomly chosen by operating systems) when
attempting to contact their TCP/UDP servers. Interestingly, we
found that TCP/5375, highlighted by dark purple in Fig.2(a), is
the source port in about 9 million packets — almost all of these
packets are sourced from an internal NAT gateway, having
replied by approximately equal number of packets, which is
an expected behavior. We examined the headers of packets
sent/received by this NAT gateway, found that the vast majority
(98.6%) of the packets sent are 60-byte TCP ACK packets
in response to packets (average size of 117 bytes) received
from an HTTPS (i.e., TCP/443) server operated by Microsoft
Azure Could Computing Platform — probably a large download
requested by an enterprise host behind the NAT gateway.

Similarly, UDP/44247 is highlighted by dark blue in
Fig.2(b) — 7 million packets generating a total volume of
~10 GB to a Google cache server (operating on QUIC via
UDP/443). This outgoing traffic was sourced from an internal
host while its Google server consistently replied by small
packets (of size 85 bytes on average) during this interaction —
most likely, automatic sync with Google drive or uploading a
video onto YouTube.

As discussed above, the usage of network services
(transport-layer port numbers) can be quite diverse, suggesting
many types of roles (functionalities) across enterprise hosts.
We, next, focus on popular host types that are commonly found
in large typical enterprise networks.



TABLE I: Ten popular host types identified from DNS names and their abstract network behavior.

Type # hosts | sample DNS name # internal services | # external services | flow duration | pkt. size
Website srv 61 www.unswlawjournal.unsw.edu.au small, fixed large, random short medium
Authoritative name srv 15 nsl.sdn.unsw.edu.au small, fixed large, random short small
VPN srv 13 securevpn.nida.edu.au small, fixed large, random long medium
Remote computing srv 16 analyticalcentre2.chem.unsw.edu.au medium, fixed large, random long small
File storage srv 14 files.be.unsw.edu.au small, fixed large, random medium large
Mail srv 18 smtp.garvan.unsw.edu.au medium, fixed large, random short medium
DNS proxy 7 ns6.unsw.edu.au large, random small, fixed short small
Web proxy 4 wwwproxy2.library.unsw.edu.au large, random small, fixed short medium
NAT gateway 256 uniwide-pat-pool-a-b-c-d.gw.unsw.edu.au large,random large,random medium medium
End-host 1961 minzhaos-macbook-pro.ad.unsw.edu.au medium, random small, random medium medium

B. Fine-grained Behavioral Profile of Enterprise Hosts

There are diverse types of hosts in an enterprise network
that are trivial and not practical to enumerate. We now discuss
ten popular fine-grained host types which are quite common
in a large enterprise network, highlight their typical network
behaviors using a rooted graph, and illustrate the existence of
non-typical host types and behaviors.

1) Ten Popular Fine-grained Types of Enterprise Hosts:
Website server is one of the most commonly used asset types
that can be found in enterprise networks. These networked
assets serve contents to public users via HTTP (TCP/80)
or HTTPS (TCP/443). To retrieve enterprise web contents,
external users initiate short TCP connections to these servers,
sourced from randomly selected transport-layer services (i.e.,
port numbers).

The second essential network asset for most of large en-
terprise networks is an authoritative name server which
maps the organizational domain names to their respective IP
addresses configured by the network administrator. This type
of servers often operate on UDP/53, answering DNS queries
from many external entities which use random source port
numbers.

To enable their employees and users (e.g., staff and students
in case of university networks) who need to remotely access
protected IT resources, enterprises often set up VPN servers
(virtual private network servers). These servers provide tunnel-
ing connections (usually with longer duration) between remote
endpoints and their internal networked resources.

Remote computing servers such as workstations and
virtual machines, that provide enterprise staff with power-
ful resources to execute computationally-intensive tasks, are
commonly used by research groups and departments. These
networked assets typically offer remote accessing services like
SSH (TCP/22) and Telnet (TCP/23).

Enterprises often need to store and manage their business-
critical information, and make it available to their trusted
departments and individual employees. File storage servers
are therefore configured centrally and/or by sub-departments,
so that staff and trusted entities can upload or access such
critical data via bulk-transfer protocols like FTP (TCP/21).

Large organizations like an university may host their own
email domains. Mail servers which are authoritative for
email domains and handle the delivery of emails, are another
common host type in an enterprise. They obviously operate

on Email-related protocols such as SMTP (TCP/25, TCP/465,
TCP/587) and others.

To secure and facilitate DNS lookups from enterprise hosts
to public resolvers, large enterprises often have central and/or
department-level DNS proxies configured, that only send DNS
queries (sourced from random UDP ports) to external resolvers
that listening on UDP/53.

Similarly, website proxies may also get configured to
perform web lookups on behalf of enterprise regular end-
hosts. These proxies use random source TCP port numbers
to retrieve contents using short connections from Internet-
based website servers that offer HTTP (TCP/80) or HTTPS
(TCP/443) services.

In addition to application-specific proxies, NAT gate-
ways [29] are usually configured as agents to provide out-
bound Internet connectivity (TCP/UDP) for hosts (often WiFi-
connected devices) without public IP addresses, protecting
them from unsolicited incoming connections from the Internet.

Lastly, some enterprises may allocate certain end-hosts
with their organizational public IP addresses, allowing them
to directly communicate with the Internet. In our university
network, machines connecting via Ethernet cable to wall ports
in staff offices and certain labs will get public IP addresses.

In addition to these popular asset types (discussed above),
we note that some other hosts like SNMP agents, video confer-
encing hubs, and Key management servers are not necessarily
common in every enterprise network, hence not explicitly
studied in this section. We will later in this section (§III-C)
analyze the behavior of enterprise hosts by broadly considering
their network activity over transport-layer services.

2) Inferring Host Types from Their DNS Name: DNS
names associated with enterprise hosts can be helpful to
some extent for inferencing their roles. In our 1-hour PCAP
dataset, we extracted the domain name of each enterprise
host (IP address) from outgoing DNS responses captured on
the same day*. We managed to obtain the DNS name for
11,039 out of the 21,258 active enterprise hosts — more than
50% are found with a corresponding DNS name. However,
by analyzing their DNS name (a combination of automatic
string search and manual inspection), one may identify the
role (type) of only 2,365 hosts (11%) — only those servers
and proxies that are directly managed by our university
central IT department, public servers operated by certain

4We cross-checked against a separate dataset of daily DNS packets (incom-
ing/outgoing), recorded at the border of our university campus network.
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Fig. 3: Rooted graph structure containing four layers visualizes
the network behavior of an enterprise host.

departments/divisions (e.g., a journal website maintained by
the Law School of our university, as shown in the top row
of Table I), and NAT gateways or end-host devices that have
names with identifiable patterns. For example, website servers
usually use “www” in their name prefixes; some authoritative
name servers in our university network have their names
starting with “ns” followed by a number less than 5; the
domain names of some DNS proxies contain “ns” followed
by a number larger than 5; and NAT gateways configured
by our IT department would have names with a certain
pattern like “uniwide-pat-pool-a-b-c-d.gw.unsw.edu.au’,
given their static IP address is “a.b.c.d”. The second and
third columns of Table I summarize the count of hosts and a
sample of their DNS names across the ten popular types.

We note that though DNS name may be used to label
(identify the role of) some of the active hosts (mostly those
which the central IT department manages), a large fraction
of enterprise hosts (especially those which are managed by
subdivisions or departments) do not have an identifiable name,
hence remain unclassified. Therefore, a more comprehensive
approach is required to profile the behavior of active hosts and
identify their functionalities.

3) Profiling Network Behavior of Enterprise Hosts using
Rooted Graph Structure: We profile the behavioral charac-
teristics of each enterprise host by a rooted graph structure
shown in Fig. 3, illustrating the communications between the
enterprise host and external entities. As shown in this graph,
the enterprise host (the leftmost node in Fig. 3) connects
with external hosts (the rightmost nodes) via intermediate
nodes (internal and external transport-layer services) and their
corresponding edges. Edges on the graph represent statistical
attributes (i.e., count, size, and direction of packets; count, rate,
volume, direction, and duration of flows) for unidirectional
traffic exchanged across transport-layer services used by the
enterprise host and corresponding external hosts. The direction
of a flow is determined by the (internal or external) host which
initiates the flow — for an “inbound” flow, the first packet is
sent by an external host to the internal host. Thus, for every
flow, we model inbound and outbound packets by separate
edges.

We now generate and analyze the network behavioral profile
of those popular host types (as ground-truth data) are identified
by their DNS name. The last four columns in Table I briefly
summarize the graph pattern (behavior) of each host type
based on the features of nodes (i.e., internal and external
transport-layer services) and edges (i.e., flow duration, and
packet sizes).

Generally speaking, we observe both distinct and common
behaviors across different host types. For example, servers

like website server, authoritative name server, and remote
computing server display a relatively focused set of internal
transport services and fairly spread/broad set of random exter-
nal transport services, while proxies (web and DNS) exhibit an
opposite behavior — a wide range of random internal services
and a narrow set of fixed external services). Furthermore, in
terms of flow and packet characteristics, we observe some
distinct patterns. For example, VPN servers typically maintain
long flows with medium-size packets, while file storage servers
generate medium-duration flows carrying large packets. To
make our discussion more concrete, we next zoom into the
behavioral profile of three representative host types, including
website servers, web proxies, and NAT gateways.

Website servers: In summary, such servers are likely to
offer a small set of internal TCP services to a wide range
of external user TCP ports. The top internal services (by
either packet or flow count) in both directions are likely to be
TCP/443 and TCP/80, while external port numbers are pretty
random, distributed relatively evenly. Also, compared to other
types of servers that predominantly operate over TCP services,
website servers often maintain short flows with less than a few
seconds.

Let us take a closer look at the behavior of an example
website server (i.e., student portal of our university), captured
in our 1-hour PCAP trace. Starting with high-level observa-
tions on its packet-level characteristics, we found that the
packet count is almost equal in both directions (i.e., 917K for
inbound and 913K for outbound). In contrast, the average size
of outbound packets (245 Bytes) is more significant than that
of inbound packets (62 Bytes). In terms of flow-level charac-
teristics, the server received far more flows from the Internet
(18K inbound flows) than it initiated towards external hosts
(1K outbound flows). Also, the average duration of inbound
flows is larger than that of outbound flows (i.e., 1.4s and 0.2s,
respectively). The server is found to use a total of 458 internal
services (i.e., ports), while about half of them (209 transport
services) only appear in the inbound packets. Apparently,
it is the victim of unsolicited traffic from the Internet. We
further investigated those remaining 247 services (excluding
unsolicited ones), and ranked them by their contribution to
the number of packets and flows in each direction. Table II
shows the top five services of the website server by four
traffic characteristics (inbound/outbound packets and flows).
The number in square brackets highlights the contribution
of the corresponding service. Blue cells indicate services
that are common among the top-5 across the four columns,
while red cells indicate uncommon services which are not
necessarily among the top-5 across all columns. It is clearly
seen that a vast majority of packets and flows in both directions
are contributed by a small set of services that collectively
characterize the behavior of this website server. We also
analyzed external transport-layer services communicated with
this asset’. We observed a wide range (more than 12K) of
TCP services utilized fairly evenly — none of the top-5 external
services contributed more than 0.5% across the four metrics of
inbound/outbound packets and flows. Further, by analyzing the

5We omitted the table of results for external transport services.



TABLE II: Utilization of top-5 internal transport-layer services

of a representative website server.

TABLE II: Utilization of top-5 internal transport-layer ser-

vices of a representative web proxy.

In| packets

Out? packets

In| flows

Outt flows

In| packets

Out? packets

In| flows

Out? flows

TCP/443 [97.2%]

TCP/443 [98.1%]

TCP/443 [73.0%]

TCP/443 [52.0%]

TCP/39762 [3.6%]

TCP/33280 [3.5%]

TCP/3128 [0.2%]

TCP/42108 [0.4%])

TCP/80 [2.7%]

TCP/80 [1.8%]

TCP/80 [24.9%]

TCP/80 [24.3%]

TCP/40576 [3.5%]

TCP/41801 [2.6%]

TCP/51771 [0.1%]

TCP/51769 [0.4%])

TCP/0 [0.0%]

TCP/50923 [0.0%]

TCP/50923 [0.9%]

TCP/50923 [0.2%]

TCP/58355 [3.4%]

TCP/8513 [2.6%]

TCP/2869 [0.1%]

TCP/15833 [0.3%]

TCP/23 [0.0%]

TCP/21631 [0.0%]

TCP/21631 [0.0%]

TCP/21631 [0.2%]

TCP/44379 [3.3%]

TCP/40576 [2.4%]

TCP/7253 [0.1%]

TCP/3985 [0.3%]

TCP/137 [0.0%]

TCP/8641 [0.0%]

TCP/8641 [0.0%]

TCP/8641 [0.2%]

TCP/53718 [3.2%]

TCP/39762 [2.4%]

TCP/48782 [0.1%]

TCP/48471 [0.3%]

behavior of other website servers, we observed very similar
patterns with slight variations in their use of transport-layer
services TCP/80 and TCP/443. Some use a mix of HTTP and
HTTPS. In contrast, others prefer one of these TCP services.

Additionally, we note that website servers share certain
network behaviors with public-serving assets like authoritative
name servers, VPN servers, remote computing servers, and
file storage servers. They all have a small set of internal
services communicated with a wide range of external transport
services. That said, each of these individual asset types is
differentiated by their unique transport-layer services (e.g.,
UDP/53 for authoritative name servers, or TCP/22, TCP/23 or
TCP/3389 for remote computing servers). Also, they exhibit
different characteristics of packets and flows (e.g., VPN servers
often maintain longer flows with an average duration of about
a minute, and file storage servers typically use larger packets
of average size over 350 Bytes).

Web proxies: These hosts use a wide range of random
internal TCP ports, accessing TCP/443 and TCP/80 services
offered by Internet servers.

As an example, let us highlight the traffic profile of a web
proxy in our university network. At a high level, this proxy
exchanged an almost equal number of packets in each direction
(1.2M outbound and 1.5M inbound), while it had far more
outbound flows (36K) than inbound flows (3K). Table III
provides relatively fine-grained insights into the behavior of
this type of host by listing its internal top-5 transport-layer
services along with their respective contribution to the host
traffic at packet and flow levels. We can see that all cells in
this table are highlighted by red color, suggesting uncommon
services across the four metrics. Also, it is seen that these
top services are utilized fairly evenly by individual columns
of in/out packets and flows. As for external transport services
(i.e., the services on external hosts), instead, a vast majority of
packets and flows (i.e., more than 99%) are narrowly focused
on TCP/443 and TCP/80. We saw earlier this set of dominant
services on the internal side of the website server.

Other application proxies in our dataset displayed similar
behavioral patterns, except their usage of transport services —
e.g., DNS proxies primarily use UDP for their transport-layer
protocols, with UDP/53 dominating their external service.

NAT gateways: Unlike website servers and proxies de-
scribed so far, NAT gateways use a much more random set as
well as a broader range of transport services, both internally
and externally, across TCP and/or UDP protocols. Unsurpris-
ingly, they behave very much like clients that initialize flows
towards external hosts.

For example, a WiFi access point (NAT gateway) on our
campus network exchanged almost the same number of pack-

ets in each direction (i.e., 2.2M inbound and 2.3M outbound)
as captured by our 1-hour traffic trace. In terms of flows, we
observed about 50K outbound flows and 30K inbound flows.
This large count of incoming flows is unexpected. Further
investigation revealed that 28K (91%) of the inbound flows
are unsolicited and not responded. The responded incoming
flows (remaining 2K) found during the first five minutes of
our trace — probably they were initiated (as outbound) just
before the commencement of our traffic capture. Note that we
will discuss in §IV that why our final classifiers will be trained
by attributes of outbound traffic of individual hosts.

Analyzing the internal services of this network asset does
not manifest any pattern (a wide range of seemingly ran-
dom TCP/UDP port numbers). For external transport-layer
services, instead, more than 99% of inbound/outbound pack-
ets and flows are contributed by top-5 services including
HTTPS (TCP/443), QUIC (UDP/443), HTTP (TCP/80), DNS
(UDP/53), and IMAPS (TCP/993), while strongly dominated
(more than 90%) by HTTPS and HTTP.

Other NAT gateways are found to exhibit similar behavior
with slight variation in their use of transport services. Note that
end-hosts also share this behavior, but with lighter activity in
traffic volumes and range of transport services.

4) Enterprise Hosts with Non-Standard Behavior: By fur-
ther analysis of our PCAP dataset, we identified some other
types of network assets that either fundamentally differ from
typical hosts (Table I) or display significantly new patterns in
addition to the expected behavior of typical hosts.

Non-typical host types: Some enterprise hosts utilize
transport-layer services that are less popular in a typical
enterprise IT infrastructure. For example, one host has two
internal TCP services (TCP/636 for LDAP and TCP/389
for LDAPS) that together contribute to more than 97% of
outbound/inbound packets and flows. Also, we found another
server with a distinct internal service TCP/11371 for HKP
(used by Key management servers). We verified that this host
is operated by a non-profit organization within our university
campus by inspecting its DNS name.

Non-standard variants of typical host types: Among the
hosts labeled (by their DNS name) as one of the ten typical
types, some display distinct behaviors (by the use of additional
services) compared to their respective cohort. A website server
configured by a research group in an engineering department,
has 5 distinct internal services, namely TCP/443 and TCP/80
(expected standard services), as well as TCP/3306, TCP/2222,
and TCP/23 that respectively correspond to MySQL, SFTP,
and Telnet (non-standard services) — respectively, contributing
to 28.1%, 24.6% 11.0%, 4.4%, and 3.6% of outbound packets.
Indeed, running a server with multiple roles is not a best
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practice [41], since various services demand specific policies
(for their particular vulnerabilities and risks) to be enforced at
the network. Another example is a name server managed by an
engineering department (not the central IT) in our university.
We found this host to function as both authoritative name
server and DNS proxy — UDP/53 is the most dominant in
both internal and external services. In addition to a combined
role, it is not a recommended security practice for an enterprise
host to resolve DNS queries from the public Internet [2].

C. Coarse-grained Behavioral Profile of Enterprise Hosts at
Transport-Layer

From what we have observed in our traffic traces, a growing
set of profiles (classes) will exist for enterprise hosts, con-
sidering the specific transport-layer services (“fine-grained”)
they offer and/or consume — the role of many emerging
hosts may not be known to enterprise network operators. This
makes it practically challenging to capture and maintain those
individual classes a priori for a real-time asset classification
and monitoring task. However, it is possible to model host
behaviors by aggregating their fine-grained transport services
and considering their “coarse-grained” characteristics at the
transport-layer. In what follows, we discuss how enterprise
hosts can be categorized under six generic coarse-grained
types, including TCP-dominant server, UDP-dominant server,
TCP-dominant proxy, UDP-dominant proxy, NAT gateway,
and end-host.

1) Six coarse-grained host types by transport services:
Enterprise hosts that offer network services to users on the
public Internet can be either a TCP-dominant or UDP-
dominant server, depending on the distribution of transport-
layer services (i.e., TCP or UDP) in their network traffic. They
expose a small set of internal transport-layer services (either
TCP or UDP) contacted by a wide range of external transport
services initiated by Internet clients. For instance, the website
servers mentioned above primarily operate on HTTP (TCP/80)
and/or HTTPS (TCP/443) and thus are TCP-dominant servers.
An organizational VPN server can operate on both TCP/443
and UDP/443. Still, a vast majority of packets and flows
belong to TCP protocol, and thereby a TCP-dominant server.

Proxies that access certain services like Web (TCP/443) or
DNS (UDP/53) on the Internet can be categorized as either
TCP-dominant proxy or UDP-dominant proxy. They tend to
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Fig. 5: Fine-grained classes (left) map to coarse-grained
classes (right) for hosts with a ground-truth label from their
DNS name.

use a highly diverse and random set of internal transport-layer
services, either TCP or UDP. Also, proxies (depending upon
their role) consume a narrow set of external transport services.
For example, DNS proxies (as UDP-dominant proxies) use a
wide range of internal UDP service numbers to send DNS
query packets to external servers operating on the network
service UDP/53.

Lastly, NAT gateways and end-hosts are relatively distinct
by their use of a wide range of internal services, consuming
a mix of external services over both TCP and UDP protocols.

2) Grouping Enterprise Hosts by Coarse-grained Behav-
ior of Transport-layer: We now analyze the coarse-grained
transport-layer behavior of all active enterprise hosts that
appeared in our 1-hour cleaned dataset. We compute the
number of packets, flows, internal transport services, and
external transport services of both directions (TCP and UDP
separately) for a given enterprise host. In what follows, we
elaborate on the coarse-grained types (discussed above) by
highlighting some of network behaviors for the hosts with
ground-truth label.

Let us concentrate on the outgoing traffic of individual
hosts and analyze their distribution of packets and services®.
Fig. 4(a) is the scatter plot of UDP versus TCP packets per
host. Fig. 4(b) displays UDP and TCP ports distributed across
individual hosts. Each green star highlights a ground-truth host
identified by their DNS names, and blue dots represent other
hosts. Fig. 5 visualizes how fine-grained classes of hosts (those
with a ground-truth label from their DNS name) map to coarse-
grained classes. Note that the width of each link (connecting
left boxes to right boxes) indicates their relative popularity
instead of absolute quantity.

We observe that hosts (with ground-truth label) from various
coarse-grained types display distinct behavior at least by the
two distributions illustrated in Fig. 4. TCP-dominant servers
appear on the narrow region (P1) in Fig. 4(a) and narrow (S1)
in Fig. 4(b), indicating their heavy and concentrated activities
via specific TCP services, that is, sending out many TCP
packets through a limited set of TCP services. Similarly, UDP-
dominant servers are expected to appear on regions (P2) in
Fig. 4(a) and in Fig. 4(b). TCP-dominant proxies are
located on (P1) and (S3) regions (large number of TCP packets,
and heavily distributed in TCP services), while UDP-dominant

5We omit the insights obtained from inbound packets and flows for brevity.



proxies sit on the regions of (P2) and (S4) in the two scatter
plots. NAT gateways, given they represent a large number of
end-hosts, appear in the upper right corner of both figures (i.e.,
(P3) and (S5)). Lastly, end-hosts mainly fall in two broader
regions ((P4) and (S6)) for their diverse and less-concentrated
use of TCP and UDP transport-layer services.

IV. CLASSIFYING ENTERPRISE HOSTS

In this section, we develop a dual-grained classification
scheme that classifies enterprise hosts into ten popular fine-
grained types (discussed in §III-B) and six aggregated coarse-
grained types (discussed in §III-C) with highlights of their
dominate services at transport-layer. We discuss host-specific
traffic attributes used as inputs of our models, and quantify
their importance, independence, and computational cost. Next,
we train, tune, and validate two multi-class ML models (as
our baseline models) for both fine-grained and coarse-grained
classifications. We enhance the practicality of our method
by judiciously selecting subsets of attributes and adjusting
retention duration to enable it for real-time operation at scale.
Their classification performance is compared with that of our
baseline models. Lastly, we quantify the efficacy of our infer-
ence scheme by applying it to a fresh set of traffic instances
not seen during the training phase of our ML classifiers.

A. Dual-Grained Classification Scheme

Ideally speaking, every enterprise host is expected to be
labeled by their fine-grained type (e.g., website server, au-
thoritative name server, or web proxy). However, it becomes
a challenging task in practice when many operational hosts
may not display a narrowly identified behavior (using less-
common network services or having mixed roles). Therefore,
those hosts can at least be classified as one of the six coarse-
grained types (e.g., TCP-dominate server or TCP-dominate
proxy) by aggregating transport-layer services.

Therefore, our classification scheme infers the type of
enterprise hosts at two levels of granularity, namely fine-
grained and coarse-grained. Fig. 6 illustrates the structure of
our scheme where we take two groups of statistics computed
from the rooted graph of each host (§I1I-B3) as inputs. The first
group pertains to ‘“numerical traffic attributes” that describe
the activity behavior of the host without inclusion of specific
transport-layer service name (e.g., “TCP/443”), while the
second group highlights “top transport-layer services” (internal
and external) of the host. Our classification scheme contains
three functional modules. The fine-grained model is a N-class
classifier that receives both of the input groups, and predicts a
specific class (e.g., website server) with a confidence value for
the input host. For the use-case of our campus network, we
considered ten popular host types (N=10). We note that various
enterprises may want to customize the number of fine-grained
classes (extending our ten classes or choosing a subset of these
ten classes) depending on their preference and the composition
of their network. The other two modules are designed for
coarse-grained inference. A six-class classifier model gives
an intermediate prediction (e.g., TCP-dominate server) with
a confidence level by processing numerical traffic attributes

............. Fine-grained
ML-based
host classifier

(FineG-class, confidence)

Numerical traffic
attributes of a host

Coarse-grained
ML-based
host classifier

(CoarseG-class, confidence)

|

Rule-based Service
Annotator

CoarseG-class with
specialized services

Fig. 6: Our dual-grained classification scheme.

of a host. A rule-based annotator will take the intermediate
prediction as well as top transport-layer services of the host
to generate the final coarse-grained host type (e.g., “a TCP-
dominate server by TCP/443 and TCP/80”). The rule-based an-
notator uses our insights obtained in §III-C to annotate servers
by their top internal services, proxies by their top external
services. NAT gateways and end-hosts are not annotated. It is
important to note that the coarse-grained inference model is
generic, and hence applicable to any enterprise setting. When
the prediction is annotated, it enables the network operator
to discover emerging asset classes, potentially extending the
fine-grained model by new classes (if desirable).

Each of the two predictions (fine-grained and coarse-
grained) will contain a class label and confidence level, helping
network operators better manage their assets by choosing cer-
tain inference results. A coarse-grained label is accompanied
by top transport-layer services per host, providing additional
information for further investigation post automatic inference.

Generalizability and Utility of our Classification
Scheme: The data structure and host attributes (§IV-B), ML
training methods (§IV-C), and system prototype (§V-A) are
generic and applicable to any enterprise network. To apply
the methods discussed in this paper to an enterprise, network
operators will need to train the ML models on their own
labeled traffic traces to capture behavioral nuances contextu-
alized to their network. Also, they may want to customize
(expand or shrink) the fine-grained model subject to their
specific requirements.

B. Attributes of Host Network Behavior

We now discuss and evaluate our host-specific attributes
required for the inputs of our dual-grained host behavior
inference scheme.

1) Attributes: Having understood various host profiles in
III, we identify a set of attributes that are computed from
the rooted graph of an enterprise host (shown in Fig. 3) to
capture their comprehensive network behavior. Given nodes
(enterprise host, internal transport-layer services, and exter-
nal transport-layer services) in Fig. 3, we extract a total
of 256 attributes, including 176 numerical traffic attributes
and 80 categorical attributes indicating top transport-layer
services. To better describe them, we choose the name of
each attribute according to a pattern “metricType-direction-
resolution”, where “metricType” capture statistical measures of
traffic volume and utilization of transport services, “direction”
highlights inbound| vs. outboundt, and “resolution” is packet-
level or flow-level. In what follows, we discuss three groups of
numerical attributes, namely aggregate host activity, utilization



of internal transport-layer services, and utilization of external
transport-layer services), along with categorical attributes (i.e.,
top transport-layer services).

Aggregate Host Activity: The leftmost node in Fig. 3
is the enterprise host with edges of inbound and outbound
packets/flows representing its aggregate network activity. We
use two metrics AvgSize and VarSize to highlight the average
size and variance of the traffic units (packet-level or flow-level)
for a given host.

Our analysis in §III revealed that various enterprise hosts
could exhibit different traffic distribution in each direction
(i.e., inbound] or outboundtf) across resolutions (i.e., packet
or flow). Therefore, we compute the above two metrics for
both directions and both resolutions, resulting in 8 attributes
for this group. An example of these attributes is AvgSize-|-Pkt,
indicating the average size of inbound packets.

Utilization of Internal Transport Services: Moving to
attributes of the second leftmost node in Fig. 3, we find various
services via protocol type TCP or UDP, distributed across
inbound and outbound directions. For this group of features,
we identify 21 statistical metrics.

We start by two aggregate metrics, namely DominTypelnSrv
(i.e., the dominant protocol type of enterprise services by
packet/flow count), and FracMinorTypeInSrv (i.e., the fraction
of packet/flow count associated with internal services of the
protocol type at minority).

To capture the distribution of host traffic across internal
services, we consider two ways, namely (i) packet/flow count,
and (ii) unique external service count, for ranking their in-
dividual contributions. First, by considering the total count
of packets/flows, we identify nine statistical metrics. Given
a list of services ranked by their packet/flow count from
largest to smallest, we compute: (a) traffic fraction of the top
service (highest activity), the first quartile service, the second
quartile service and the third quartile service, denoted by
FracTopInSrv, FracQlInSrv, FracQ2InSrv, and FracQ3InSrv,
respectively; (b) the variance of traffic fraction across in-
ternal services denoted by VarInSrv; (c) fraction of internal
services above average, above average plus one-sigma, above
average plus two-sigma, and above average plus three-sigma,
denoted by FracAbvAvgInSrv, FracAbvAvglSigInSrv, Fra-
cAbvAvg2SigInSrv, and FracAbvAvg3SigInSrv, respectively.
Second, by considering the count of corresponding unique
external services, we identify ten statistical metrics. Nine of
the metrics are computed in the same way as described above.
Additionally, we use the ratio of internal service count and
external service count, denoted by RatiolntExtSrv.

For this group, we identify a total of 21 metrics across
two directions and two resolutions, resulting in 84 numerical
attributes.

Utilization of External Transport Services: Similar to
the characterization of internal services (discussed above), we
capture the distribution of external services by 21 metrics (each
with two directions and two resolutions), resulting in a total
of 84 attributes. For brevity, we omit details of attributes.

Top Transport-layer Services: As discussed in §I1I-B, var-
ious host types may focus on certain transport-layer services,
appeared as dominant internal and/or external services. We
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Fig. 7: The merit of attributes across different perspectives.

use the top five internal and external services ranked by certain
properties of edges in the graph depicted in Fig. 3. Top-ranked
internal services are determined by: (i) the volume of traffic
(packet, flow) in each direction (outbound, inbound) on the
left edges connecting them to the enterprise host, and (ii)
the count of non-zero (inbound/outbound/ packet/flow) middle
edges connecting them to the external services. Similarly, top-
ranked external services are determined by: (i) the volume of
traffic on the right edges connecting them to external hosts,
and (ii) the count of non-zero middle edges connecting them to
the internal services. For example, the attribute TopInSrvVol-
1-Pkt indicates the top internal transport service ranked by the
volume of outbound packets, while TopInSrvNZExSrv-1-Pkt is
ranked by the count of external services with non-zero edges
of outbound packets. As a result, 80 attributes are identified.
We note that this group of attributes is categorical and can
not be directly fed to numerical ML models. We, therefore,
use a method called integer encoding that maps categorical
attributes to numerical values, overcoming this challenge. This
lightweight method is suitable for a wide range of categorical
values [42] compared to its alternatives like one-hot encoding.
Also, it can be handled well by tree-based classifiers.

2) Dataset Preparation: We compute attributes of hosts
with the ground-truth label (fine-grained and coarse-grained
types) identified by DNS names in §III-B2. For each of those
hosts, a run-time rooted graph is tracked with a retention
duration of one hour (i.e., edges that are inactive for more than
one hour will get removed), and host attributes are calculated
every minute. As a result, a dataset consisting of 928,946
records for 2,365 ground-truth hosts (identified by DNS names
in §I1I-B2) is developed from 24 hours (between 11am on 31st
May 2019 and 11am on 1st June 2019) worth of traffic traces.

3) Merit of Attributes: We now evaluate the merit of
individual attributes (a total of 256 attributes: 8 for aggregate
host activity, 84 for utilization of internal transport service,
84 for utilization of external transport service, and 80 for
top transport-layer services) in predicting the type of their
corresponding host. We also quantify the dependency between
each pair of attributes and the cost for computing each attribute
in real-time. The insights gained from this section will guide
us (later in §IV-C3) to balance the cost against the accuracy
of our ML classifiers.

Importance: To quantitatively justify the efficacy of our
identified attributes, we use “information gain” to measure
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their importance. InfoGain of an attribute indicates how much
information the attribute provides with respect to the classi-
fication goal. To be more specific, InfoGain [7] of attribute
is derived as the difference between the entropy of original
(unsorted) host type and the entropy of host type sorted by
the attribute.

Normalized importance of each attribute is calculated and
labeled by their direction (i.e., inbound or outbound), resolu-
tion (i.e., packets or flows), and associated node (i.e., internal
or external transport-layer services). Fig. 7 summarizes the
importance of attributes across these three perspectives as box
plots where each box highlights a range from the first quartile
to the third quartile of merit values within their respective
group. It can be seen that all attributes contain some infor-
mation for predicting the type of hosts. Only a few attributes
display a low importance (InfoGain values smaller than 0.2) —
these attributes are primarily pertinent to the protocol type of
transport layer (e.g., DominTypelnSrv-|-Pkt). As indicated by
the leftmost subplot in Fig. 7, outbound attributes are slightly
more predictive than their inbound counterparts — possibly
because inbound traffic may contain noises such as scans
or unsolicited traffic, providing information not indicative of
the role of internal hosts. Moving to the middle subplot,
packet-level attributes (given their higher resolution) relatively
outweigh flow-level ones. Lastly, the rightmost subplot shows
that attributes pertinent to internal transport services yield a
higher power in predicting the type of enterprise hosts than
external services.

Independence: Certain attributes may positively or nega-
tively correlate with others. To quantify the correlation be-
tween a pair of attributes, we use the projection coefficient p
between the instances of two attribute arrays.

Fig. 8 shows the CCDF plot of the projection coefficient
across all (*3%) = 32640 attribute pairs (shown by blue dots),
128 corresponding pairs in two directions like FracTopInSrv-
4-Pkt versus FracTopInSrv-1-Pkt (shown by black dots), and
128 corresponding pairs in two resolutions like FracTopInSrv-
J-Flow versus FracTopInSrv-|-Pkt (shown by red dots). We
observe that packet-based attributes are largely correlated with
their corresponding flow-based attributes — 70% of pairs on
the red curve display a correlation value greater than 0.6. On
the other hand, outbound attributes are loosely correlated with
their inbound counterparts. Almost 80% of pairs on the black
curve display a correlation value smaller than 0.5 — probably
because inbound traffic is relatively polluted by unsolicited
traffic.
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Computational Cost: To compute the attributes of an enter-
prise host in real-time, we need to continuously maintain and
update their data structure with run-time statistics. Therefore,
we use the complexity of the data structure required to obtain
an attribute as a proxy of its cost.

As illustrated by Fig. 3, a fine-grained graph contains
four key layers including enterprise hosts, internal transport-
layer services, external transport-layer services, and external
hosts. Flow-based attributes (e.g., AvgSize-1-Flow) require all
four key layers of metadata (i.e., enterprise host, internal
transport-layer service, external transport-layer service, exter-
nal hosts); hence, they are computationally heavier. Attributes
like those that pertain to both internal and external transport
services (e.g., TopInSrvNZExSrv-1-Pkt) need three key lay-
ers of metadata (i.e., enterprise host, internal transport-layer
service, external transport-layer service). Lastly, packet-based
attributes may only need one or two layers of metadata (e.g.,
enterprise host for AvgSize-1-Pkt; enterprise host and internal
transport-layer service for FracTopInSrv-|-Pkt); hence, they
are computationally lighter.

We, therefore, associate qualitative costs of the low,
medium, high, and ultra-high to attributes that require one,
two, three, and four key layers of metadata, respectively. As
a result, of the 256 attributes, 4 are low cost, 68 are medium
cost, 56 are high cost, and 128 are ultra-high cost.

Maintaining the comprehensive four-layer graph structure
(in Fig. 3) and compute all host attributes can be impractical
for the high complexity of a large enterprise network. There-
fore, one may focus on a subset of attributes computed from
lightweight sub-graphs that give more predictive power, are
independent, and incur a reasonable cost. For example, later in
§IV-C3, we show 36 attributes of outbound packets that carry
significant information and can be computed at low/medium
cost from two optimized two-layer sub-graphs.

C. Training, Tuning, and Cross-Validating Classifiers

We train and evaluate our ML classifiers for both fine-
grained and coarse-grained host types using two famous algo-
rithms, namely multilayer perceptron (i.e., MLP, a neural net-
work algorithm) and Random Forest (a collection of decision
trees). Our models are trained and cross-validated using our
ground-truth dataset (discussed in §IV-B2). Parameters of each
model are tuned to achieve their best performance. We also
train models with subsets of attributes considering computing
costs and compare their accuracy with that of best performing
models.

1) Performance of Models: We now describe the training
and validation of our classification models for predicting fine-
grained and coarse-grained host types. Our classifiers are
generated using two popular algorithms: random forest (RF)
and multilayer perceptron (MLP).

Random forest (RF) algorithms are tuned by varying the
number of trees and the number of attributes for each tree.
MLP classifiers are tuned by varying the number of layers and
the number of nodes (i.e., neurons) in each layer. The neural
network-based classifiers (i.e, MLP) are trained with their
batch size set to 200, a log loss function, an LBFGS optimizer,
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Fig. 9: Performance of classifiers: (a) tuning parameters of RF models for host types, (b) accuracy of the best RF model for
fine-grained host classification, and (c) accuracy of the best RF model for coarse-grained host classification.

and a constant learning rate for the scheduler. Fig. 9(a)
illustrates the tuning process of an RF model, highlighting the
model accuracy (obtained by cross-validation) under each set
of parameters. The MLP classifiers are tuned with the number
of layers ranging from 2 to 20. In each layer, the number
of nodes varies from 2 to 20. The best performance of the
fine-grained classifiers is 84.69% (MLP) and 99.62% (RF).
For the coarse-grained classifiers, the best performance for
MLP and RF are 98.15% and 99.72%. It is clear that our RF
models outperform the MLP models at both angularities. We,
therefore, use the two best RF models as a baseline for the
rest of this paper.

Let us now zoom into the accuracy of our baseline models in
predicting the type of hosts. We observe in Fig. 9(b) that more
than 96% of fine-grained instances are correctly classified
according to our cross-validation. The performance is higher
(more than 99%) in certain classes such as website servers and
authoritative name servers. We note that 1.90% of file server
instances are misclassified as website servers. Also, 2.08% of
web proxy instances are misclassified as end-hosts. Moving
to the coarse-grained classifier in Fig. 9(c), almost all classes
receive an accuracy of more than 99%, while 2.60% of TCP
proxy instances are misclassified as end-hosts.

2) Confidence Levels: Our models output a measure of
confidence (a value between 0 and 1) with each prediction. Let
us start with the fine-grained host type classification whereby
every predicted instance (correct and incorrect) is accompanied
by a confidence level of more than 0.60, while correctly
classified instances come with fairly higher confidence greater
than 0.85. A fraction (9%) of misclassified instances receive
a confidence level of more than 0.80 (relatively high). By
analyzing their attributes, we found that affected hosts in-
deed displayed a different network behavior other than their
expected type. For example, a NAT gateway is classified as
a web proxy with an 0.87 confidence. This host only had
a small number of TCP flows destined to external services
TCP/443 and TCP/80, representing the typical behavior of
a low-profile web proxy. The majority of misclassified fine-
grained instances carry a confidence level lower than 0.80.
They are likely to be associated with non-typical behavioral
patterns; hence, they require further analysis such as inference
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TABLE IV: Fine-grained models using subsets of attributes.

Configuration Best model | Hyper parameters

Full attribute set 99.62% 80 attributes, 300 trees
Outbound? only 99.51% 50 attributes, 200 trees
Inbound| only 83.27% 50 attributes, 150 trees
1 excluding ultra-high costs 99.42% 50 attributes, 200 trees
1 low & med. costs only 98.88 % 30 attributes, 200 trees
1 low costs only 35.32% 5 attributes, 50 trees

by the coarse-grained classifier, annotation of their popular
transport-layer services, or deeper pack-based investigation.
As another example, a website server is classified as end-host
with low confidence of 0.61. After looking into its attributes,
we found that it holds mixed functionalities including DNS,
remote accessing, file storage, and accessing external servers
via an extensive range of internal transport-layer services. We
made similar observations with the coarse-grained classifier.

Recall that our dual-grained classification scheme (§IV-A)
classifies a given enterprise host into ten fine-grained types
and six coarse-grained types. When the confidence of the
fine-grained model is not high enough, network operators
refer to the prediction of the coarse-grained model. However,
the coarse-grained classifiers may still give a low-confidence
prediction, requiring further investigations. In our prototype
deployment (will be described in §V), enterprise hosts that
receive a low confidence level from the coarse-grained model
will be isolated for deeper packet-level investigation.

3) ML Classifiers with Partial Information: We now an-
alyze the performance of our models trained on subsets of
the 256 attributes considering computing costs and retention
period, making them more suitable and scalable for real-time
operation in large enterprise networks.

Optimizing Attribute Selection: We first train and tune RF
models for both classification tasks using various combinations
of attributes considering their qualitative costs. Table IV
summarizes the performance of best performing fine-grained
models at various configurations — we have omitted results of
the coarse-grained models as similar observations were made
for both types of models.

The baseline model with 99.62% accuracy (top row in
Table IV) is trained on the full set of attributes (§IV-C).



TABLE V: Size of data structure and accuracy of models as
a function of retention period.

Retention period | Avg. # entries | Fine-grained | Coarse-grained
15 min 15.9M 98.91% 98.89%
5 min 5.4M 98.89% 98.82%
1 min 959K 98.38% 98.53%
30 sec 433K 86.84% 87.19%
15 sec 254K 72.58% 60.35%

Interestingly, only outbound attributes (half of the attributes)
yield a model with a very similar accuracy of 99.51% (second
row). However, inbound half of the attributes cannot achieve
better than 83.27% accuracy (third row). This is probably
because outbound traffic is less polluted than inbound. Fo-
cusing on the outbound traffic, we can still achieve fairly
high accuracy of 99.42% if we exclude ultra-high attributes
(fourth row). The overall accuracy is slightly compromised to
98.88% by considering only low and medium-cost attributes
of outbound traffic (fifth row). However, as highlighted by the
sixth row, we cannot further optimize the cost when only low-
cost attributes are used to train the model since the obtained
accuracy is far unacceptable. Therefore, we choose to continue
with the best models trained on low-cost and medium-cost
attributes of outbound traffic (i.e., 36 attributes in total), given
a combination of prediction and cost metrics.

Practical Graph Structure: Given the selected 36 at-
tributes for our cost-effective classification, we now refine
our rooted graph structure to make it practical for operations
in a large enterprise. As discussed in §IV-B3, low-cost and
medium-cost attributes require a subset of nodes in the original
four-layer graph. Therefore, instead of maintaining a dense
and expensive graph, shown in Fig. 3, we deduce two sub-
graphs, shown in Fig. 10, each with two-layer nodes (i.e., en-
terprise host—internal services and enterprise host—external
services). It can be seen that the complexity of our structure
is significantly reduced from N x M x @) to N + M, ensuring
our inference scheme scales cost-effectively while yielding an
acceptable classification accuracy.

Tuning Retention Period: As mentioned earlier in §IV-B2,
our attributes are computed by setting the retention period
to 1 hour, which is relatively expensive to maintain states,
particularly at scale. Therefore, we investigate the impact of
shorter retention period on the accuracy of our models. Table V
shows various settings and their corresponding impact on both
fine-grained and coarse-grained models.

In addition to model accuracy, we compute the average
number of entries (i.e., key-value pairs) in the data structure
for maintaining graphs in our dataset. It can be seen that both
the model accuracy and the average number of entries (size
of data structure) fall as the retention period gets shorter. The
retention period of one minute seems to be the sweet spot in
terms of accuracy (more than 98%) and size of data structure
(less than a million entries). For the rest of this paper, we set
the retention period to a minute.

4) Testing our Models on a Fresh Open Set: To evaluate the
efficacy of our classification scheme, we test its performance
against an open set derived from our 1-hour PCAP trace
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(discussed in §III) not shown to the model during the training
phase. Attributes of hosts (with our ground-truth label) for
both granularities are selected and calculated in the same way
discussed above (i.e., 1- min retention period with low-cost
and medium-cost attributes of outbound traffic only).

Performance of the Two Models: Both models give
high accuracy of 99.76% (fine-grained) and 98.57% (coarse-
grained), interestingly slightly higher than those obtained
during the cross-validation phase (in §IV-C3). Note that our
open set (testing data) was obtained from the traffic of a busy
working hour (i.e., 9-10 am) when enterprise hosts are likely to
be highly active and display clear network behavioral patterns.
In contrast, the closed set (training and cross-validation data)
corresponds to host behaviors during the entire day (covering
both working and off-work hours).

Mis-Classified Instances: For those instances that were
misclassified, the models display low confidence levels below
0.70. Manually investigating into their packet traces, we found
two reasons for misclassification: (i) mixed functionality: a
website proxy configured by a school also provides DNS
resolution, file storage, remote accessing, and Redis proxy
services, which are not recommended best practices for asset
management and network security; and (ii) compromised and
targeted by attacks: an end-host was correctly classified with
high confidence levels (i.e., > 0.9) consistently for 13 minutes,
and thereafter its predicted class with relatively low confidence
levels (between 0.4 and 0.6) fluctuates between UDP server
and UDP proxy for 47 minutes. We inspected its traffic during
the low-confidence period and found that this host, in addition
to its regular activities, was sending repeated DNS queries
(asking for 10.129.14.2xy.in-addr.arpa). at a constant rate
of 2 packets-per-second to a public recursive resolver managed
by ARIN. The host behaved like a bot-infected device in a
query flooding attack [30] (possibly distributed across many
bot devices).

Therefore, to help network administrators better identify
cyber risks associated with their “suspicious’ hosts (displaying
unexpected behaviors and receiving low confidence scores
from trained models), later in §V-A, we introduce a reactive
mechanism using programmable networks that dynamically
and selectively collects packets specific to the “focused” hosts
for deeper investigation.

V. SYSTEM PROTOTYPE AND CAMPUS FIELD TRAIL

In this section, we prototype a practical system to: (a)
classify enterprise hosts in real-time via our dual-grained
classification scheme, and (b) dynamically isolate and inspect
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full traffic of “suspicious” hosts that are with low-confident
predictions for a deeper packet-level diagnosis. Dynamic and
reactive diagnosis is enabled by software-defined networking
(SDN) techniques. We begin with the design of our prototype.
We next draw insights into results of host classification and
forensic analysis on the isolated traffic of suspicious hosts.
Finally, we explain the system performance from a one-month
trial.

A. Design and Implementation of our Prototype

We implemented our system using commodity hardware
and open-source tools/libraries, and deployed it at the edge
of our university campus network. Implementation details are
shown in Fig. 11. Our system receives inbound and outbound
live traffic of the entire campus network (provisioned by the
IT department of our university) via two 10 Gbps links. For
our deployment, each functional block runs as an independent
micro-service [20], and hence our system is more resilient to
the failure of individual modules.

An SDN switch (NoviFlow 2122 [39]) is instructed by an
SDN application we developed for the Faucet SDN controller
(inserting proactive static rules) and the Ryu SDN controller
(managing run-time reactive rules). Proactive rules mirror
outbound traffic to a generic server configured with Ubuntu
version 16.04.4, which hosts our virtual network function
(VNF) written in Golang using DPDK (data plane develop-
ment kit) framework and the NFF-Go [36] library. The VNF
parses packets, extracts required metadata, and updates our
host data structure. Attributes of each host are calculated and
periodically forwarded to the trained models (dual-grained
classification scheme developed in Python3) via a messaging
system (NATS) that acts as a data broker for information
exchange. Predictions (classified labels and confidence levels)
are published to the messaging system.

The hosts that receive a low confidence score (i.e., less
than 0.8) from the coarse-grained model (suspicious hosts)
will need further and deeper investigation to determine the
cause of deviation from their expected behavior. Such deep
inspections for a host last till it receives a high confidence
score. To achieve this, the SDN component of our system
dynamically inserts reactive rules to mirror both inbound and
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outbound traffic of those suspicious hosts — rules are initiated
by the SDN app to the Ryu controller through RESTful APIs.

To demonstrate the selective packet inspection of suspicious
hosts, we set up Zeek [53] (a popular open-source security
analyzer previously known as Bro). This software-based deep
packet analyzer does not scale to a large volume of traffic.
Our system, instead, feeds Zeek with a minor fraction of the
entire traffic, only that belongs to the hosts that are flagged
suspicious by the inference models.

B. Insights into Campus Host Types

We now draw insights into the types of campus hosts
predicted by our trained models and the consistency of their
prediction by analyzing results of our system during the trial.

1) Fine-Grained and Coarse-Grained Classes: By analyz-
ing the prediction results of our system during the field trial,
we obtained the label (of network roles and behaviors) for
a large set of hosts not managed by our organizational IT
department. Table VI and VII summarize the classification
results of fine-grained and coarse-grained types, respectively.

Types of hosts we determined their ground-truth type by
their DNS name (discussed in §III-B2) have been validated.
Note that some of those hosts (5 website servers, 4 remote
computing platforms, and 1198 end-hosts.) were not present
on the network during the field trial — data used in §III-B2 was
collected nine months prior to the field trial. In addition, a total
of 18,619 previously unknown hosts are classified to their fine-
grained types for at least half of their active life during working
hours (i.e., 9am — 5pm), as shown by the rightmost column
of Table VI, including 306 website servers, two authoritative
name servers, 147 remote computing platform, four file storage
servers, one mail server, two DNS proxies, three web proxies,
13 NAT gateways, and 18,128 end-hosts.

As expected, the fine-grained type can be determined con-
fidently for a portion (i.e., not all) of active hosts. The hosts,
which do not receive a confident prediction from the fine-
grained models, are classified by the coarse-grained model
with relatively high confidence (above 0.80). We have found
1,774 TCP-dominant servers, 63 UDP-dominant servers, a
non-typical NAT gateway, and 1,460 non-typical end-hosts.
The coarse-grained predictions are accompanied by their dom-
inant transport-layer services. For example, two TCP-dominant
servers consistently used TCP/3306 (used by MySQL servers)
as their top services, and one UDP-dominant server that is
heavily active on UDP/427, suggesting a CIM server for
managing hardware health information.

2) Behavioral Consistency of Enterprise Hosts: We note
that some hosts may display different behavioral patterns dur-
ing certain periods. Main servers (e.g., organizational servers
configured by the IT department) are consistently found to
behave as their expected class with high confidence. However,
subsidiary servers (managed by sub-departments) displayed
variable behaviors during different hours. As an illustrative
example, we show in Fig. 12(a) the time-trace of the model
confidence for a server (the student web portal of our univer-
sity), which is mostly classified as a website server with a few
instances misclassified as end-host throughout our field trial.



TABLE VI: Summary of hosts with fine-grained types from the one-month campus field trial.

Fine-grained host type # host | avg consistency | avg consistency (wrk) | avg utilization | # previously unknown hosts
Website server 362 0.93 0.98 0.33 306
Authoritative name server 17 0.96 0.99 0.65 2
VPN Server 13 0.94 0.98 0.41 0
Remote computing platform 159 0.83 0.89 0.34 147
File storage server 18 0.93 0.95 0.26 4
Mail server 19 0.98 0.92 0.34 1
DNS proxy 9 0.81 0.88 0.37 2
Web proxy 7 0.76 0.79 0.44 3
NAT gateway 272 0.61 0.89 0.61 13
End-host 18,891 0.99 0.97 0.17 18,128

TABLE VII: Summary of hosts with coarse-grained types obtained from the one-month campus field trial.

Coarse-grained host type | # host | avg consistency | avg consistency (wrk) | avg utilization | Low-conf. predictions | Low-conf. hosts
TCP-dominant Server 2,005 0.55 0.77 0.19 65,978 231
UDP-dominant Server 144 0.79 0.81 0.25 23,061 81
TCP-dominant Proxy 0 0 0 0 0 0
UDP-dominant Proxy 8 0.17 0.81 0.38 2919 8
Non-typical NAT Gw. 19 0.43 0.85 0.56 971 18
Non-typical End-host 1,946 0.88 0.92 0.24 230,029 486

It can be seen in Fig. 12(a) that the model confidence is fairly
high (close to 1) when this host is classified as a website server
(dashed blue lines). We observe that the model confidence
for predicting it as an end-host (solid red lines) is fairly low
(mostly <0.4), with a few instances crossing 0.6 — only an
instance exceeds 0.8, resulting in misclassification. We man-
ually verified that this server undertakes routine maintenance
(i.e., fetching updates from the Internet) around midnight.

Proxies and NAT gateways tend to display varying profiles
as their network activities depend highly on internal user
behaviors. Therefore, these networked assets will likely get
predicted as end-hosts during off-peak hours. For example,
Fig. 12(b) illustrates the model prediction for a NAT gateway
in our field trial. During working hours (9am — 7pm) on
weekdays and weekends between 18" Nov and 7" Dec, the
host was classified as a NAT gateway with high confidence
(the blue dashed line). In contrast, it gets labeled as end-host
with high confidence (the solid red line) during idle hours,
including night time and days of study period (before final
examinations of the academic term).

Note that each host may receive different predictions
(classes) from the trained models during its lifetime. There-
fore, the “consistency” of our inference models per each
enterprise host is an important metric to measure. We compute
a measure of consistency (per host), which is the fraction of
time the host is classified as its most frequent type (class). For
illustration purpose, within a particular class (fine-grained and
coarse-grained) we compute the overall average consistency
(third column) and the average consistency during working
hours 9am — Spm that are respectively reported in the third and
fourth columns of Tables VI and VII. The average utilization
(active fraction of lifetime) per class is shown in the fifth
column of the two tables.

End-hosts and servers display a fairly consistent behavior
compared to other types. Proxies and NAT gateways may
behave as end-hosts during the inactive time, resulting in rela-
tively low behavioral consistency. Hosts across all types (fine-
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grained and coarse-grained) display a more distinct behavior of
their type (hence receive consistent prediction) during working
hours.

Another observation is that many servers (especially those
configured by sub-departments) are fairly under-utilized (the
probability of being active is less than 30%). For example,
four of 9 DNS proxies are adequately utilized (more than 16
hours a day), while others are relatively idle (i.e., less than 2
hours of activity per day); thus can be candidates for getting
merged (for economic and security management reasons) with
other proxies on the network.

Lastly, for those hosts whose reliable prediction is only
available by the coarse-grained model, 824 of them receive
a low confidence score (less than 0.8) for a total of 322K
prediction instances (details are shown in Table VII). Once
a host receives a low-confidence prediction from the coarse-
grained model, its entire traffic (inbound and outbound) is
mirrored for a deep packet inspection — we use Zeek in our
prototype. The host remains under the deep-inspection mode
until it receives a high-confidence prediction.

C. Insights into Suspicious Hosts from Deep Packet Inspection

During the field trial, the Zeek packet inspector raised
a total of 381,499 packet-level alarms for 714 suspi-
cious hosts, including 465 end-hosts, 18 NAT gateways, 6
UDP proxies, 45 UDP servers, and 159 TCP servers. Re-
sulted alerts are from 32 types. The top alert types are
“truncated tcp payload” indicating TCP-based attacks us-
ing crafted packets, “possible split routing” indicating
single directional flows that may belong to scans and DDoS
floods, “data_before established” for potential volumetric
anomalies, and ‘“inappropriate FIN” for TCP-FIN based
anomalies.

The distribution of alerts per host would help IT depart-
ments infer the root cause of their abnormal behaviors. For
example, we found that a third of all resulted alerts correspond
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Fig. 12: Time-trace of model confidence per class for two host examples: (a) website server and (b) NAT gateway.

to only 11 suspicious hosts, suggesting extra attention in the
forensics analysis. In what follows, we discuss our manual
investigations specific to suspicious hosts whose behaviors
triggered 8% (UDP proxy) and 5% (TCP server) of alerts,
respectively. We emphasize that a more systematic forensic
analysis is beyond the scope of this paper and is left for future
studies.

Let us start with the suspicious DNS (UDP) proxy, config-
ured by an affiliated organization of our university, that consis-
tently displays typical behaviors of UDP proxies most of the
time. However, every 5 to 10 minutes (periodically), this host
is misclassified (with low confidence) as a NAT server during
peak hours and as an end-host or even TCP proxy during off-
peak hours. Analyzing the Zeek logs, we found this host gen-
erates many TCP SYN-ACK packets followed by empty ACK
packets targeting a range of TCP ports on external victims
(on Microsoft Azure cloud) for a minute and then goes idle
for 5-10 minutes. Such behaviors result in a large number of
alerts of “truncated tcp payload”, “SYN with data”, and
“TCP_seq underflow or mismatch” for malformed TCP
packets and incomplete connections. This host seems to be
infected by malware to participate in TCP ACK-based scans
[37] or flooding [43] activities.

Moving to the suspicious TCP server that purely offers
TCP/3274 was classified as TCP server for most (86%) of
its active time. For other times, we found the prediction
of this host fluctuates between end-host and TCP server
with fairly low confidence scores (about 0.3). Analyzing
the alerts generated by the Zeek tool, we see that in ad-
dition to its typical inbound traffic, the server sent many
outbound TCP SYN packets (without any response) target-
ing TCP/443 on a wide range of external victims (from a
block of /16 IP address dedicated to Amazon cloud ser-
vices) — about 5 packets per victim. These suspsicious pack-
ets led to frequent alerts such as “window recision” and
“TCP_ACK underflow or mismatch”. This pattern suggests
that the host is possibly involved in SYN reconnaissance
attacks, probing the availability on HTTPS service on external
hosts as a preliminary step before reflection attacks [44].

D. System Performance

As discussed in §V-A, our system operates multiple software
modules (e.g., Network Function and Host Data Structure),
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which run on a commodity Ubuntu server equipped with
four-core 2.10GHz CPU, 62GB RAM, two 10Gbps network
interfaces handling data-plane traffic, and two 1Gbps network
interfaces for management communications. We now report
the real-time performance our system during our field trial.
Fig. 13(a) shows the throughput of the entire outbound net-
work traffic (proactively mirrored) processed by the Network
Function engine (which only processes packet headers). The
rate of analyzed traffic varies between 0.3 Gbps to 10 Gbps,
where daily peaks occur around mid-day on weekdays. In
Fig. 13(b), CPU utilization of our server (which hosts traffic
parsing VNF, host graph data structure, classification scheme,
and SDN controller) follows a periodic pattern and is bounded
between 24% and 36%, as shown by solid blue lines. Also,
the memory usage varies from 0.2 GB to 1.3 GB, as shown
by dashed red lines — note that the host-based data structure
contributes to majority of memory usage. Fig. 13(c) illustrates
the responsiveness of the classification scheme called every
minute, which is less than 65 ms even during peak hours,
proving that our system can give real-time inference of en-
terprise hosts behavior. Lastly, reactively mirrored traffic load
(to fine-grained packet inspection engine via our SDN-based
mechanism) for “focused” enterprise IP addresses is shown
in Fig. 13(d). It was light enough (i.e., typically below 300
Mbps) to be processed by a computational extensive deep
packet inspector.

VI. DISCUSSIONS

In this section, we discuss specific limitations of our work
that could be addressed by future research: (i) we profile
asset behaviors from their Internet communications measured
at the border of an enterprise network, and thus, those
enterprise assets that only communicate locally are missed.
Future research may aim to obtain insights into how analyzing
internal communications can extend and improve the inference
from pure Internet (external) communications at additional
computing costs; (ii) operators may find it challenging to
manually train and tune the two models (fine-grained and
coarse-grained) with their own network data. Therefore, au-
tomating the process of model tuning could further enhance
the utility of our approach; and, (iii) hosts with suspicious
behaviors may be involved in unintended (or perhaps mali-
cious) activities. We employ an off-the-shelf packet inspector
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mirrored load.

for further investigations. As a future research direction, one
may choose to develop specialized models (one per specific
class) that can better perform security and/or operational health
investigations.

VII. CONCLUSION

Real-time classification of hosts and tracking their behavior
are critical for enterprise network operators to manage their
network assets effectively and securely. In this paper, we
developed a method that continuously classifies and monitors
the network behavior of enterprise hosts. We conducted a
large-scale analysis on traffic traces of an enterprise network
and characterized network behavioral patterns of various host
types at two levels of granularity. We then identified 36 (out of
256) cost-effective but significant attributes of host behavior
that are computed from two lightweight graph structures and
developed a multi-grained inference scheme consisting of a
ten-class classifier and a six-class classifier that yields a high
accuracy of 99%. Finally, we built a practical system em-
powered by software-defined networking and virtual network
functions and deploy it in a large university network. We
presented insights obtained over a month field trial, such as
the ability to identify hundreds of typical servers and their
utilization and thousands of non-typical assets, and highlight
anomalous behaviors pertinent to possible cyber-threats.
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