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Combining Device Behavioral Models and
Building Schema for Cyber-Security of

Large-Scale IoT Infrastructure
Ayyoob Hamza, Hassan Habibi Gharakheili, Trevor Pering, and Vijay Sivaraman

Abstract—Modern buildings are increasingly getting connected
by adopting a range of IoT devices and applications from video
surveillance and lighting to people counting and access control.
It has been shown that rich connectivity can make building
networks more exposed to cyber-attacks, and hence difficult to
manage. Currently, there is no systematic approach for evaluating
or enforcing cyber-security of building systems with a large
number of heterogeneous IoT devices. In this paper, we aim
to enhance cyber-security of large-scale IoT infrastructure by
formally capturing the expected behavior of the system using
static profile of devices’ intended usage, buildings information,
and network configurations (pre-deployment) along with dynamic
diagnosis (post-deployment) of network activity using machine-
learning models.

Our contributions are three-fold: (1) We develop a tool that
automatically generates a formal ontology of network communi-
cations for a connected infrastructure by taking a description of
buildings (in the form of Brick schema), devices network behavior
(in the form of Manufacturer Usage Description specifications,
MUD profile), and network configurations (address, port, VLAN)
as inputs. We contribute our tool as open-source, apply it to a
subset of our university smart campus testbed, covering 20 IoT
devices of three types deployed in seven different buildings. We
translate the formal model into network flow rules and enforce
them to the network at run-time using programmable networking
techniques; (2) We, then, measure the network activity of device-
specific flow rules and diagnose their health using a set of
trained anomaly detection models (one-class classifiers) each
corresponding to a particular type of device and specific building
location, and demonstrate how our method detects attacks with
reasonable accuracy of 92.5%; and (3) Lastly, we demonstrate
three types of location-defined network policies (deployment,
administrative, and organizational) that can be verified by this
formal model.

Index Terms—IoT System Ontology, Behavioral Modeling,
Anomaly Detection, MUD Profile, Building BRICK

I. INTRODUCTION

OPERATORS of modern buildings and infrastructure [1],
[2], [3] are increasingly adopting a range of IoT devices

to better manage utilization of physical spaces, improve the
safety of occupants, save energy, and reduce maintenance costs
[4]. From a traditionally static and proprietary environment
of standalone systems, smart buildings are moving towards
a dynamic environment driven by connected systems and
standard protocols. In these systems, automatic decisions are

A. Hamza, H. Habibi Gharakheili, and V. Sivaraman are with
the School of Electrical Engineering and Telecommunications, Univer-
sity of New South Wales, Sydney, NSW 2052, Australia (e-mails:
m.ahamedhamza@unsw.edu.au, h.habibi@unsw.edu.au, vijay@unsw.edu.au).

T. Pering is with Google (e-mail: peringknife@google.com).

often made by IoT controllers based on data collected from a
large number of devices such as security cameras, smart-lights,
smoke-alarms, or occupancy sensors sourced from a diversity
of vendors. Integrating cloud-based servers with many differ-
ent types of devices, each with their own security flaws (e.g.,
weak/no encryption, open ports, default username/passwords)
[5], [6], [7], [8], [9], [10], [11], [12], exponentially increases
the potential attack surfaces on smart environments [13], [14],
[15].

Though many research papers (including ours [7], [16])
have identified myriad security flaws in IoT devices, few have
suggested solutions beyond the patching of these flaws by the
respective manufacturers, which is doomed to failure given
the large number of vendors and their limited motivation to
support a device beyond its sale. A promising direction is to
monitor and lock-down the network activity of IoT devices to
detect and block misbehavior [17], [18], giving the network
operator a second line of defense against compromised or
misbehaving devices without relying solely on appropriate
security protections by the IoT supplier. The success of this
approach, however, relies on knowing the expected network
behavior of each IoT device, and the interactions of these
devices in a specific deployment environment such as a com-
mercial building or an enterprise. We assume that individual
traffic flows can be uniquely mapped to a corresponding device
(by way of device’s unique IP and/or MAC address). In
other words, analyzing network traffic whereby the identity
of devices is obfuscated by NAT [19] is beyond the scope of
this paper.

The corporate world experienced a significant uptick in
physical and cybersecurity threats due to the pandemic sending
employees home to work [20]. With office buildings vacated,
the properties were ripe for exploitation by malicious ac-
tors. Today, a large-scale digital infrastructure is typically
managed by two entities Estate Management (assets) and
IT department (network). Such disjoint management of in-
formation makes it challenging to verify the operation of
the entire system (building, campus) and secure it against
cyber threats. However, given the changing nature of security
risks, organizations need to start combining the previously
disjointed approaches to combat threats more systematically
and automatically in a pandemic and post-pandemic world. In
this paper, we systematically combine information from three
sources namely intended behavior of individual IoT devices,
physical assets and building data, and network configurations.
We first draw upon emerging frameworks such as the IETF
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MUD (Manufacturer Usage Description) standard [21] that
provides an ACL1-like language for describing the expected
network communications (e.g., protocols over which and/or
controllers with which they talk) of an IoT device, and Brick
[22] that provides a metadata schema for the deployment
environment (such as a building) including locations of sensors
and their sub-system relationships.

For our first contribution, we develop a tool that combines
behavioral profile of devices and buildings schema information
with network configurations to automatically derive a model of
all potential network communications across the IoT system.
We contribute our tool as open-source, apply it to a subset of
our university smart campus network, covering 20 IoT devices
of three types deployed in 7 different buildings. Following
generation, we automatically translate the formal model into
network flow rules, and enforce them to a programmable
switch. Our second contribution periodically measures the
activity of IoT flows (via network telemetry) and diagnoses
their health by checking against anomaly detection models,
identifying and interpreting unexpected behaviors. Our third
contribution applies three representative location-defined poli-
cies (e.g., restricting access of certain resources to specific
operational zones) to this formal model, verifying the intended
system behavior.

II. MOTIVATION AND RELATED WORK

A large IoT infrastructure for smart buildings may consist of
many subsystems such as HVAC, lighting, access controllers,
occupancy sensors, or physical security systems. These sub-
systems are often managed by a variety of stakeholders from
network architect, network engineers, facility management
engineers, and cyberlsecurity analysts to device manufactures,
system integrators, and building managers throughout the life-
cycle of a smart building [4]. These stakeholders produce
different data schema to maintain information about the phys-
ical location, network configuration, or security policies of
IoT devices. The lack of a common data model is a major
challenge in limiting the interoperability and holistic analysis
of heterogeneous IoT systems. This has led to many cyber-
attacks – for example, the Shodan search engine [23] has listed
publicly exposed building management systems that allows
attackers to penetrate those networks.

Current methods for evaluating the security posture of
such environments is at best ad-hoc, and enforcement and
monitoring of appropriate access controls from outside and
within the organization are lacking. However, securing large
IoT systems demands a formal model that enables, at design
stage, an evaluation of the attack surface exposed by the
smart environment, including assessments of firmware up-
dates, breached elements, and organization policy changes on
overall security. Also, the model needs to be enforced at run-
time, including monitoring the communication flows to detect
anomalous patterns indicative of volumetric attacks. This paper
presents the first systematic effort to both model (statically)
and enforce (dynamically) cyber-security for large-scale IoT
systems.

1Access Control List

Building Data: Haystack [24], Brick [22] and IFC (Industry
Foundation Classes) [25] provide constructs to formally define
a metadata model to specify sensors, controllers, their location
in buildings, and their inter-relationships. We use Brick in
this paper because: (a) it describes building entities (sensors,
equipment, room, floor and many more) and their relationships
by abstracting classes and tags; (b) its hierarchical constructs
allows to extend the Brick model to express new entities (e.g.,
Camera can be derived from Sensor); (c) its expressiveness and
ease of adaption allow us to build a better query processor; and
(d) it uses the Resource Description Framework (RDF) syntax
to maintain the system ontology, this enables application
developers to interact with the ontology using query-based
language (e.g., SPARQL [26]). Work in [27] discusses various
applications that can benefit from building data such as energy
optimization, fault detection, and risk analysis. To the best of
our knowledge, we are the first to use building metadata to
enhance the network security of IoT systems.

IoT Behavioral Profiles: As opposed to general-purpose
computers, IoT devices have a limited and recognizable pattern
of communications [28], [29], [30], [31]. This allows IoT de-
vice behavior to be captured succinctly and verified formally.
IETF MUD (Manufacturer Usage Description) is a standard
[21] that provides a set of machine-readable constructs to
capture the flow information of a device, MUD allows a
device manufacturer to define the behavior of their device
in the form of access control lists. A valid MUD profile
comprises several access control entries (ACE), serialized
in JSON format. Access-lists are explicit in describing the
direction of communication, i.e., from-device, and to-device.
Each ACE would match on source/destination port numbers
for TCP/UDP, and type and code for ICMP. The MUD spec-
ifications also distinguish local network traffic from Internet
communications and also provide the support of ambiguities
through controller tag which during the deployment system
integrators can configure the server location.

Dynamic Network Telemetry: Collection of network
data using software-defined and/or programmable networking
paradigms has been increasingly used for network manage-
ment and intrusion detection [32], [33], [34], [35]. Authors of
[32] develop an SDN-based monitoring system for identifying
and classifying network flows in real-time at scale. Work in
[33] proposes an adaptive network telemetry system using
SDN for an accurate attack detection. Given a topology and
traffic distribution, authors develop an algorithm to determine
a set nodes and sampling resolution for collecting network
data during volumetric and distributed attacks. Authors of
[34] employ programmable data-plane to develop a scalable
telemetry for collecting and analyzing network traffic in real-
time. In a similar work [35] P4 programmable switches were
used for a better defense mechanism against DDoS attacks.
We, in this paper, use SDN control plane to: (a) automatically
insert network rules obtained from the formal ontology, and
(b) periodically collect the activity of network rules for real-
time diagnosis by trained inferencing models.

Static Security Verification: In our earlier works [36],
[37] we showed MUD profiles can be used for verifying the
compatibility of an IoT device with an organizational network



3

!"#$%#&'()*+*

!"#$%"&'&( )"*+#$,-+.&/-,0$."

!"#$%&'(

)%*+,-.

!"#$%& '(!

)*+","%-

,-,+./(0&+0$0'-

!"#"$%&'()$*$%#"$+,

-../$%#"$+,

01,"$2(&'()$*$%#"$+,

-../$%#"$+,

"(/(2(")3

.*/%+-

01"+/%&

#,+2#/3

4("(%"+)

120'2*//*3$.(

,4#+56

708(%.9#5.,

!"#$%&'( #%%/

(,*+)%(2(,"
!"#$%"&1&( )"*+#$,-+.&/-,0$."

!"#$%"&2&( )"*+#$,-+.&/-,0$."

2

!""#$%&'()&*%+,&-#&$),&

Fig. 1. Our system architecture: formal model generation, policy verification, and rules enforcement and monitoring.

policy for acceptance. Authors of [38], [39], [40] aim to
detect/resolve conflicts among trigger-and-action-based poli-
cies set by network administrators in IoT environments. Work
in [40] extends trigger-and-action-based policies to support
MUD access-control rules and building/floor constructs. In this
paper, we use a combination of MUD profiles and building
Brick schema to verify location-defined network policies for
large-scale IoT systems.

Rutime Security Verification: MUD specifications can be
fed to an IDS (Intrusion Detection System) to detect observed
behavior that is not as specified, thereby indicating an anomaly
or threat [41], [42]. MUD enables enforcement of a baseline
security control for IoT devices by isolating exception traffic
that does not match the device intended ACEs. However,
studies [43], [44], [45], [46] have shown that the attacks are
still possible. Authors of [44], [47], [48] have used anomaly
detection techniques to secure devices by modeling the traffic
characteristics of individual devices. In this paper, we detect
anomalies by looking at the traffic characteristics of both
individual devices and a group (based on location) of devices
in a building.

Our Novelty and Key Differentiation: This paper builds
upon our previous works [36], [37]. It is the first to fuse three
disjoint data sources of digital and physical assets, including
(i) a description of a physical environment, (ii) a description
of network behaviors for connected IoT device types, and
(iii) network configurations, generating a formal and holistic
model of the entire system (physical assets, digital assets, and
underlying networks) in §III. We demonstrate how the resulted
model can serve two important purposes: (a) continuously
checking the conformity of the system behavior to its intended
model (cyber health) and automatically detecting deviations
from expected behaviors in real-time in §IV, and (b) sys-
tematically assessing cyber risks and verifying organizational
policies. Our real-time network telemetry (flow-level activity
features without inspecting packet payload) is lightweight, and
the formal model is responsive and automatically enforceable,
making it conducive for scale deployment in §V.

III. GENERATING FORMAL MODEL OF COMMUNICATIONS
FOR IOT INFRASTRUCTURE

In this section, we discuss the formal model of communi-
cations for an IoT system and how we automatically generate
this model using a tool, MudBrick which we developed and
is released as open-source [49]. We apply this tool to an IoT
infrastructure testbed [50], [51] consisting of 20 IoT devices
of three types (i.e., 6 units of people counting camera from
Steinel, 12 units of beam counter from EvolvePlus, 2 units of
license plate recognition camera from Nedap) that are spread
across 7 buildings on our university campus.

Let us begin with our system architecture shown in Fig. 1.
MudBrick, shown by the dotted green region, takes three
sources of information namely building data in the form
of Brick schema, usage behavior of individual devices in
the form of MUD profiles and their corresponding network
configurations. The linker module then combines these data
sources and generates the formal model of the IoT system
(i.e., system ontology) which is machine-readable and captures
data of assets and their relationships. We note that data
from Brick and MUD contains formal semantics while the
format of network configurations data varies across different
organizations. Therefore we have designed the linker module
to be extensible accepting various formats of configurations.

There exist two applications that consume the knowledge
representation (formal model) to enhance the security of the
entire infrastructure: (1) dynamic verification app: once the
ontology is created, MudBrick generates flow rules (in the
form of access control lists or ACLs) that will get enforced
in operational networks using programmable networking tech-
niques [41]. The run-time activity of network flow rules is
periodically collected from the network switch and fed to a set
of pre-trained anomaly detection models, each specific to the
controller of devices from a particular type and their building
location. In what follows, we will describe the structure of
data for various sources specific to our university campus use-
case used in our MudBrick tool; and (2) static verification
app: the system ontology can also be checked whether it is
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Fig. 2. An example of building data (Brick representation) for a subset of our IoT infrastructure.

Fig. 3. Sankey diagram of MUD profile for Steinel people counting camera.

compatible with a given set of policies in an organization –
such verification helps to identify links which violate intended
policies, and hence need to be pruned. This enables enterprise
network operators to request the installation team or respective
manufacturers to make necessary changes for acceptance.

Building data is a machine-readable data structure for
specifying entities and subsystems in a physical building and
their relationships. To better visualize this data structure, we
show in Fig. 2 the Brick2 representation [22], corresponding
to a subset of our IoT infrastructure. In this figure, each
node represents either a class or an entity instance, and each
edge describes the relationship between nodes. Green nodes
are classes, which are defined by the original Brick schema
[22] and yellow nodes are classes that we have extended by
inheriting from the original schema. For example, the current
version of Brick does not have a definition for cameras, but
it provides an extendable hierarchy. This allows us to create
a new device class called “Camera” which is a subclass of
existing “Sensor”. Blue nodes represent various entities in
buildings.

In Fig. 2, a people counting camera (steinel 1), man-
ufactured by Steinel [52], is an instance of class “Steinel
Counting Camera”. This device is installed in the eastern
room (room east) on the ground floor (bd floor g) of
building Bldg1 – actual names of buildings and rooms are
obfuscated for privacy reasons. It communicates with its
controller (steinel crtl 1) which is derived from Brick’s
class Equipment. The controller is located in room room 4xy
at the fourth floor of building Bldg2.

Device Behavioral profile: We collected the network
traffic trace of the campus IoT infrastructure, and then
generated the MUD profile for the three types of de-
vices using our MUDgee tool [36]. Fig. 3 visualizes the
MUD profile of the Steinel people counting camera. It is
seen that the device exposes TCP port 443 and 80 to its
controller which periodically communicates with the cam-

2Brick is an open-source effort to standardize semantic descriptions of the
physical, logical and virtual assets in buildings and the relationships between
them.

era to collect measurements. Note that the controller (i.e.,
urn:ietf:params:mud:steinelbroker) can provision ei-
ther locally or in a remote network.

Network Configs: We obtained (from our campus IT
department) a spreadsheet of network configurations for all
connected IoT devices and their corresponding controllers in
the campus IoT system. It contains MAC address, reserved
IP address of every device, physical port number they are
connected to, their VLAN configurations, and host-names.

Linker: This module is responsible for fusing three “in-
dependent” sources of data structures. In order to merge
these data sources, we need to “extend” their current schema.
One may choose to extend all three schemas or a subset of
them, making them fusible. We note that the description of a
physical environment is more comprehensive than the other
two input sources. We, therefore, extend only the BRICK
schema with two new semantics, providing “hooks” (adapters)
to incorporate MUD and Network Configs data.

We augmented the Brick schema with two semantics (one
for MUD and one for network configs) each consisting of
classes and properties. This enables us to combine the building
metadata with data of IoT MUD profiles and network config-
urations. Fig. 4 depicts the MUD and Network semantics. We
introduced two properties called FromDevice and ToDevice to
capture the direction of communication. These properties are
applied to the class Sensor and point to an ACE class. The
ACE class would have properties from the MUD data – it
contains an endpoint to a fixed IP address, domain name or
a controller tag. In the case of the controller tag, it needs
to be an object derived from the class Sensor or Equipment
in Brick. Similarly, for network configurations, we added
semantics that captures all configurations as properties of a
Sensor or Equipment. Note that the automatic correlation of
these three data sources (i.e., Brick, MUD, network configs)
could be challenging since we need a unique identifier across
data sources. Therefore, our design offers extensions, allowing
the use of various strategies for asset naming conventions that
could be specific to organizations and deployments. In the
context of this paper, with the available dataset, we use the
MAC address of IoT devices as a unique key for combining
the building data with network configurations, and the device
type is used to combine MUD profiles with the building data.

IoT Ontology: Using the extended semantics introduced
above, we generate a machine-readable knowledge repre-
sentation of the entire system. Fig. 5 visualizes a part of
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Fig. 4. Partial illustration of intermediate semantics after combining MUD
profile, Network Configs, and Brick schema.

intermediate form (not the semantics). We can see how
steinel 1 communicates with steinel ctrl 1 – proto-
cols, port numbers, VLAN, IP/MAC addresses of the Steinel
counting camera and its controller are captured in this form.
Now, we are able to make various queries over this ontology.
For example, the IP address of all cameras located in building
Bldg1 can be obtained by:

<sensor.ip> := (sensor.type = Camera ∧
sensor.isLocatedIn.isPartOf = Bldg1 ∧
sensor.isLocatedIn.isPartOf.type = Building)

In the above statement, <sensor.ip> indicates the returned
value and "." operator (e.g., .type) indicates a property of a
given node and a node, in this case, is a class in ontology. In
listing 1, we show the actual SPARQL query corresponding
to the statement above.

Listing 1. SPARQL query to retrieve IP address of all cameras in building
Bldg1.
PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX brick: <https://brickschema.org/schema/1.0.3/Brick#>
PREFIX bricknetwork: <https://iotanalytics.unsw.edu.au/schema/1.0.0/

BrickNetwork#>
PREFIX bf: <https://brickschema.org/schema/1.0.3/BrickFrame#>
PREFIX brickdevice: <https://iotanalytics.unsw.edu.au/schema/1.0.0/BrickDevice

#>
PREFIX : <https://iotanalytics.unsw.edu.au/ontology/>
SELECT ?ip WHERE {
?sensorType rdfs:subClassOf∗ brickdevice:Camera.
?device rdf:type ?sensorType.
?device bf:isLocatedIn ?location.
?location bf:isPartOf∗ ?partOf.
?partOf rdf:type brick:Building.
?device bricknetwork:reservedIP ?ip.
Filter ( ?partOf in (:Bldg1))}

Scalability of our Approach: It is important to note that the
scalability of our approach (shown in Fig. 1) stems primarily
from scalable network telemetry and scalable system ontology.
Our previous works [36], [37] highlighted the scalability of
flow-level network telemetry through extensive evaluations
performed on a prototype consisting of real IoT devices.
The scalability of system ontology is determined by its com-
pleteness in representing digital and physical information as
well as the memory/time complexity of its underlying data
structure. The completeness aspect is inherited from the Brick
schema that was extensively evaluated by prior work in [22]. In
order to quantify the time/memory complexity of our system
ontology for a very large network, we conduct experiments in
an emulator environment where parameters can be configured
to represent a network with up to 10000 connected devices,
each with up to 150 rules.

We developed the MudBrick tool using Apache Jena [53],
and ran it on a machine with Intel 8 Core CPU 2.7 GHz and 8
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Fig. 5. Partial illustration of intermediate form of our IoT infrastructure.

GB of RAM on Mac OS X. For our IoT infrastructure, the size
of input data sources was 32 KB while MudBrick generated
the formal model of size 59 KB. Also, a search query (e.g.,
Listing 1) on average is responded in less than 200 ms. We
emulate larger and more complex networks by increasing the
number of devices up to 10000, and the count of their MUD
flows up to 150 per device type. Table I summarizes the impact
of these two parameters on the size of our formal model and its
search response time. It can be seen that scaling the network
size and complexity by factors of 500 (10000/20=500) and
10 (150/14≈10), respectively, leads to only a 60 times larger
model (ratio of 3200 KB to 52 KB). This trend highlights
almost a linear growth at the beginning that tends to saturate
for larger and more complex networks. Note that the largest
model (with the size of 3200 KB) is fairly lightweight for such
a scale. In terms of the search response time, it consistently
remains sub 200 ms, which is very attractive.

Once the system ontology (formal model) is generated,
MudBrick translates the ontology into a set of flow rules (per
device) that can be enforced to the network. We note that
in the formal model it is allowed to have Internet endpoints
specified by their domain-name. But, ACEs pertinent to Inter-
net communications (with domain-name) can not be directly
translated to flow rules, and hence need further inspection to
infer DNS bindings (mapping DNS names to IP addresses for
the various servers/controllers) at run-time [41]. Obviously,
ACEs with endpoints specified by IP address are proactively
inserted into the switch – others are reactively inserted after
bindings are determined. Moreover, ACEs obtained from our
formal model can be directly translated to flow rules, but they
may require a notion of rules priority to tightly enforce the
activity of IoT devices on the network – details on how to
enforce such rules can be found in our previous work [41].
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TABLE I
IMPACT OF DEVICES COUNT AND THE COMPLEXITY OF THEIR BEHAVIOR ON THE SIZE OF FORMAL MODEL AND SEARCH RESPONSE TIME (FROM

SIMULATED DATASET).

# IoTs # MUD ACL per IoT Model size (KB) Search response time (ms)

20 14 52 ∼ 200

20 150 210 ∼ 200

100 14 175 ∼ 200

100 150 588 ∼ 200

10000 150 3200 ∼ 200

(a) Temporal patterns of network activity for three device types.

(b) Benign versus attack traffic pattern of beam counters gateway.

Fig. 6. Time-trace of aggregate traffic exchanged between IoT device types
and their respective controller: (a) benign traffic of three IoT types, and (b)
benign vs. attack traffic of beam-counters gateway.

IV. ANOMALY DETECTION

We now monitor the network activity of the IoT system
(flow rules and associated location of devices obtained from
the ontology) at run-time. In this section, we begin by looking
at various patterns of IoT traffic. We, next, describe a method
we developed for detecting attacks. Lastly, we discuss our
attack dataset and evaluation results.

A. IoT Traffic Pattern

Fig. 6(a) shows the temporal pattern of network traffic
(aggregate of all flows during 8am-1pm on a typical weekday)
for the three device types in our infrastructure. Note that
devices communicate only with their respective controller.
Nedap license plate recognition (LPR) cameras, shown by
solid blue lines, generate network traffic whenever they detect

a moving object (vehicle). It can be seen that the LPR
camera is fairly active early in the morning, during 8am-10am,
transmitting data up to 20 KB per minute to its controller. Its
activity slowly becomes infrequent after that – such a network
behavior matches normal usage of the car park on campus [51].
Steinel cameras (shown by green dashed lines in Fig. 6(a)),
instead, periodically send counts of people to their controller
– a fairly consistent traffic rate of 7.5 KB per minute. For
the third category of network behavior, we see EvolvePlus
beam counters gateway, which publishes data (count in/out)
every minute if there are movements of people; otherwise, it
communicates “Hello” messages every 10-minute (shown by
red dashed-dotted lines in Fig. 6(a)). Note that beam counter
sensors talk wirelessly to a gateway (in their proximity) which
then relays (over Ethernet) aggregate data from connected
sensors to a remote controller [50].

In Fig. 6(b) we show the change of traffic pattern during
an attack on beam counters. In one of the lecture theaters, we
launched a frequency jamming attack (emulated by manually
removing the battery from sensors), hence not transmitting
data to their local gateway. As shown by solid blue lines, early
morning (between 8.15am and 9am) on a typical weekday, this
gateway displays a periodic traffic pattern (normal Hello mes-
sages every 10-min) since there is no class scheduled during
this period and hence no movements. In Fig. 6(b), an evident
deviation from the norm is observed. Large spikes of about
2.7 KB per minute are caused due to error messages generated
by the gateway missing sensors. It is important to note that
normal traffic patterns can vary highly over time, particularly
on a per-flow basis. Therefore, a simple thresholding method
would not suffice for distinguishing normal from abnormal
patterns. Instead, it is needed to model and learn the dynamics
of traffic profiles across individual flows.

B. Anomaly Detection Model
We develop a machine learning technique to determine

if our IoT infrastructure is affected by a cyber-attack (the
“attack detection”), and if so, to determine the contributing
building or device (the “attack identification”). Our objective
is to train our machine with benign traffic profile (one-class
classifier) of each IoT controller, and detect attacks by flagging
deviation (from expected pattern) in traffic flows of a controller
(obtained from the system ontology). Fig. 7 illustrates a high-
level structure of our anomaly detection engine. For each IoT
controller, we train models at two levels of granularity, namely
building level (Stage1: MBi

) and device level (Stage2: Mdk
).

At Stage1, building models (coarse-grained) monitor the
behavior of aggregate of IoT devices in a building that



7

TABLE II
NETWORK FLOWS MONITORED FOR EACH UNIT OF STEINEL PEOPLE

COUNTING CAMERA.

source destination proto srcPort dstPort
<deviceIP> <controllerIP> 6 80 *

<deviceIP> <controllerIP> 6 443 *

<controllerIP> <deviceIP> 6 * 80

<controllerIP> <deviceIP> 6 * 443

communicate with a given controller, while at Stage2, device
models (fine-grained) capture the activity of individual devices
per controller. An anomaly is detected only when both Stage1
and Stage2 models raise alarms. For our models, we compute
features from time-series signal of flow activities. Note that
network flows are obtained by applying policies to the system
ontology and enforced to the network. For example, Table II
displays flow rules for each unit of Steinel camera. We retrieve
flow counters every minute to construct the required time-
series at run-time (Fig. 1).

Feature Extractor: It is important to note that our system
is privacy-preserving because we develop the profile from ob-
serving network traffic pertaining to the device; we emphasize
that we do not look into the data to/from the IoT device, but
instead extract the “meta-data” associated with the network
activity of the device at flow levels. Using this meta-data,
we build behavioral models of devices. We maintain a sliding
window of 60 data-points (byte count of individual flow rule).
There exist a large number of features that can be extracted
by time-series analysis [54]. For our infrastructure, we use
Wrapper method [55] to select the most important features per
each flow. The flow-level features are: (1) mean, (2) variance,
(3) sum, (4) count above mean, (5) count below mean, (6) the
longest strike above mean, (7) the longest strike below mean,
(8) zero count, (9) number of peaks, (10) number of time
crossing, (11) absolute sum of changes, (12) mean absolute
change, (13) hour-of-day, and (14) day-of-week. Note that
the total number of features for each model (MBi and Mdk

)
varies depending on the count of flows per device and count
of devices per building.

Dispatcher: This module batches a collection of features
(computed on network telemetry) and disseminates them
across their corresponding models. Note that Stage1 models
are trained by the network behavior of a group of devices
that reside in a building. The dispatcher obtains situational
information (mapping of devices to buildings) from the on-
tology. As illustrated in Fig. 7, the dispatcher feeds the flow-
level features of two devices d1 and d2 to their building’s
model MB1. Detection of an anomaly at Stag1 would activate
corresponding Stage2 models where the dispatcher simply
presents the features of individual devices to their device
models (Mdi) – no situational information is needed for Stage2
inferencing.

Anomaly Worker Models: Inspired by our previous work
[44], we choose one-class classifier workers for detecting
anomalies in Stages 1 & 2. These workers are trained by the
features of benign traffic (normal) from their respective IoT
device type, offering the ability to determine whether a traffic
observation belongs to the normal (benign) class or not. To
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Fig. 7. Structure of our anomaly detection – illustrating a sample IoT
controller that communicates with four devices located in two buildings (two
devices in each building) where each device generates two flows (f1 and f2)
for its network activity.

train the model for anomaly workers, we employed three main
techniques, including probabilistic (i.e., Gaussian mixture),
domain-based (i.e., one-class SVM), and cluster-based (i.e.,
DBSCAN, Kmeans). We found that the clustering approach
best models the benign behavior of the IoT types we tested.
Therefore, we employ a clustering-based outlier detection
algorithm comprising three steps, namely PCA, Clustering,
and Boundary Detection, as shown at the bottom of Fig. 7.

Principle Component Analysis (PCA): We discussed ear-
lier in this section that each flow rule contributes to 14 features.
This means that the profile of a device type containing four
flow rules would require a total of 56 (4×14=56) features.
This number of features (per connected IoT device) can be
computationally expensive to analyze, particularly at scale
(say, thousands of connected devices). We note that certain
features are highly correlated and hence can be transformed,
reducing the space dimension. We, therefore, employ PCA
[56] to extract the principal components of our features that
are orthogonal to each other. We use the Kaiser rule [57]
(eigenvalues >1) to deduce and select the most suitable set
of principal components that capture as much variation across
benign instances in our dataset. As per PCA requirement, we
normalize all features using the z-scores method. Table. III
summarizes the count of features identified for three Steinel
people counting cameras in a building. We see how PCA re-
duces the feature dimension significantly while a considerable
level of variations in the training dataset is covered.

Clustering: As discussed above, the network traffic of
each connected device will be analyzed by a collection of
anomaly detection models specific to the device. Therefore,
management of such complex inference machinery demands
an efficient and inexpensive clustering algorithm that can:
(a) set the parameters automatically (i.e., self-tuned), and (b)
deal with our benign dataset containing a mix of sparse and
dense regions. Among many possible clustering algorithms,
we use X-means [58] (i.e., a flavor of K-means algorithm),
which is a fairly lightweight yet efficient clustering method.
The accuracy of high dimensional data clustering depends
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TABLE III
PCA ANALYSIS FOR 3 STEINAL CAMERAS LOCATED IN A BUILDING.

Worker Building Device d1 Device d2 Device d3

# Features 168 56 56 56

# PCA 16 9 6 6

Coverage (%) 98.7 99.3 85.8 82.7

on the distance function used [59]. After conducting several
experiments, the Manhattan distance function provided the
most optimal result. Lastly, we train the clustering algorithm
by the principal components of our training dataset (obtained
from PCA). As a result, the outputs of the X-means algorithm
are the coordinates of the cluster heads, as shown at the bottom
of Fig. 7 by green dots labeled as ci.

Boundary Detection: We employ boundary detection to
identify outliers (i.e., determining whether an instance is
anomalous or not). An anomaly flag is raised when an ob-
servation falls outside benign clusters. Given cluster heads
and our training dataset, we compute the 97.5th percentile
as a boundary for each cluster. Therefore, anomalies observed
outside these boundaries are alarmed – this may lead to a
minor detection of benign traffic as an anomaly (false positive
alarm).

C. Dataset

We collected traffic traces (benign and attack) of 20 devices
installed in 7 different buildings during six weeks of operation.
To obtain traffic traces, we mirrored the entire network traffic
(incoming and outgoing) to our collector server. This allows
us to capture the traffic before any NAT is applied. We then
used the “tcpdump” tool to record PCAPs on the collector
machine. We replayed PCAPs on our SDN emulator [60] to
generate telemetry data (continuously measured) of flow-level
activity needed for model training and testing.

Table IV summarizes our dataset. For example, for each
LPR camera unit (the first row), we generated more than 50K
benign instances (22K for training and 33K for testing) and
more than 2500 attack instances. Each instance corresponds to
1-min traffic counters (i.e., byte) of all flows corresponding to
ACLs contained in the MUD profile of a device. We obtained
ethics clearance (UNSW Human Research Ethics Advisory
Panel approval number HC190171) from our university for
this trial.

To collect malicious traffic (attack) instances, we launched
three types of attacks: (i) for LPR cameras (located at
the entrance/exit of our campus multi-story car park), we
covered their lens to stop normal operation (detecting cars
entering/exiting), emulating physical jamming attacks; (ii) for
beam counters, we launched another emulated jamming attack
(Fig. 6(b)) on beam counter sensors located at the doorways
of three large lecture theaters on campus – each of these
theaters has two, three, and four doorways; and (iii) for Steinel
cameras, we launched a malware attack (emulated by doubling
the rate of pulling data from the camera) with an intent to
exhaust victim’s battery.

Fig. 8. Impact of window size on the performance of anomaly detection.

D. Feature Analysis

We now look into the importance of features in our anomaly
detector models. Table V summarizes the impact of three
different feature sets on the performance of anomaly detection:
(a) “feature-set-1” corresponds to the 14 features of individual
ACL flows, e.g., HTTP, HTTPS, we identified in §IV-B;
(b) “feature-set-2” corresponds to the same features, but
computed on aggregate of ACL flows (one incoming and on
outgoing); and (c) “feature-set-3” corresponds to features used
in [44] for detecting volumetric attacks – this set computes
sum, mean, and variance of packet size and count at multiple
time-granularities including 2-min, 3-min, 4-min, 8-min, 16-
min, and 64-min. It can be seen that even though the three
feature sets give almost the same overall accuracy (about
92%) the feature-set-2 completely misses attack instances,
highlighting the fact that coarse-grained flow telemetry would
not be able to tightly model the network behaviors, and hence
results in poor visibility. Also, we observe that the feature-set-
3 yields a lower TPR (59.5%) compared to the feature-set-1
(88.0%). We observed feature-set-1 provides the best result in
terms of attack detection and FPR. This is because features-
set-1 captures more information of the timeseries waveform
and hence is able to detect subtle changes in traffic rates,
but features-set-2 fails to capture fine-grained behaviors, hence
giving poor performance. Looking into individual attacks, we
found that feature-set-1 was able to detect all attack streams
with some delays (particularly, early attack instances, closer
to the start, went undetected), causing a reduction in TPR.
Note that, the average delay in detecting attacks on license-
late recognition (LPR) camera, beam counters (EvolvePlus),
and people counting cameras (Steinel) was 55 min, 19 min,
and 1 min, respectively.

We further analyzed the impact of the length of sliding
windows on the performance of models. Fig. 8 shows our
results. Unsurprisingly, the overall accuracy (F1-Score) and
TPR improve with larger windows, but at the cost of slightly
higher false positives (mis-detecting benign instances), spe-
cially when attacks are low-profile and long in duration,
displaying behaviors closer to benign traffic at least in short-
term. Lastly, it is important to note that a larger window would
result in a higher cost for computing and maintaining features.



9

TABLE IV
OUR DATASET: TRAINING, TESTING, AND ATTACK INSTANCES.

IoT device type # devices # training instances per unit # testing instances per unit average # attack instances per unit
LPR camera 2 22000 33575 2674

EvolvePlus beam counters GW 4 22000 21940 1036

Steinel counting camera 6 22000 21158 2752

TABLE V
IMPACT OF VARIOUS FEATURES ON THE PERFORMANCE OF ANOMALY DETECTION.

Anomaly detectors TPR (detected attack instances) FPR (mis-detected benign instances) Accuracy: (TP+TN)/(TP+FP+TN+FN)
feature-set-1 our 14 features of individual ACL flows 88.0 7.2 92.5

feature-set-2 our 14 features of aggregate ACL flows (incoming & outgoing) 0.0 0.0 92.4

feature-set-3 Features [44] of individual ACL flows 59.5 5.0 92.7

TABLE VI
PERFORMANCE RESULTS OF ANOMALY DETECTION MODELS.

Anomaly detectors
All devices Nedap LPR EvolvePlus GW Steinel camera

Accuracy TPR FPR TPR FPR TPR FPR TPR FPR

Stage1 only 84.6 97.5 16.5 92.0 13.2 98.4 16.8 100.0 6.7

Stage2 only 88.3 88.1 11.7 78.9 11.1 52.6 17.3 100.0 6.0

Stage1 & Stage2 combined 92.5 88.0 7.2 78.8 8.4 52.4 5.11 100.0 5.1

E. Evaluation Results of Attack Detection

Our primary objective here is to quantify the effectiveness
of our hierarchical inference models in detecting sophisticated
attacks on IoT devices spread across different locations. We
now evaluate the accuracy of our trained models (Stage1
and Stage2) in detecting attacks. A summary of our results
is shown in Table VI. We quantify the performance of
models in three scenarios namely “Stage1 only”, “Stage2
only”, and “Stage1&Stage2 combined”. Note that Stage2-only
inferencing is a device–specific anomaly detection scheme (our
previous work [44]) which we use as baseline in our analysis.
It can be seen that the best accuracy (92.5%) is obtained
when a combination of both Stages is used. We also note
that combining Stage1 and Stage2 reduces the false-positive-
rate (FPR) to a minimum of 7.2%. This FPR may still sound
high for a real infrastructure. We note that the majority (more
than 90%) of false-positive alarms do not persist for successive
one-minute epochs (intermittent alarms), and hence the risk of
mis-classification is low. One can reduce the FPR by raising
alarms only when attack persists over successive epochs. For
example, expecting persistence over two epochs would reduce
the FPR to 5% – this filtering can also lead to a lower TPR,
and hence incurring a delay in detecting attacks. In terms of
detection rate, we see that Stage1 only gives a better result
(97.5% TPR). However, it does not provide any information
on which device is involved in the attack.

Note that for Steinel controller (the last column in Ta-
ble VI), given its periodic traffic pattern, having two stages
of inferencing does not enhance the performance of models
– each of Stage1 or Stage2 gives the same accuracy as the
combined models (100% TPR and 5-6% FPR). Moving to
LPR and EvolvePlus controllers, we observe that Stage1 only
gives an acceptable detection rate (92.0% in LPR and 98.4%
in EvolvePlus), but the TPR for combined models is relatively
lower. For example, models for two of the beam counters
detected 75% of attacks while the other two models detected
only 27% of attack instances. This is mainly because the
model for Stage2 has a very broad view of normal behavior,

Fig. 9. Attack instances on EvolvePlus sensors gateway detected with 27%
TPR.

and hence misses some attack instances. Another reason is
due to delay in detecting attacks as the change in traffic
patterns (by our attacks) is not very significant to be detected
immediately, or expected traffic rate during certain hours (e.g.,
between 9am-11:30am in Fig. 9) is fairly low. Note that one
can further enhance the performance of attack detection by
using an ensemble method [61] fed by our Stage1 and Stage2
models.

Summary: We have demonstrated how devices’ location
(derived from the formal knowledge representation) can be
incorporated to model the normal behavior of IoT systems, and
how location-aware models augment device-specific models in
detecting distributed anomalies in network behaviors. Note that
some of the illustrative sensors (e.g., LPR cameras) we consid-
ered in this paper may generate traffic in response to activities
in their physical environment. Also, our sensors in this specific
setting communicate only with their corresponding controllers
on a hub-and-spoke basis. That said, this does not necessarily
limit the generality of our method, which is extensible to
accommodate other types of communications between sensors
themselves with/without sensors-controller interactions. In that
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case, the MUD profile of those IoT device types is expected
to include sensor-to-sensor communications. Lastly, one may
consider incorporating temporal dependencies across sensors
(e.g., motion sensors triggering temperature control sensors),
which is beyond the scope of this paper.

V. VERIFYING COMPATIBILITY OF FORMAL MODEL WITH
LOCATION-DEFINED NETWORK POLICIES

In traditional IT infrastructure, policies are typically en-
forced at run-time and often implemented in the form of
“Match” and “Action” pairs – if packet headers match the
criteria specified by the policy, then the policy action is applied
to the packet. Such implementations are reactive and often do
not consider the situational context of policies. In this section,
we develop a method to (proactively) verify the compatibility
of our formal model with location-defined network policies
(pre-deployment), using semantics we defined in §III.

For a policy verification system, it is essential to have three
main components: (1) semantics of policy intent, (2) methods
to detect/resolve conflicting policies, and (3) verification of
policies against the system ontology. Note that conflict de-
tection/resolution is beyond the scope of this paper. In what
follows next, we consider semantics and verification of three
representative policies.

1. Deployment Policies: These policies are considered
during the installation phase. For example, enterprise IoT
devices typically support multiple communication protocols
(e.g., BACnet, Modbus, and HTTP/HTTPS). They may only
use a specific protocol when integrated with the building
automation system (with variable protocol capabilities). How-
ever, selectively disabling unsupported communication proto-
cols is not accommodated by the MUD standard. We, instead,
prune the system ontology to meeting desired deployment
policies before it is enforced to the network.

We consider the following scenario to emulate a repre-
sentative deployment policy in our infrastructure: “Steinel
people counting camera supports both HTTP and HTTPS
protocols. However, the controller in building Bldg2 only
supports HTTPS”. This policy is stated by:

acl = (sensor.isFromDevice ∪ sensor.isToDevice)

P1: <sensors, acls> :=
[
sensor.type = "Steinel Counting Camera"

∧ acl.controller.isLocatedIn.isPartOf = Bldg2

∧ acl.controller.isLocatedIn.isPartOf.type = Building

∧ acl.protocol = 6

∧ (acl.src port = 80 ∨ acl.dst port = 80)
]

We implemented the above policy SPARQL, checked
against the ontology of our IoT infrastructure, and extracted
devices and ACEs that violate this policy (top row in Ta-
ble VII). Unsurprisingly, we found that every Steinel camera
(6 cameras) in building Bldg2 has two violating ACEs in
their MUD profile. Note that 6 device nodes are pointed to
the same couple of ACE nodes in the ontology. For such a
policy the default action would be to prune violating rules.
Note that pruning ontology is a nontrivial task since it may

TABLE VII
REPRESENTATIVE POLICIES AND VIOLATIONS.

Policy ID # violating devices # violating MUD ACEs
P1 6 2

P2 4 2

P3 8 4

affect other devices that are connected to the same ACE node.
In the case of overlapping device nodes, the violating device
nodes are separated-out along with a new pruned ACE node
in the ontology.

2. Administrative Policies: These policies are set for
administrative purposes. An example of such a policy is that
devices in a “highly-restricted zone” of a building are not
allowed to communicate outside the building. A synthesized
policy intent of such scenario is stated by:

P2: IoT devices in the MAT Theater (located in MAT
building) are not allowed to have any network communication
outside the building.

acl = sensor.isFromDevice ∪ sensor.isToDevice
P2: <sensors, acls> := sensor.isLocatedIn = "MAT Theatre"
∧ sensor.isLocatedIn.type = Room
∧ .isLocatedIn.isPartOf = "MAT"
∧ sensor.isLocatedIn.isPartOf.type = Building
∧ acl.controller.isLocatedIn.isPartOf != "MAT"

As shown in the second row in Table VII, four sensors
(EvolvePlus beam counters) have violated this policy since
they communicate with a controller located in another building
(publishing their measurements to TCP 55555 on the con-
troller). To address this issue, a possible solution would be
to install a separate controller for those beam counters in
the MAT building itself. This shows that the ontology not
only is used to identify the violation but also provides the
context of violating devices. It can potentially help during the
design phase (pre-deployment) to cater to such administrative
policies.

3. Organizational Policies: This category of policies is
typically applied to the entire network. An example of this
policy is given:

P3: IoT devices are not allowed to communicate over
“unsecured” protocols (HTTP, FTP) across buildings, but may
use these protocols within a building.

acl = sensor.isFromDevice ∪ sensor.isToDevice

P3: <sensors, acls> :=
[
(sensor.isLocatedIn.isPartOf !=

acl.controller.isLocatedIn.isPartOf)
∧ sensor.isLocatedIn.isPartOf.type = Building
∧ acl.protocol = 6
∧ (acl.src port = 80 ∨ acl.dst port = 80 ∨

acl.src port = 21 ∨ acl.dst port = 21)
]

Applying this policy, we found 8 devices have violated P3
(last row in Table VII). Violating devices include six units
of Steinel counting camera and the two Nedap license plate
recognition (LPR) cameras since Steinel cameras use HTTP
protocol while Nedap cameras use FTP protocol. Such pre-
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deployment compatibility checks help device manufacturers
automatically identify violating behaviors of their device that
may lead to a change and firmware upgrade to pass the
acceptance testing.

Our MudBrick code, the three semantic files, dataset of
our IoT infrastructure, and queries used for policy verification
are available at [49] – source code and data will be publicly
accessible once this paper is accepted.

VI. CONCLUSION

Today, IoT-connected building systems with a large number
of heterogeneous devices are exposed to cyber-attacks, yet
lack a systematic approach for evaluating or enforcing cyber-
security measures. In this paper, we have developed a tool
that automatically generates a formal model for the intended
behavior of the entire IoT system by combining MUD profile
of devices, Brick schema of buildings, and network config-
urations – our tool is publicly released as open-source. We
showed how our model allows for static or dynamic security
evaluations by applying our tool to a real IoT infrastructure
on a university campus, and derived the system ontology.
Following generation of the ontology, we then automatically
translated it to flow rules and enforced them into the network
using programmable control plane. We developed anomaly
detection models to continuously monitor the activity of IoT
traffic flows at building-level and device-level. Our trained
models yield an acceptable accuracy of 92.5%. Lastly, we
showed how the compatibility of the IoT system behaviors
can be systematically checked against three representative
organizational policies, prior to deployment.

REFERENCES

[1] Australia Government. (2016) Smart Cities Plan. [Online]. Available:
https://www.infrastructure.gov.au/cities/smart-cities/plan/index.aspx

[2] University of Wollongong. (2018) Liverpool Smart Pedestrian. [Online].
Available: http://digitallivinglab.uow.edu.au/portfolio/liverpool-smart-
pedestrian/

[3] Sidewalk Labs . (2018) Sidewalk Labs Neighborhood of
the Future in Toronto Is Getting Closer. [Online]. Avail-
able: https://www.citylab.com/design/2018/11/sidewalk-labs-quayside-
toronto-smart-city-google-alphabet/577078/

[4] IoT Security Foundation, “Whitepaper: Can You Trust Your Smart
Building?” Tech. Rep., Jun 2019.

[5] Lucian Constantin. (2016) Backdoor accounts found in 80 Sony IP
security camera models. https://bit.ly/2pPNgDi.

[6] Pen Test Partners. (2017) Too cold to work? School closed? Sure your
BMS hasn’t been hacked? https://bit.ly/33BRLQh.

[7] F. Loi et al., “Systematically evaluating security and privacy for con-
sumer iot devices,” in Proc. ACM IoT S&P, Dallas, Texas, USA,
November 2017.

[8] M. Lyu et al., “Quantifying the Reflective DDoS Attack Capability of
Household IoT Devices,” in Proc. ACM WiSec, Boston, Massachusetts,
July 2017.

[9] Cisco Systems, “Midyear Cybersecurity Report,” Tech. Rep., 2017.
[10] T. Brewster. (2018) Google’s Doors Hacked Wide Open By Own

Employee. https://bit.ly/2JrXv7A.
[11] A. Charlton. (2018) How a thermostat in the lobby fish tank let hackers

steal a casino’s high-roller database. https://bit.ly/2J2hy9N.
[12] S. Moss. (2017) University suffers DDoS attack from IoT vending

machines. https://bit.ly/2S79dY4.
[13] H. Habibi Gharakheili, A. Hamza, and V. Sivaraman, “Cyber-Securing

IoT Infrastructure by Modeling Network Traffic,” in Security and
Privacy in the Internet of Things: Architectures, Techniques, and Ap-
plications, A. Ismail Awad and J. Abawajy, Eds. John Wiley & Sons,
2021, ch. 6, pp. 151–176.

[14] J. Anand et al., “PARVP: Passively Assessing Risk of Vulnerable
Passwords for HTTP Authentication in Networked Cameras,” in Proc.
ACM Workshop on Descriptive Approaches to IoT Security, Network,
and Application Configuration (DAI-SNAC), Virtual Event, Germany,
2021.

[15] F. Li, Y. Shi, A. Shinde, J. Ye, and W. Song, “Enhanced Cyber-Physical
Security in Internet of Things Through Energy Auditing,” IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 5224–5231, 2019.

[16] V. Sivaraman, H. Habibi Gharakheili, C. Fernandes, N. Clark, and
T. Karliychuk, “Smart IoT Devices in the Home: Security and Privacy
Implications,” IEEE Technology and Society Magazine, vol. 37, no. 2,
pp. 71–79, June 2018.

[17] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a Trillion
(Unfixable) Flaws on a Billion Devices: Rethinking Network Security
for the Internet-of-Things,” in Proc. ACM HotNets, Philadelphia, PA,
USA, Nov 2015.

[18] V. Sivaraman, H. Habibi Gharakheili, A. Vishwanath, R. Boreli, and
O. Mehani, “Network-level security and privacy control for smart-home
iot devices,” in Proc IEEE WiMob, Abu Dhabi, UAE, Oct 2015.

[19] A. Pashamokhtari et al., “Inferring Connected IoT Devices from IPFIX
Records in Residential ISP Networks,” in IEEE LCN, Edmonton, AB,
Canada, Oct 2021.

[20] S. V. Till. (Accessed on 20.12.2021) The Convergence
of the Physical and Digital Security Worlds.
[Online]. Available: https://www.securityinfowatch.com/access-
identity/article/21227403/the-convergence-of-the-physical-and-digital-
security-worlds

[21] E. Lear, D. Romascanu, and R. Droms, “Manufacturer usage description
specification,” IETF Secretariat, RFC 8520, March 2019. [Online].
Available: https://www.rfc-editor.org/rfc/rfc8520.txt

[22] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong,
A. Johansen, J. Koh, J. Ploennigs, Y. Agarwal et al., “Brick: Metadata
schema for portable smart building applications,” Applied energy, vol.
226, pp. 1273–1292, 2018.

[23] J. Matherly. (2018) Shodan. https://www.shodan.io/.
[24] Project Haystack. (Accessed on 05.7.2019) Project Haystack. project-

haystack.org.
[25] V. Bazjanac and D. Crawley, “Industry foundation classes and inter-

operable commercial software in support of design of energy-efficient
buildings,” in Proc. of Building Simulation, 1999.

[26] W3. (2007) SPARQL Query Language for RDF. [Online]. Available:
https://www.w3.org/TR/rdf-sparql-query/

[27] Memoori, “Whitepaper: Brick Schema Building Blocks for Smart Build-
ings,” https://bit.ly/3EII1FN, Tech. Rep., March 2019.

[28] A. Sivanathan et al., “Classifying IoT Devices in Smart Environments
Using Network Traffic Characteristics,” IEEE Transactions on Mobile
Computing, vol. 18, no. 8, pp. 1745–1759, Aug 2019.

[29] S. Marchal et al., “AuDI: Toward Autonomous IoT Device-Type Iden-
tification Using Periodic Communication,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 6, pp. 1402–1412, 2019.

[30] F. Li, A. Shinde, Y. Shi, J. Ye, X.-Y. Li, and W. Song, “System Statistics
Learning-Based IoT Security: Feasibility and Suitability,” IEEE Internet
of Things Journal, vol. 6, no. 4, pp. 6396–6403, 2019.

[31] R. SharmaHabibi et al., “Lumos: Identifying and Localizing Diverse
Hidden IoT Devices in an Unfamiliar Environment,” in Proc. USENIX
Security Symposium, Boston, MA, USA, Aug 2022.

[32] H. Habibi Gharakheili, M. Lyu, Y. Wang, H. Kumar, and V. Sivaraman,
“iTeleScope: Softwarized Network Middle-Box for Real-Time Video
Telemetry and Classification,” IEEE Transactions on Network and
Service Management, vol. 16, no. 3, pp. 1071–1085, 2019.

[33] D. Zhou, Z. Yan, G. Liu, and M. Atiquzzaman, “An Adaptive Network
Data Collection System in SDN,” IEEE Transactions on Cognitive
Communications and Networking, vol. 6, no. 2, pp. 562–574, 2020.

[34] A. Gupta et al., “Sonata: Query-driven streaming network telemetry,” in
Proc. ACM Special Interest Group on Data Communication, Budapest,
Hungary, Aug 2018, pp. 357–371.

[35] M. Zhang et al., “Poseidon: Mitigating Volumetric DDoS Attacks
with Programmable Switches,” in Proc. USENIX NDSS, San Diego,
California, USA, Feb. 2020, pp. 1–18.

[36] A. Hamza, D. Ranathunga, H. Habibi Gharakheili, M. Roughan, and
V. Sivaraman, “Clear as MUD: Generating, Validating and Applying
IoT Behavioral Profiles,” in Proc. ACM IoT S&P, Budapest, Hungary,
August 2018.

[37] A. Hamza et al., “Verifying and Monitoring IoTs Network Behavior
using MUD Profiles,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 1, pp. 1–18, 2020.



12

[38] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety
and security analysis,” in Proc Usenix ATC, Boston, MA USA, 2018.

[39] Z. B. Celik, G. Tan, and P. D. McDaniel, “IoTGuard: Dynamic Enforce-
ment of Security and Safety Policy in Commodity IoT,” in Proc. NDSS,
San Diego, CA USA, 2019.

[40] V. Nagendra, A. Bhattacharya, V. Yegneswaran, A. Rahmati, and S. R.
Das, “Viscr: Intuitive & conflict-free automation for securing the dy-
namic consumer iot infrastructures,” arXiv preprint arXiv:1907.13288,
2019.

[41] A. Hamza, H. Habibi Gharakheili, and V. Sivaraman, “Combining MUD
Policies with for IoT Intrusion Detection,” in Proc. ACM IoT S&P,
Budapest, Hungary, August 2018.

[42] M. Ranganathan, “Soft mud: Implementing manufacturer usage de-
scriptions on openflow sdn switches,” in International Conference on
Networks (ICN), Valencia, Spain, 2019.

[43] A. Hamza, H. Habibi Gharakheili, and V. Sivaraman, “Combining MUD
Policies with SDN for IoT Intrusion Detection,” in Proc. ACM IoT S&P,
Budapest, Hungary, Aug 2018.

[44] A. Hamza, H. Habibi Gharakheili, T. A. Benson, and V. Sivaraman, “De-
tecting Volumetric Attacks on loT Devices via SDN-Based Monitoring
of MUD Activity,” in Proc. ACM SOSR, San Jose, USA, April 2019.

[45] S. Singh, A. Atrey, M. L. Sichitiu, and Y. Viniotis, “Clearer than Mud:
Extending Manufacturer Usage Description (MUD) for Securing IoT
Systems,” in Proc. ICIoT, San Diego, USA, Jun 2019.

[46] Y. Afek, A. Bremler-Barr, and A. Noy, “Eradicating attacks on
the internal network with internal network policy,” arXiv preprint
arXiv:1910.00975, 2019.

[47] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in Proc SPW. San
Francisco, CA, USA: IEEE, 2018.

[48] M. A. Al-Garadi, A. Mohamed, A. Al-Ali, X. Du, and M. Guizani, “A
survey of machine and deep learning methods for internet of things (iot)
security,” arXiv preprint arXiv:1807.11023, 2018.

[49] A. Hamza. (2019) MUD Brick Generator. [Online]. Available:
https://github.com/ayyoob/mud-brick-gen

[50] T. Sutjarittham et al., “Experiences with IoT and AI in a Smart Campus
for Optimizing Classroom Usage,” IEEE Internet of Things Journal,
vol. 6, no. 5, pp. 7595 – 7607, October 2019.

[51] ——, “Measuring and Modeling Car Park Usage: Lessons Learned from
a Campus Field-Trial,” in Proc IEEE WoWMoM, Washington DC, USA,
Jun 2019.

[52] Steinel. (Accessed on 15.11.2019) Steinel Presence Detectors.
https://www.steinel.com.au/product-category/presence-detectors/.

[53] Apache. (2000) Apache Jena. [Online]. Available:
https://jena.apache.org/

[54] Blue Yonder. (Accessed on 16.10.2019) Tsfresh.
https://tsfresh.readthedocs.io.

[55] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and
feature extraction techniques in machine learning,” in Proc IEEE SAI,
London, UK, Oct 2014.

[56] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–
459, 2010.

[57] H. F. Kaiser, “The application of electronic computers to factor analysis,”
Educational and psychological measurement, vol. 20, no. 1, pp. 141–
151, 1960.

[58] D. Pelleg, “X-means: Extending k-means with efficient estimation of
the number of clusters.” in Proc ICML, San Francisco, CA, USA, June
2000.

[59] C. C. Aggarwal et al., “On the surprising behavior of distance metrics in
high dimensional spaces,” in Proc ICDT. Berlin, Heidelberg: Springer,
October 2001.

[60] Ayyoob Hamza. (Accessed on 5.5.2019) SDN pcap simulator.
https://github.com/ayyoob/.

[61] T. G. Dietterich, “Ensemble methods in machine learning,” in Interna-
tional workshop on multiple classifier systems. Springer, 2000, pp.
1–15.

[62] A. Hamza, H. Habibi Gharakheili, and V. Sivaraman, “Securing iot
networks using formal behavioral modeling and dynamic flow manage-
ment,” Ph.D. dissertation, UNSW Sydney, 2020.

Ayyoob Hamza received his Bachelor’s degree in
Computer Science from the University of Colombo,
Sri Lanka in 2014 and his Ph.D. in Electrical Engi-
neering and Telecommunications from University of
New South Wales (UNSW) in Sydney, Australia in
2020. He is currently the Chief Architect at CyA-
mast and Adjunct Associate Lecturer at UNSW. His
research interests are in IoT technologies, network
security, distributed systems, and software-defined
networking.

Hassan Habibi Gharakheili received his B.Sc. and
M.Sc. degrees of Electrical Engineering from the
Sharif University of Technology in Tehran, Iran in
2001 and 2004 respectively, and his Ph.D. in Elec-
trical Engineering and Telecommunications from
UNSW in Sydney, Australia in 2015. He is currently
a Senior Lecturer at UNSW Sydney. His current
research interests include programmable networks,
learning-based networked systems, and data analyt-
ics in computer systems.

Trevor Pering is a senior systems software engineer
at Google. His research interests include building-
scale Internet of Things systems, mobile devices, and
interactive experience design. He received a Ph.D.
in Electrical Engineering and Computer Science
from the University of California, Berkeley. He is
a member of ACM.

Vijay Sivaraman received his B. Tech. from the
Indian Institute of Technology in Delhi, India, in
1994, his M.S. from North Carolina State University
in 1996, and his Ph.D. from the University of
California at Los Angeles in 2000. He has worked
at Bell-Labs as a student Fellow, in a silicon valley
start-up manufacturing optical switch-routers, and
as a Senior Research Engineer at the CSIRO in
Australia. He is now a Professor at the University of
New South Wales in Sydney, Australia. His research
interests include Software Defined Networking, net-

work architectures, and cyber-security particularly for IoT networks.


