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Automatic Detection of DGA-Enabled Malware
Using SDN and Traffic Behavioral Modeling

Jawad Ahmed, Hassan Habibi Gharakheili, Craig Russell, and Vijay Sivaraman

Abstract—Enterprise networks are under enormous threats
from sophisticated cyber-attacks. Various kinds of malware are
installed by attackers on compromised hosts, acting as bots
that typically use Domain Generation Algorithms (DGAs) to
communicate with their Command and Control (C&C) servers.
It is computationally expensive to inspect all network packets
of every host connected to a large enterprise network in “real-
time” at scale with hundreds of gigabits per second data rates.
This paper combines Software Defined Networking (SDN) and
machine learning to develop an accurate, cost-effective, and
scalable system for detecting infected hosts communicating with
external C&C servers, subsequent to the resolution of DGA
query names. Our solution dynamically selects network flows
for diagnosis by trained models in real-time, and relies more on
the behavioral traffic profile, rather than packet content.

Our first contribution highlights the prevalence and activity
pattern of DGA-enabled malware across internal hosts. We draw
insights into the behavioral profile of DGA-enabled malware flows
when communicating with C&C servers. For our second contri-
bution, we identify malware traffic attributes and train three
specialized one-class classifier models using behavioral attributes
of malware HTTP, HTTPS and UDP flows. We develop an SDN-
based monitoring system to automatically mirror TCP/UDP flows
pertinent to DGA queries for diagnosis by the trained models.
Finally, we evaluate the efficacy of our approach by testing
suspicious traffic flows (selectively recorded by SDN reactive
rules), identifying infected hosts, and verifying our detection with
an off-the-shelf Intrusion Detection System (IDS) software tool.

Index Terms—Malware, DGA, SDN, Behavioral Modeling

I. INTRODUCTION

Cyber threats and data breaches continue to increase in both
frequency and complexity, placing businesses and individuals
at constant risk. According to Cybersecurity Ventures [1],
cybercrime damages will cost the world $6 trillion annually
by 2021. Enterprises, small and large, remain among the
top lucrative targets of automated attacks [2], [3]. Enterprise
networks are often complex, with applications that rely on
a mix of local and cloud-based services, and hence diffi-
cult to manage securely [4]. Enterprise hosts often include
powerful servers, personal computing devices, mobile phones,
and unmanaged Internet of Things (IoTs). These devices may
use a mixture of statically or dynamically assigned addresses
from several public and private Internet Protocol (IP) address
ranges. Poorly administrated assets, like personal computers or
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unpatched servers [5], are not only potential victims of cyber-
attacks but are also sources of risk for other entities on the
Internet. Hosts sitting behind the enterprise border firewall can
be infected by malware coming from phishing emails, security
holes in browser plugins, or other infected local devices.

Malware-infected machines, forming a botnet, are typically
managed remotely by an adversary (aka botmaster) via a
C&C channel. The botnet is primarily used by cyber-criminals
for malicious activities such as stealing sensitive information,
disseminating spam, or launching denial-of-service attacks.
Therefore, law enforcement agencies routinely perform take-
down operations on the blacklisted C&C servers [6], disrupting
their botnet activities. In response to these efforts, botmas-
ters have developed innovative approaches to protect their
infrastructure. The use of DGAs is one of the most effective
techniques that has gained increasing popularity [7].

DGAs make use of a “seed” (a random number that is
accessible to both the botmaster and the malware agent on
infected hosts) to generate a large number of custom domain
names. Generating numerous time-dependent domain names
and registering only the relevant one(s) “just shortly” before
an attack allows a botnet to shift their C&C domains on the fly
and remain invisible for longer [8]. The botmaster waits for
the malware to successfully resolve a Domain Name System
(DNS) query for the registered domain, enabling the C&C
communications to take place. Note that even if a C&C server
is taken offline or blacklisted, this process can simply be
restarted and a new server can come online. To date, more
than 80 collections of DGA domains (each corresponding to
a malware family) have been recorded by DGArchive [9] and
are publicly available.

Problem Statement: There exist a number of research
works [10]–[16] that analyze DNS traces to identify malicious
activities, detecting C&C servers, infected hosts, or malicious
domains. Their proposed methods largely require the extrac-
tion of information from DNS packets, correlating queries
and responses, and maintaining many states over a reasonably
long duration. These processing steps collectively demand
heavy compute resources and hence make it difficult to scale
cost-effectively. On the other hand, existing firewalls and
intrusion detection systems rely primarily on inspecting every
packet traversing the network, which makes them expensive.
Further, correlating malicious DNS queries with subsequent
C&C communication flows would significantly impact their
inferencing accuracy and cost.

In this paper, we employ the SDN paradigm to judiciously
combine selective packet inspection (only DNS proactively)
and flow behavioral analysis (reactively), in order to intel-
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ligently detect malware-infected hosts on the network. The
novelty of this paper arises from the dynamic inter-relation
of SDN and machine learning technologies for a sophisti-
cated yet cost-effective cyber-security solution. Commodity
SDN switches today can forward data very cost-effectively at
Terabits-per-second. When combined with intelligent machine
learning algorithms in software, it provides the flexibility and
agility to deal with existing and emerging threats given the
separation of forwarding and control in SDN as well as the
advantage of centralized control in software. This is ideal
for dynamically selecting flows (subsequent to malicious DNS
queries), and inferring their behavioral health using trained
models. We use public data of malware families to develop
our machine learning models. Our key contributions are
summarized as follows.

1) We highlight the prevalence and activity pattern of more
than twenty DGA-enabled malware families running
on internal hosts of a university campus network by
analyzing full DNS traffic (consisting of 2.4B records)
collected over 75 days from the network border (outside
of the firewall). We also analyze a PCAP trace of full
campus Internet traffic (collected during the peak hour
with a total load of about 10Gbps) to draw insights into
the behavioral pattern of DGA-enabled malware flows
between suspicious internal hosts and malware servers
on the Internet.

2) We identify key traffic attributes of malware and train
one-class classifier specialized models by attributes of
malware HTTP, HTTPS, and UDP flows obtained from a
public dataset. We then develop a monitoring system that
uses SDN reactive rules to automatically and selectively
mirror TCP/UDP flows (between enterprise hosts and
malware servers pertinent to DGA queries) for making
inferences by the trained models.

3) We evaluate the efficacy of our proposed method and
system during a 50-day trial. We record suspicious traffic
flows mirrored by SDN reactive rules, examine them by
applying our trained models, identify malware-infected
hosts, and verify our detection with an off-the-shelf IDS
software tool.

The rest of this paper is organized as follows: §II describes
relevant prior work. We present our data analysis and highlight
the prevalence of DGAs in our campus network in §III. In §IV,
we characterize key attributes of malware network behavior,
followed by the performance evaluation of our trained machine
learning models in §V. The paper is concluded in §VI.

II. RELATED WORK

Malware behavioral analysis has been widely studied by
many researchers [7], [16]–[21] using different tools and tech-
niques [22]. The most relevant works to ours can be divided
into three categories: (a) detection of malicious traffic based
on unusual DNS queries (predicting the presence of DGA
domains) [7], [16], [21], [23]–[30], (b) network behavioral
analysis of known malware and botnet by inspecting their
traffic data and/or metadata [18]–[20], [31]–[33], (c) use of
SDN and/or programmable networking in detecting cyber-
attacks [34]–[37].

Malicious DNS Queries: DNS traffic has been analyzed
to identify malicious network activities [15], [16], [38], [39].
Over the past decade, there has been an increasing number
of works [10]–[13] on detecting malicious network activities
mostly related to DNS exfiltration, DNS tunneling, and C&C
communications [40], [41]. To detect DNS exfiltration and
tunneling, attributes like length, entropy, and the number of
labels for domain names of benign queries are considered to
train a model [14], [42], [43].

In the past, blacklists were used to detect C&C communica-
tions between servers and infected hosts. However, blacklisting
has been defeated by attackers since they migrated from a
static domain mapping to the use of algorithmically gener-
ated domain names. In response to this change, researchers
have attempted to automatically detect DGA domains using
statistical modeling of DNS traffic [7], [16], [21], [23]–
[25], or machine/deep learning techniques [26]–[30], [44].
Antonakakis et al. [7] develop a clustering-based method for
detecting new (unknown) algorithmically generated domains
(AGD) as well as classifying known AGDs using supervised
learning. The authors evaluated their proposed solution in a
large ISP network and found several new families (unseen
before) of DGAs, operating on the network. They used sta-
tistical attributes including entropy and n-grams measures as
well as structural attributes such as length and label count in
the domain name, extracted from NXD (nonexistent domains)
responses on a per-host basis. Schuppen et al. [25] employ
manually-engineered features to train a binary classifier using
Random Forest algorithm to determine whether domains in
NXDomain-failed DNS queries (i.e., queries to nonexistent
domain names) are benign or malicious. It remains unclear
how this model performs in classifying unseen malicious
domains. We note that generating a rich training dataset of
benign NXDs is nontrivial, and a labeled benign dataset may
get polluted by some new (but unknown) malicious NXDs.

Malware and Botnet Behavioral Analysis: Flow-based
analysis has been used to detect malware and botnet traffic.
However, it is difficult and computationally expensive to mon-
itor high-rate network traffic in large and complex enterprise
environments. Works in [20], [31]–[33], [45] develop flow-
based features like packet count and distribution of packet
length, by analyzing every packet of the network to model
the patterns in encrypted traffic. Similarly, Anderson et al.
[18], [19] employed supervised learning algorithms to classify
malware and benign traffic. Their model was trained by a
variety of host-level attributes including packet size, flows
inter-arrival, DNS query (e.g., TLD, TTL, domain rank in
Alexa), HTTP data (e.g., server code, content type, Accept-
language, and location), and TLS data (e.g., TLS cipher suites
and TLS extension) that are measured over a period of time.

Our behavioral modeling approach differs from prior works
in three ways: (a) we only monitor the behavior of se-
lected flows pertinent to certain servers (resolved by DGA
responses) instead of monitoring all traffic of every host on
the network, (b) we choose to extract statistical attributes
of flows (encrypted and unencrypted) to train our models,
without the need for inspecting payloads like HTTP content
type or TLS handshake cipher keys, and (c) our models are
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built by one-class classification algorithms and hence become
sensitive to changes in any attribute while multi-class models
become sensitive to changes in only discriminative attributes.
Also, it is important to note that we only use a database
of known DGA domains, and check domain queries against
this database in real-time instead of classifying a domain as
benign or malicious. Our objective is to detect infected hosts
of enterprise networks by monitoring their selected flows.

Programmable Networking for Network Security: Pro-
grammable networking has recently gained popularity among
researchers, specifically for network security use-cases [34]–
[37], [46]. Ceron et al. [46] developed an automated system
for offline malware analysis, recording the network behavior
of a given malware in a controlled sandbox environment
orchestrated by an SDN controller. A known host on their
sandbox is infected by malware (from a set), and the SDN
controller inspects every packet from/to this infected host
for taking required actions like rate-limiting, blocking, or
re-configuring the topology upon finding certain patterns in
the packet payload (i.e., regex signature) or headers (e.g.,
contacting specific IP address and/or TCP/UDP port numbers).
Our work, instead, develops an automatic SDN-based system
for detecting malware-infected hosts in real-time by relying
more on the behavioral activity profile of “selected flows”
rather than the content of packets. Further, our SDN switch
does not send any network packets to the controller (protecting
it from overload from the data-plane and allowing the solution
to scale to high rates). Instead, packets that need to be
inspected in the software are sent as copies on a separate
interface of the switch, to which a software inspection engine
is attached.

Gupta et al. [34] develop scalable telemetry (i.e., partition-
ing different types of traffic such as TCP and ICMP) that
can be used to collect and analyze the network traffic in real-
time using a programmable data-plane. The authors show that
their approach reduces the workload of the overall system to
be able to operate at line rates. Similarly, Zhang et al. [37]
proposed a method that uses P4 programmable switches to
better defend against DDoS attacks. The authors considered
the case of volumetric DDoS attacks. They provided the
defense strategies in a modular fashion that can be adopted for
each network and can be used for new defense strategies other
than just the DDoS. These prior works primarily leverage the
programmability features in the data plane. We instead employ
the programmable control-plane available by Openflow-based
SDN to dynamically select suspicious flows for diagnosis by
trained machine learning models.

III. ANALYZING NETWORK TRAFFIC DATA:
PREVALENCE OF DGA-ENABLED QUERY NAMES AND

NETWORK BEHAVIOR OF MALWARE

In this section, we begin by analyzing the DNS traffic of
a campus network to demonstrate the prevalence of DGA-
enabled domain names (obtained from a public dataset) which
are found in DNS queries of internal hosts. We, then, analyze
a one-hour PCAP trace of the entire campus traffic (in/out)
to understand the network behaviors of internal hosts when
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Fig. 1. Aggregate load: (a) packet rate, and (b) bit rate, during peak hour
(2pm-3pm) of a weekday (31-May-2019).

they communicate with Internet-based servers following their
DGA-related DNS query.

A. Our Datasets

In this work, we use four different datasets including (a) 75
daily DNS PCAPs collected from the border of a university
campus network, (b) a one-hour PCAP trace of the entire
traffic of the university campus network to/from the Internet,
(c) 82 archived files containing more than 65 million domain
names used by DGA-related malware families, and (d) pub-
lic network traces (PCAPs and NetFlow records) of known
malware and benign traffic.

PCAP Traces of DNS Traffic: We collected daily DNS
PCAP traces from the border of the University campus net-
work. Each PCAP has a size of about 15 GB on average.
The IT department of the campus network provisioned a full
mirror (both inbound and outbound) of its Internet traffic (on
a 10 Gbps interface each) to our data collection system from
its border router (outside of the firewall), and we obtained
appropriate ethics clearance (Human Research Ethics Advi-
sory Panel approval number HC17499) for this study. We
extracted DNS packets from each of the enterprise Internet
traffic streams in real-time by configuring rules to match
incoming/outgoing IPv4 and IPv6 UDP packets on port 53
in an OpenFlow switch. This work analyzes data collected
over 75 days from 16-Sept-2019 to 1-Dec-2019. Our detailed
analysis is described later in this section (§III-B, §III-C, and
§III-D).

One-Hour PCAP Trace of Full Campus Traffic: In addi-
tion to DNS packet traces, we recorded all incoming/outgoing
packets (only the first 96 bytes of each packet) of the campus
network using tcpdump tool during the peak hour (2pm-3pm)
of a weekday on 31st May 2019. This PCAP trace, with a
size of over 250 GB, consisting of 3.2B packets, represents
traffic of large-scale enterprise networks. Fig. 1 shows the
aggregate load (packet rate and bit rate, moving averaged over
30-sec intervals) on the Internet link of the campus network.
It can be seen that on average more than a million packets per
second are exchanged between internal hosts and the Internet,
resulting in an aggregate load of 10 Gbps. We will use this
relatively large dataset in §III-E to highlight the behavioral
profile of malware flows (needles in the haystack of enterprise
network traffic) pertinent to DGA queries.

DGArchive: A group of researchers conducted an extensive
study [8] on several families of DGA-based malware. Authors
made their dataset (“DGArchive”) available to the public [9],
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TABLE I
DGA-RELATED DOMAIN FAMILIES FOUND IN THE CAMPUS NETWORK (FROM 16-SEP-2019 TO 1-DEC-2019).
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and they have been consistently expanding their database over
time. For this study, we have used the version of the public
database uploaded on 7th Jan 2019, which contains records
of domain names from 86 DGA families. We excluded four
families for our study because they overlap with legitimate
domains like github.com, oracle.com, or doodle.com. Such
overlaps are seen because their algorithms are restricted to
generate only short- to medium-sized strings (with 6 to 15
letters) that can lead to the generation of existing legitimate
domains. Note that datasets of these four families contain more
than 20 million records of domain names, and hence it was
infeasible to manually check all domains, filtering out the
legitimate ones. Therefore, we used the files corresponding to
the remaining 82 malware families and developed our database
consisting of about 83 Million records of domain names in
total (65 Million unique records). Note that some families
share a number of records with other families – the details
of the overlap across various families can be found in [8].

We will use the DGArchive dataset in §III-B, §III-C, and
§III-D in our detection system. We acknowledge that our
detection method primarily relies upon the knowledge-base of
DGArchive and hence may miss some “novel” malicious query
names that are not captured by this database. Note that this
limitation is inherent to any signature-based detection method
(ours included). This public database is actively updated at a
frequency of weeks to months. Therefore, in practice, one can
check this public repository daily or weekly to obtain the latest
signatures (domain names used by latest malware families).

Network Traces of Known Malware and Benign Traffic:
Authors of [24] released a public dataset called “CTU-13”
that contains packet traces of malicious traffic as well as
labeled NetFlow records of benign traffic. Malicious traffic
traces consist of 13 PCAPs (76.8M packets) from network
activities of seven real botnets including Menti [47], Murlo
[48], Neris [49], NSIS.ay [50], Rbot [51], Sogou [52], and
Virut [53] on Windows operating systems – executable binary
files of these malware were installed on lab computers [54] at
the CTU University, Czech Republic, in 2011. Benign traces
contain 3.6M NetFlow records of normal traffic (matching
certain conditions [24]) from a controlled and known set of
computers on a testbed. We will use this dataset in §IV to train
our classifier models, validate, and test their performance in
distinguishing malicious flows from benign ones. Our analysis
is motivated by evidence [55] that Web-based “reusable” tools
for remote command of malware are available for sale on the
Internet. Also, malware writers may generate a large number
of polymorphic variants of the same malware using executable
code obfuscation techniques, however, these variants will ul-
timately display similar activity patterns when executed [56].

TABLE II
TOP TEN MOST FREQUENTLY USED DGA DOMAIN NAMES FOUND

IN THE CAMPUS NETWORK.
Domain name DGA family # occurrences
gvaq70s7he[.]ru ModPack 530,647

76236osm1[.]ru ModPack 22,151

vqponckshykx[.]in Tinba 301

uecrbipuperq[.]online Tinba 284

qipnhdggsteb[.]org Tinba 284

xllqwgtppipp[.]info Tinba 269

edyrsdetxwnu[.]info Tinba 189

rkcrurklbstr[.]in Tinba 185

jdlrshfmxkqdeprhypbejn[.]org Gameover 179

vwxwvcmicwnu[.]org Tinba 177

B. DGA-Fueled Malware Families

We begin by analyzing DGA-based DNS queries found in
the campus network traffic. Out of 2.4B DNS queries made
(during 75 days) by internal hosts of the campus network,
about 589K were found in DGArchive, and hence considered
as DGA-based queries belonging to a total of 26 known
families. Table I shows the breakdown of queries count across
these families. It is seen that “ModPack” heavily dominates
(93.85%), followed by “Tinba” and “Gameover” respectively
contributing to 3.78% and 1.60% of total DGA-based queries
– other 23 families are not very frequent (their collective
contribution is less than one percent). These 26 families in
total generated 1416 unique domain names. Table II lists the
top ten most frequently used domain names found in DGA
queries and their corresponding family. Surprisingly, only two
domain names (i.e., gvaq70s7he[.]ru and 76236osm1[.]ru)
dominate almost all the queries for the ModPack family. Other
families like Tinba, however, use a variety of domain names
in their DNS queries.

Various malware types participate in various malicious
actions [8] such as unauthorized access to victim machines,
stealing personal information, or actively taking part in denial-
of-service (DOS) attacks. “ModPack” [9] was found by the
Canadian Centre for Cyber Security (CCIRC) [57] which
potentially relates to Andromeda [58]. Andromeda is malware
that infected millions of computers across the world [59] to
perform its botnet activities (i.e., to steal, to destroy websites,
or to spread malicious code). “Tinba” (Tiny banker was
first discovered in 2012), is a malware program, targeting
banking websites to steal online banking data [60]. Similarly,
“Gameover” Zeus looks for personal and sensitive data e.g.,
banking information, customer data, and secret corporate in-
formation [61].

We note that the occurrence of DGA-based queries is at
least three orders of magnitude less than typical DNS queries
made by internal hosts, as shown by a weekly trace in Fig. 2.
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Fig. 2. A weekly trace of DNS queries count: total versus DGA-based queries
(from 25-Nov-2019 to 1-Dec-2019) – blue circles highlight representative
points to illustrate that count of DGA-enabled queries is at least three orders
of magnitude less than count of total DNS queries.

Each data-point in this plot represents the number of DNS
queries over a 6-hour window. For example, it can be seen
that on Monday at 12pm (as highlighted by blue circles),
out of 15.4M DNS queries sent out of the campus network,
only 5.4K are DGA-enabled. Such low-profile activity allows
various malware families to go undetected in large enterprise
networks [62].

C. Daily Activity Pattern of DGA-Based Domains

Let us now focus on the temporal activity pattern of various
DGA-enabled malware families. Fig. 3 illustrates the daily
count of DGA queries during 75 days i.e., from 16-Sep-
2019 to 1-Dec-2019. It can be seen that there is no specific
pattern of daily activity at an aggregate level. For certain
days, i.e., mostly Thursdays, Fridays, and Saturdays, they
become completely inactive (zero queries as highlighted by
green squares), and some other days they are heavily active
(more than 15K queries per day as highlighted by red circles).
We observe a growing trend in the queries count daily over
this period peaking at 30K towards the end of Nov 2019
(as highlighted by the black pentagon at the top right of the
plot). Focusing on individual families, we found that almost all
families (except Tsifiri, Downloader, Pandabanker, and Mirai)
became active on the same day, resulting in significant peaks
between 28th Nov 2019 and 1st Dec 2019.

To better understand the time-of-day activity of DGA-
enabled malware, we plot in Fig. 4 the hourly histogram of
DNS queries (overall versus malicious) count during the 75-
day study. Starting from total load in Fig. 4(a), it can be seen
that the distribution of overall DNS queries reflects the daily
activity pattern of users – it starts rising in the morning (8-
9am) when students and staff come to the university campus,
peaks at around noon (12-1pm) when most of the users
go online during their lunch break and starts falling in the
afternoon (4-5pm) when the users leave the campus network
at the end of working hours. Moving to the distribution of
DGA queries in Fig. 4(b), we observe that the probability
of finding DGA queries on the campus network is relatively
higher from noon to midnight, and it is lower between post-
midnight and pre-noon (1am-11am). We note that the temporal
activity pattern of DGA queries does not correlate with that
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Fig. 3. Time-trace of DGA-based DNS queries across 75 days (between
16-Sep-2019 and 1-Dec-2019) – green squares represent no DGA queries,
red circles represent more than 15K DGA queries, and the black pentagon
highlights DGA queries daily count peaks at 30K.
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Fig. 4. Hourly histogram of: (a) total DNS queries, and (b) DGA-based DNS
queries, across 75 days (between 16-Sep-2019 and 1-Dec-2019).

of the overall network traffic (i.e., mostly benign), especially
during afternoon and evening hours. This increasing trend in
malware activity starting from mid-day could be due to waking
times hard-coded in their software, possibly configured in a
time zone different from ours. One may rightly ask how many
internal hosts, of which type, and from where in the network
make these DGA-based DNS queries? We will provide insights
into possible infected hosts later in Table III (briefly) and
Section IV (in detail).

By analyzing the DNS activity pattern of various DGA
families, we categorize them into three groups, namely (a)
Frequent and Heavy, (b) Frequent and Light, and (c) Bursty.
For brevity reasons, we illustrate the activity pattern of only
representative families from these three groups in Fig. 5.
Fig. 5(a) corresponds to the most frequent and the heaviest
family, the “ModPack”. We observe that ModPack is highly
active (thousands of queries) during most of the days (starting
from 1st October), except for nine days on which it becomes
completely inactive. Moving to the “Suppobox” family in
Fig. 5(b) representing a frequent and light family, it is seen
that the daily queries count is fairly low (less than 20), but it
rarely goes inactive on a day. Lastly, as a bursty pattern family
shown in Fig. 5(c), we see that ‘Ramnit” displays 2 bursts (end
of October and end of November) during the entire period of
our analysis, and it remains completely inactive otherwise. It is
important to note that these activities could be due to either a
large number of infected hosts or certain infected hosts making
a large number of DGA queries – we will discuss in §III-D
the challenge of identifying infected hosts purely based on
DNS traffic. We also found some forms of coordination across
various DGA families in terms of their activity. For example,
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(a) ModPack (frequent and heavy).
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(b) Suppobox (frequent and light).
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(c) Ramnit (bursty).
Fig. 5. Time-trace of daily DNS queries count for various DGA-enabled malware families: (a) ModPack, (b) Suppobox, and (c) Ramnit.
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Fig. 6. CCDF of TTL value in DGA-related DNS responses across represen-
tative malware families.

TABLE III
ENTERPRISE HOSTS MAKING DGA-ENABLED QUERIES.

Querying hosts (# hosts) # DGA queries [%]

Recursive resolvers (3) 552,669 [93.82%]

Enterprise servers (8) 14,217 [2.41%]

End hosts (13) 283 [0.05%]

WiFi NAT gateways (19) 21,929 [3.72%]

Suppobox and Ramnit simultaneously became heavily active
on 24th Oct as well as towards the end of November (i.e., from
28-Nov to 01-Dec) as shown in Figures 5(b) and 5(c). We
will highlight some examples of such coordination in §III-E.

To further investigate the periodicity of these three rep-
resentative families, we extracted the TTL value from their
DNS responses. Fig. 6 shows the CCDF of TTL values for
each family. It is seen that the ModPack family (dashed
black lines with cross markers) tends to use fairly short TTLs
with an average of 373 seconds – 90% of ModPack DNS
responses will live less than three minutes. The TTL values in
the Suppobox family are relatively longer, averaging at 7247
seconds while 50% are more than 15 minutes. Lastly, the
Ramnit family has the longest TTL values with an average of
11349 seconds. Similar to the Suppobox family, Ramnit also
has 50% of its responses with a TTL greater than 15 minutes.
Overall, the distribution of TTL values in various families
explains (to a great extent) their frequency of occurrence –
the shorter the TTL, the more frequent they become. We will
use (in §IV-B) TTL values for timeout setting of reactive flow
entries installed by the SDN controller, to enable scalable
management of switch TCAM table.

TABLE IV
DGA-ENABLED MALWARE AND INFECTED CAMPUS HOSTS FOUND BY

ANALYSIS OF ONE-HOUR PCAP OF FULL CAMPUS TRAFFIC.

Count

DGA-enabled families found in DNS queries of campus hosts 8

C&C servers identified in responses to DGA queries 14

C&C servers exchanged traffic with internal hosts 5

DGA-enabled families involved in C&C traffic exchange 2

Num. of malware-infected hosts exchanged traffic with C&C servers 17

End hosts 8

WiFi NAT gateways 7

Enterprise servers 2

D. Infected Enterprise Hosts

We now look at enterprise hosts that make DGA-enabled
queries. Table III shows that a very high majority (93.8%) of
DGA queries are sourced from DNS recursive resolvers, and
hence the original querying end-hosts are invisible, except a
limited number of hosts (8 enterprise servers and 13 regular
hosts) which are probably configured to directly use public
DNS resolvers (e.g., Google 8.8.8.8). We also note that 3.7%
of DGA queries are generated by 19 WiFi NAT gateways –
the identity of infected hosts (WiFi clients) that generate these
queries remains unknown, as they reside behind NAT gateways
inside the network (we collect data from the border of the
network).

Obviously, enterprise recursive resolvers and NAT gateways
hide the identity of infected hosts, and hence host analysis
purely based on DNS traffic will not suffice for identifying
infected hosts. To better understand the network activity
of (possibly) infected hosts following their suspicious DNS
queries (found in DGArchive), we analyze (in what follows)
a 1-hour PCAP trace of full traffic dump from the campus
network. We focus on subsequent TCP/UDP traffic exchanged
between Internet-based C&C servers (following the response
of DGA-based DNS queries) and their respective enterprise
hosts – we will show in §V how our SDN-based method in
conjunction with trained models (§IV) will be able to identify
infected enterprise hosts.

One may choose to inspect packets of enterprise DNS
servers to gain richer insights into the health of internal
hosts purely based on DNS traffic. However, obtaining all
(incoming/outgoing) packets of various DNS servers requires
significant changes to the distributed infrastructure of large
enterprise networks [15]. Our solution (§IV), instead, is de-
signed to be a “bump-in-the-wire” on the Internet link of the
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enterprise network and provides different visibility (a judicious
combination of DNS and selected subsequent TCP/UDP flows)
into activities of connected hosts from a different perspective.
Our detection system is transparent to the network, requires
minimal change to existing infrastructure, easy to deploy, and
does not modify packets in any way.

E. Network Behavior of DGA-Fueled Malware

As explained in the previous section, purely monitoring
DNS traffic does not lead to finding the hosts that are indeed
suspected of malware infection. Furthermore, to draw insights
into the behavior of suspected hosts (in terms of services
used and/or any possible coordination across infected hosts
while communicating with their corresponding C&C servers),
we analyze a very short but fairly active period of the full
campus traffic dump. This full dump of the entire Internet
traffic contains 3.2B packets of which only 2M packets are
DNS – less than 0.1%.

Table IV summarizes our findings from this analysis. During
this one hour, eight DGA-enabled malware families were
found in the DNS packets of this 1-hour PCAP trace. Also,
a total of 14 unique C&C servers were identified from DNS
responses, and only five of these C&C servers (corresponding
to two DGA families) exchanged TCP traffic with enterprise
hosts following their DGA-based DNS resolution. Analyzing
these follow-up TCP flows, we found 17 hosts (we call them
“suspicious hosts”) communicated with the five C&C servers.
By reverse DNS lookup, we verified that 8 of the suspicious
hosts were regular end-hosts, 2 were enterprise servers, and 7
were WiFi NAT gateways. These 17 suspicious hosts accessed
HTTP and HTTPS services offered by their corresponding
C&C servers, generating 33 suspicious HTTP flows (75%) and
11 suspicious HTTPS flows (25%) that collectively exchange
a total of only 365 packets which contribute to a tiny fraction
(10−7) of total packets (3.2 B) recorded in this one-hour PCAP
trace from campus Internet traffic.

Additionally, we analyzed the behavior of these suspicious
flows to highlight their activity patterns, or possibly find
coordination across suspicious hosts [63]. Fig. 7(a) shows
the pattern of communications (on a flow basis) between a
suspicious host (a WiFi NAT gateway in this case) and a C&C
server of Ramnit family with IP address “89.185.44.100”
resolved by a query for domain name “lvxlicygng.com”
(with the response TTL value of 300 sec) – we verified this
address is blacklisted [64]. We observe that this WiFi gateway
(possibly on behalf of a number NATed hosts) initiates six
HTTPS flows (each with a duration of less than a few seconds)
to the server in the time period between 2:10pm and 2:50pm.
Note that two flows f5 and f6 are established concurrently.
The height of each flow in the plot (Fig. 7(a)) indicates the
number of packets sent and received (outgoing direction shown
by blue circles and incoming direction shown by red squares).
Interestingly, there is a clear periodicity in the arrival of these
flows – they are well spaced by 601 sec (≈10 minutes). Some
of these flows (e.g., f1 and f2) are symmetric in terms of
incoming and outgoing packet count, and some are asymmetric
(e.g., f3 and f4).

To further understand the network activity of these suspi-
cious flows, we zoom in on the arrival and size of individual
packets within each flow per direction. As an example, we
show in Fig. 7(b) the time trace of packets in the flow f2. The
x-axis is time (in ms) and the y-axis indicates the direction (top
row corresponds to outgoing packets and the bottom row cor-
responds to incoming packets). Also, each marker represents
a packet (circles for outgoing and triangles for incoming), and
the size of the markers is indicative of the relative length of
the corresponding packet. The duration of this flow is about
1100 ms over which six packets are sent and six packets are
received. In this flow, all incoming packets from the server
have the same size of 60 bytes. Within less than 400ms from
the commencement of the flow, the three-way handshake is
completed, i.e., SYN (Pout1) → SYN-ACK (Pin1) → ACK
(Pout2). Right after establishing the TCP connection, the host
sends 60 bytes data over SSL (Pout3). In response, the server
sends SSL data of 60 bytes (Pin2) followed by FIN-ACK
(Pin3) and TCP-RST (Pin4) packets. Next, the host sends SSL
data of 139 bytes (Pout4), followed by ACK (Pout5) and FIN-
ACK (Pout6) packets. Lastly, the server sends two more TCP
RST packets (Pin5 and Pin6) back-to-back. Observing such
activity patterns will help us (in §IV-A) identify flow-level
attributes needed for modeling malware traffic behavior. As
stated earlier in §II, our main objective in this paper is to
develop a “cost-effective”, yet “accurate” solution for detecting
malicious flows and infected hosts in “large-scale enterprise
networks”. We will use flow-level attributes (as opposed to
computationally expensive packet-level attributes) to diagnose
whether selected suspicious traffic is malicious, or not.

As another example, we show in Fig. 8 the flow activity of
an end-host establishing a suspicious HTTP flow with its C&C
server. It can be seen that in this case, the server sends some
data (not just acknowledgments) to the internal host. In each
direction, 5 packets are exchanged between the end-host and
the server over this flow with a duration of about 4600 ms.
The three-way handshake (SYN:Pout1 → SYN-ACK:Pin1 →
ACK:Pout2) completes within the first 160 ms. Following the
establishment of this connection, the end-host sends an HTTP
GET request (Pout3 with the size 420 bytes) to the server at the
time about 4100 ms. The server responds with an ACK (Pin2)
followed by 1001 bytes HTTP OK (Pin3) – we were unable to
inspect the packet payload since in our PCAP trace packets
are truncated to their first 96 bytes. Right after that, the server
initiates termination of this TCP flow by sending a FIN-ACK
(Pin4) – this packet is followed by ACK (Pout4) and FIN-
ACK (Pout5) packets from the host, and the final ACK (Pin5)
from the server.

We also found two incidents of possible coordination [33]
across suspicious hosts while contacting their C&C servers at
around 2:10pm and 2:20pm. In the first instance (at 2:10pm),
two suspicious end-hosts simultaneously initiated HTTP flows:
one host initiated four flows and the other one initiated eight
flows both with a C&C server from Suppobox family with
IP address “184.168.131.241 (corresponding to domain name
“strengthstorm.net” with the response TTL value of 600
sec) – we verified that this IP address is blacklisted [65]. In
the second instance (at 2:20pm), a WiFi NAT gateway and an
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Fig. 7. Communication pattern of a suspicious host with its C&C server of Ramnit family: (a) sequence of HTTPS flows, and (b) sequence of packets in a
selected HTTPS flow.
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Fig. 8. Time trace of packets (outgoing/incoming) in a selected HTTP flow.

end-host respectively initiated one and two HTTP flows with
a C&C server from the Suppobox family with the same IP
address “184.168.131.241”.

Compute Cost: Our insights into network activities of
malware were only obtained by manually analyzing a short
but representative PCAP trace of the campus network. It is
important to note that it becomes very expensive (practically
infeasible) to capture and analyze packets of all network flows
at high rates (10Gbps or more). We also note that malicious
traffic (specifically for malware and botnet) often contributes
to a very small fraction of the total network traffic – the
majority of packets are benign. Therefore, it is needed to
employ a systematic and scalable method to capture only
suspicious traffic (corresponding to servers that are resolved
as a result of DGA queries) and check whether it is malicious
or not. In the next section, we will leverage the ability
of SDN to dynamically mirror suspicious traffic flows, and
develop learning-based models (based on insights obtained
in this section) to automatically detect malicious flows their
associated infected hosts inside the enterprise network.

IV. MODELING AND MIRRORING TRAFFIC OF SUSPICIOUS
MALWARE SERVERS

In this section, we begin by developing our protocol-
specialist models (one corresponding to each of HTTP,
HTTPS, and UDP protocols) using CTU-13 network traces
(discussed in §III-A). We, next, develop a system to automat-
ically select, mirror and diagnose traffic flows corresponding

to suspicious malware servers. We employ SDN reactive rules
to select and mirror suspicious traffic to our packet processing
engine. The engine feeds our trained models by a set of flow
attributes for diagnosis, determining whether these selected
TCP/UDP flows are malicious, or not.

A. Modeling Traffic Behavior of Malware

We use malware PCAP traces of the CTU-13 dataset
[24]. Authors of [24] primarily aimed to detect malicious
“hosts” by developing clustering-based models from their
dataset. They employed host-level attributes including the
count of remote IP addresses, count of remote/local transport
port numbers, average packet size, and the average count
of packets transmitted over windows of every two-minute.
We note that computing these attributes in near real-time for
every internal host (tracking metadata of all packets) will be
computationally prohibitive, especially at scale. Also, traffic
modeling at the host-level becomes slightly coarse-grained
(aggregate of benign and malicious flows) which can result
in reduced visibility into the activity of individual malware
flows. Our approach, instead, aims to characterize the behavior
of malware activity on a per-flow basis, and diagnoses a
fraction of network flows, only those suspicious TCP/UDP
flows pertinent to a DGA-related DNS query. We develop
a set of machine learning models (a model per protocol) to
determine if a flow is malicious or not. Many cybersecurity
researchers [24], [66], [67] employed multi-class decision
trees to distinguish malicious and benign traffic, however,
balancing the training dataset to avoid overfitting remains a
nontrivial challenge [68]. It has been shown [42], [69] that
one-class classifiers or anomaly detection models are able
to learn the distribution of training data (malicious flows in
the context of this paper), and detect any deviations (benign
flows) during the testing phase. Our protocol-specialist models
will generate “negative” output for malicious instances, and
“positive” output otherwise. This use of one-class models
means that each model can be re-trained/updated (in case
of extending the malware dataset), independent of the other
models.

1) Attributes and Classifiers for Malware Flows: Inspired
by [24], we identify eight attributes on a per-flow basis for
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TABLE V
DISTRIBUTION (µ AND σ) OF ATTRIBUTES VALUE FOR MALICIOUS FLOWS IN CTU-13 DATASET.

Outgoing Incoming

flow volume (B) flow duration (s) # pkts Avg. pkts size (B) flow volume (B) flow duration (s) # pkts Avg. pkts size (B)

HTTP (980, 666) (7.3, 29.5) (5, 1) (172.5, 94.1) (1470, 1589) (1.5, 7.6) (4, 1) (270.5, 235.4)

HTTPS (1597, 4392) (761.3, 2832.3) (12, 41) (81.1, 59.4) (5805, 47043) (760.6, 2832.1) (7, 20) (187.4, 390.9)

UDP (5968, 100239) (708.8, 2326.2) (14, 165) (201.6, 164.6) (5968, 100239) (712.3, 12451.2) (14, 165) (201.6, 164.6)

malware traffic – 4 per each direction (in/out). Our attributes
of a malware flow are as follow.

• flow volume in bytes (in/out).
• flow duration, i.e., the gap between the arrival time of the

first packet and the last packet (in/out).
• number of packets (in/out).
• average packet size (in/out).
We computed the above attributes for all (labeled) malicious

flows in the CTU-13 dataset. We show in Table V the
distribution (µ and σ) of raw values of attributes across the
entire dataset. Note that the malware flows in the CTU-
13 dataset are from three protocols, namely HTTP, HTTPS,
and UDP. By analyzing these values, we observe that flow
volume, flow duration, and packet count for both incoming
and outgoing directions are key attributes in characterizing the
three categories of malware flows. As an example, considering
the outgoing direction, the mean (µ) volume of flow in HTTP,
HTTPS, and UDP malware is about 1000, 1600, and 6000
bytes, respectively (first column of Table V).

Let us make some high-level observations on the range of
attributes across the three types of malicious flows. Note that
the variation of flow volume is much larger in HTTPS (with
σ ≈ 4400) and UDP (with σ ≈ 100, 000) flows than in HTTP
flows (with σ ≈ 700). A slightly similar pattern is observed
in the flow duration and packet count attributes. UDP and
HTTPS flows, compared to HTTP flows, are generally longer
in duration (mean 700s versus mean 7s), and carry a larger
number of packets (mean 12 − 14 packets versus mean 5
packets). Such a clear distinction between the three categories
(HTTP, HTTPS, and UDP) can also be seen in the values of
attributes for the incoming direction. Therefore, we train three
separate models (each specific to a protocol), increasing the
accuracy of detecting malware flows. We split the malicious
data of each protocol-specific model into 60% (for training
and validation) and 40% (for testing only).

2) Model Training: We used scikit-learn and its APIs,
an open-source machine-learning package written in Python,
to train and test our models. Our prediction models are one-
class classifiers trained by four popular algorithms, namely
Isolation Forest (iForest) [70], Extended iForest (EiF) [71],
K-means [72], and one-class support vector machines (OC-
SVM) [73] using attributes of malicious flows obtained from
the CTU-13 dataset. The models classify a flow: if the subject
flow is tested negative by its corresponding model (i.e., HTTP,
HTTP, or UDP), then it is classified as “malicious”, otherwise
it is “benign”. Later in this subsection, we will compare the
performance of one-class models against that of multi-class
classifiers.

The iForest algorithm works based on the concept of
isolation without employing any distance or density measure.

The algorithm divides instances into sub-samples to construct
a binary tree structure – by randomly selecting the attribute,
and then randomly selecting the split values from a range
(within min and max obtained from training) for that particular
attribute – splitting values is always done by an “axis-parallel”
hyperplane (e.g., rectangular shape in 2D space of attributes).
If the value of a given instance is less than the split value,
the point is directed to the left branch of the tree structure
otherwise it goes to the right side branch. This branching is
performed recursively until either a predefined height limit
of the tree is approached or a single point is isolated in the
dataset. The algorithm then marks the instances that travel
less into the tree structure as an anomaly while the ones that
travel deeper into the tree structure are classified as benign.
To avoid issues due to randomness, the process is repeated
several times, and the average path length is calculated and
normalized.

For the training phase of the iForest models, we con-
sider three tuning parameters, namely the number of trees
(n estimators), height limit of trees (max samples), and con-
tamination rate. For each of the three models, we tune the
value of each parameter while fixing the other two parameters
and validate the accuracy of our specialized models for the
malicious flows in the CTU-13 dataset. The default value for
the number of trees is 100, the height limit of trees is set to
“auto”, and the contamination rate is 10%. After tuning the
individual three models, we found the optimal value of these
tuning parameters as follows: the number of trees equal to 10,
the height limit of trees equal to 8, and contamination rate of
1% for all of the three models.

It has been recently shown [71] that while iForest is a
computationally efficient algorithm, it suffers from a bias
(affecting the anomaly score) arisen by its use of axis-parallel
hyperplanes. Authors of [71], therefore, enhance the standard
iForest algorithm, by developing Extended Isolation Forest
(EiF) which performs data splitting with “random-slope” hy-
perplanes. Our EiF models are tuned in the same way as
iForest.

The K-means algorithm finds groups of instances (aka
clusters) for a given class that are similar to one another.
Every cluster is identified by its centroid, and an instance
is associated with a cluster if the instance is closer to the
centroid of that cluster than any other cluster centroids. For
better performance of K-means models, it is important to pre-
process our data and tune certain parameters. We begin by
recording the Z-score (i.e., computing mean µ and standard
deviation σ) of each attribute. We then normalize our dataset
instances by calculating the deviation from the mean divided
by the standard deviation with respect to each attribute. To tune
a K-means model, we need to compute the optimal number
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Fig. 9. Clusters of K-means model for HTTP flows.

TABLE VI
DISTRIBUTION (µ AND σ) OF ATTRIBUTES FOR K-MEANS HTTP CLUSTERS.

Outgoing Incoming

# pkts flow vol. Pkt size flow dur. # Pkts flow vol. Pkt size flow dur.

(5, 0.3) (1103, 1645) (214, 26) (2, 7) (4, 0.5) (995, 325) (218, 77) (0.42, 1.4)

(7, 0.8) (838, 216) (124, 30) (7, 19) (7, 1.1) (4993, 1222) (767, 222) (4.0, 15.1)

(4, 1.1) (358, 138) (83, 19) (7, 32) (3, 0.7) (200, 95) (71, 2) (0.6, 2.6)

(7, 0.6) (2457, 420) (366, 55) (1, 6) (6, 0.9) (2770, 992) (449, 104) (0.3, 0.8)

(5, 0.9) (663, 118) (125, 27) (15, 44) (5, 0.8) (764, 295) (172, 80) (2.3, 9.7)

of clusters that is obtained by the elbow method [74]. By
applying this method, we found the optimal number of clusters
for all three models to be equal to 5. We show in Fig. 9
the resulting (color-coded) clusters of training instances for
HTTP flows. Note that our instances are multi-dimensional
(i.e., each instance contains 8 attributes), and thus cannot
be easily visualized. Therefore, for illustration purposes, we
employ Principal Component Analysis (PCA) to project the
data instances onto two-dimensions.

Additionally, Table VI provides further insights into at-
tributes of these five clusters. We make a few observations:
these clusters cannot be distinctly identified by their packet
count attribute – almost similar across all clusters; cyan and
black seem to represent top heavy clusters (cyan by total
flow volume in both directions and black by the average size
of incoming packets); comparing red (top row) and purple
(bottom row) clusters we find that the average size of packets
in the red cluster is about 20% (incoming) to 70% (outgoing)
larger than that of the purple cluster – also, duration of flows
in the red cluster is one order of magnitude shorter than that
in the purple cluster.

OC-SVM is an algorithm that identifies anomalous instances
by constructing a hyperplane boundary around expected train-
ing instances. It comes with three main tuning parameters,
namely Kernel, gamma, and nu with default values, respec-
tively equal to “radial basis function (rbf)”, “scale” (inverse
of product of attributes count and attributes variance) and
“0.5”. We tune OC-SVM similar to iForest and EiF where
a parameter is fixed, and others are varied to find the best
prediction. The optimal tuning parameters are found to be
as follows: “rbf” kernel, gamma equals 0.125, and nu equals
0.05.

3) Model Validation: We validate the performance of our
trained models against training instances (only 60% of the
malicious dataset since benign instances are not used for
training our one-class models). Validation results are shown by
top row in Tables VII (HTTP model), VIII (HTTPS model),
and IX (UDP model). It is observed that three algorithms
namely iForest, EiF, and K-means perform fairly well (giving
consistently high accuracy of more than 97% across the
three protocol-specialist models) during the validation phase.
However, the OC-SVM algorithm performs relatively poorly
even for validation, with the best malicious detection rate of
less than 73% given by the UDP model.

To better understand the inferencing capability of top-
performing algorithms (i.e., iForest, EiF, and K-means) we

TABLE VII
ACCURACY OF HTTP MODELS

IN SUCCESSFULLY DETECTING MALICIOUS AND BENIGN FLOWS.
iForest EiF K-means OC-SVM RandomForest

Validation
malicious 98.71% 99.05% 98.27% 63.18% 94.13%

benign − − − − 95.68%

Testing
malicious 97.80% 98.85% 98.11% 61.09% 81.32%

benign 93.55% 93.91% 91.64% 59.43% 79.18%

TABLE VIII
ACCURACY OF HTTPS MODELS

IN SUCCESSFULLY DETECTING MALICIOUS AND BENIGN FLOWS.
iForest EiF K-means OC-SVM RandomForest

Validation
malicious 98.96% 99.13% 98.42% 65.59% 93.89%

benign − − − − 96.73%

Testing
malicious 97.16% 98.92% 98.45% 64.90% 80.27%

benign 94.51% 94.59% 91.92% 62.94% 82.52%

TABLE IX
ACCURACY OF UDP MODELS

IN SUCCESSFULLY DETECTING MALICIOUS AND BENIGN FLOWS.
iForest EiF K-means OC-SVM RandomForest

Validation
malicious 96.96% 97.60% 98.76% 72.91% 95.32%

benign − − − − 96.21%

Testing
malicious 96.28% 97.03% 97.58% 73.35% 82.92%

benign 92.14% 92.99% 92.03% 68.52% 80.18%

now focus on misclassified flows across these models. Fig. 10
visualizes an approximation of two-dimensional regions for
key attributes of misclassified flows. We found that a di-
agnosed flow is misclassified (with a probability of more
than 90%) by respective models if its attributes fall in the
highlighted regions of Fig. 10. Let us start with the iForest and
EiF models, on the top row. It is seen that they misclassify
those HTTP flows which are large in packet count and long
in duration, as shown in Fig. 10(a), while for HTTPS and
UDP flows, having a large packet count (more than 100
packets) will probably lead to misclassification, as shown
in Figures 10(b) and 10(c). K-means models, on the other
hand, tend to misclassify HTTP flows with smaller volume
but medium-length (Fig. 10(d)), and HTTPS and UDP flows
with larger packet count (Fig. 10(e) and 10(f)).

Note that we employ four widely used one-class algorithms
to compare their performance. Taking the above observations
into account, none of these models seem distinct except by
their overall accuracy. Hence, we choose the best-performing
model (EiF) for our trial evaluation in §V.

4) Models Testing: Following validation, we quantify the
performance of our trained one-class models against testing
malicious instances (the remaining 40% of malicious flows)
as well as the entire set of benign instances. Testing results
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Fig. 10. Attributes of misclassified flows: (a,d) HTTP, (b, e) HTTPS, and (c,f) UDP, across top performing classifiers.
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Fig. 11. System architecture of our detection system.

are shown by bottom row in Tables VII (HTTP model), VIII
(HTTPS model), and IX (UDP model). We observe that
EiF consistently gives the best accuracy for both malicious
and benign testing flows, across the three models – true
negatives of more than 97% and true positives of at least 93%.
Unsurprisingly, OC-SVM is found to perform very poorly
(compared with iForest, EiF, and K-means) during the testing
phase with (malicious and benign) detection rates of mostly
less than 70%.

One-class versus Multi-class Models: Lastly, in order to
highlight the shortcomings of multi-class models in diagnosing
the health of network traffic, we consider a two-class (mali-
cious and benign) Random Forest classifier. It is trained with
60% of the entire CTU-13 dataset and its performance is tested
with the remaining 40% of instances. Validation and testing
results are shown by the last column of Tables VII, VIII,
and IX. It can be seen that Random Forest’s detecting rates
(true positives and true negatives) are around 80% which is
lower than those of iForest, EiF, and K-means particularly
during the testing phase, though it gives acceptable detection
rates (≈ 95%) during the validation phase.

B. Dynamic Traffic Selection using SDN

Fig. 11 shows the functional blocks in our system architec-
ture applied to a typical enterprise network. Enterprise users
are on the left and can be on an access network (wired
and/or wireless). The Internet is on the right. Our solution
is designed to be a “bump-in-the-wire” on the link at which
traffic monitoring/management is desired (active management)
– an alternative approach is to feed our system a mirror of all
network traffic (passive monitoring). Our system is therefore
transparent to the network and does not modify packets in
any way. Further, no packet is sent to the SDN controller (for
dynamic management of flow rules); instead, selected traffic
(DNS packets, C&C flows) that need inspection or diagnosis
are sent as copies on separate interfaces of the switch, to which
specialized traffic analytics engines (software inspection) are
attached. This protects the controller from overload from the
data-plane, allowing it to scale to high rates and to serve other
SDN applications. Our solution comprises a DGA query finder
(top right of Fig. 11) which is fed by real-time incoming
DNS responses, an SDN switch whose flow-table rules will be
managed dynamically by API calls from the DGA finder to the
SDN controller (center of Fig. 11), a packet processing engine
that extracts flow attributes (of suspicious network traffic only)
feeding machine learning-based models (top left of Fig. 11).

Our DGA query finder engine (handling DNS traffic of our
university Internet link with a peak load of about 10 Gbps)
runs on a virtual machine with 6 CPU cores, 8GB of memory,
and storage of 500GB. We believe that cost and complexity
of processing DNS packets in software can be reasonably
managed at scale. In terms of processing costs, empirical
results of our previous research studies [14], [15] on traffic
analysis of our university campus network show that DNS
constitutes a tiny fraction (less than 0.1%) of total network
traffic by volume. This corroborates with the analysis of the
one-hour full campus traffic trace collected during the peak
hour (§III-E), revealing that out of the total 3.2B packets,
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TABLE X
DISTRIBUTION OF MALWARE FAMILIES AMONG SUSPICIOUS FLOWS,

SELECTED AND MIRRORED BY OUR SDN SYSTEM.

DGA-enabled malware (# C&C servers) # flows [%]

ModPack (7) 35941 [63.10%]

Matsnu (2) 20806 [36.53%]

Ramnit (2) 169 [0.30%]

Suppobox (8) 37 [0.06%]

Bamital (1) 4 [0.01%]

only 2M are DNS – about 0.06%. In terms of complexity
of measurement, it is relatively easy to capture DNS traffic
with only a few flow entries (i.e., mirroring IPv4 and IPv6
UDP packets to/from port 53) in an SDN switch.

We believe that this paper’s key contribution is our detec-
tion method that dynamically (using SDN) and confidently
(using specialized classifiers) identifies malicious flows es-
tablished after DGA queries. Our system infers suspicious
hosts by employing a broad signature from the public database
DGArchive. It verifies its initial inference by applying special-
ized one-class classifiers. The key advantage of our method is
its scalability and low rate of false alarms.

For the SDN switch, we use a fully Openflow 1.3 compliant
NoviSwitch 2122 [75] which is controlled by the Ryu SDN
controller [76]. The switch provides 240 Gbps of throughput,
up to one million TCAM flow-entries, and millions of exact-
match flow-entries in DRAM, and we found it to amply cater
to the requirements of this project. We use a combination
of proactive and reactive entries in the switch flow table. A
proactive entry is statically pushed by the controller so that
all DNS response packets (i.e., UDP source port 53) received
from the Internet are forwarded (on port 2) and mirrored (on
port 3) to the DGA finder, as shown by step 1 in Fig. 11. The
finder looks up the queried domain name against DGArchive,
and if found, it extracts the IP address of the server resolved
by DNS responses and subsequently calls the SDN controller
(step 2 ) that results in the insertion of a reactive flow-entry,
shown by step 3 . Note that our malware detection method
is limited by the knowledge-base provided by the DGArchive
repository. This means that in order to detect new families
of DGA-enabled malware flows, whose DNS query name is
outside of this database, one needs to update the DGArchive
– it has been consistently maintained over the past five years.

We note that DGArchive contains all domains queried
by various malware families, but there are two challenges:
(a) queried domains are not necessarily malicious, (b) DGA
queries do not necessarily lead to C&C communications. As
highlighted earlier in §III-A, some of the more recent malware
families, for some reasons (evading security appliances or bugs
in their code), tend to make queries for very legitimate do-
mains like “github.com” or “oracle.com” or some relatively
legitimate domains found in the Majestic Million database [77]
(a public database of trusted websites). In addition, merely
making DNS queries (even for malicious domains) itself is
not harmful unless a subsequent communication occurs with
a C&C server. Results from our 50-day trial (§V) show that
only 12% of DGA queries lead to a subsequent communication

TABLE XI
SYSTEM SPECIFICATIONS.

Requirement System component Specifications

Hardware

DGA query finder 6 CPU cores, 8GB RAM, and 500GB storage

Packet processing engine 4 CPU cores, 6GB RAM and 200GB storage

SDN switch NoviSwitch 2116

Software

Operating System Ubuntu 16.04

Programming language Python 3.7

ML Library Scikit-learn

ML models iForest, EiF, K-means, OC-SVM and Random Forest

SDN controller Faucet for proactive flows and Ryu for reactive flows

with a C&C server. Therefore, observing a domain name found
in DGArchive does not warrant the host is infected (a high
possibility of false-positive) unless their flow-level behavior is
further verified (by specialized models) to be similar to that
of known malware (§IV-A). One may also want to examine
the registration date of domain names prior to mirroring the
traffic, which is beyond the scope of this paper. We believe that
examining the registration date of domains in “real-time” can
be challenging since many TCP/UDP flows (between internal
host and external C&C server) often commence shortly (less
than 100ms) after their DNS resolution (will be discussed later
in §V, Fig. 15), and hence the delay of registration look-up
may cause missing the C&C communication flow. In addition,
mirroring “selected flows” which carry a fairly small number
of packets and are relatively short (will be discussed later
in §V, Fig. 16) would not incur significant cost of software
processing or switch TCAM entries (will be discussed later in
§V, Fig. 17).

Reactive rules which match the IP address of the server
(two rules per server: one matching source and one matching
the destination IP address) are of the highest priority and
get installed as a consequence of DGA queries detected by
the DGA finder. To protect the SDN switch from TCAM
exhaustion (scalable management of TCAM usage), reactive
rules are automatically timed out after a period equals to the
TTL obtained from their corresponding response. The reactive
flow entries provide filtered packets (to/from potential C&C
servers) to the packet processing engine on port 4 in step
4 . Our packet processing engine (run on a generic server

configured with Ubuntu version 16.04.4) analyzes suspicious
traffic filtered and mirrored by the SDN switch. It constructs
flow-level attributes that are fed, in step 5 , to the machine
learning (ML) models for prediction. The models are one-
class classifiers (discussed in §IV-A) distinguishing, step 6 ,
malicious flows from benign ones. We will describe in §V the
performance of our prototype under real traffic of our campus
network.

V. EVALUATION RESULTS

We have implemented a fully functional system (shown in
Fig. 11), and operated it during a 50-day trial (3-Dec-2019
to 21-Jan-2020) under full campus network traffic. Table
XI summarizes hardware and software specifications of the
system components we developed for data collection, model
training, testing, validation and performance evaluation. Dur-
ing this trial, our system automatically selected, mirrored, and
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Fig. 12. CCDF of number of suspicious flows per host.

recorded suspicious DGA-based flows (subsequent to DGA-
based DNS responses) in real-time at the line rate of up to 10
Gbps using reactive SDN rules. In addition to suspicious flows,
the entire DNS traffic was recorded during this trial to correlate
DGA queries with their corresponding suspicious flows. In
this section, we evaluate the efficacy of our trained models by
applying them (in offline mode) to recorded suspicious flows
from the trial, diagnosing their health (malicious or benign?).

SDN-selected DGA Flows: We perform a correlation be-
tween SDN-selected suspicious flows and DNS responses
of DGA families. Table X summarizes the distribution of
suspicious flows (a total of 56,957) that are associated with
(DNS queries of) five DGA families listed in rows. It is
seen that ModPack family dominates with 63.10% of flows,
followed by the Matsnu family with 36.53% of flows. Note
that these flows are exchanged between enterprise hosts and a
small number (a total of 20) of C&C servers on the Internet
– the number of unique servers (IP addresses) is listed in the
bracket in front of their respective DGA family. We observe
that the activity of these servers varies across families. For
example, 7 servers associated with the ModPack family handle
about 36K flows while 8 Suppobox servers exchange 37 flows
over the 50-day period of our experiment.

During our trial, we found that C&C servers of 14 DGA-
enabled malware families were successfully resolved (476K
DNS responses). However, the C&C servers of only 5 fam-
ilies were contacted by internal hosts, following their DNS
resolution. We observe that those 9 malware families which
generated no C&C communications, contribute to only 0.1%
of the total resolved DGA queries. We note that the probability
of communicating with an intended C&C server following a
successful DNS resolution varies across families. For example,
the top two families display a completely different pattern.
ModPack, which dominates by making 35.9K flows, had 475K
DNS queries resolved – apparently, most of these DNS queries
(with an average TTL value of ≈5 minutes) are made purely
to keep their local cache updated by the latest IP address of
their intended server. On the other hand, Matsnu generated
20.8K flows with only 22 DNS responses (with much longer
TTL values averaged at ≈5 hours) during our 50-day trial
– in this case, DNS queries are only made when certain
communications are desired. Of the remaining three families,
Ramnit behaves similar to Matsnu by exchanging 169 C&C

TABLE XII
RESULTS OF TESTING SUSPICIOUS FLOWS AGAINST

THEIR CORRESPONDING EIF MODELS.

HTTP HTTPS UDP Aggregate

# suspicious flows 35645 19674 1638 56957

% malicious 99.94% 93.92% 92.71% 97.63%

% benign 0.06% 6.08% 7.29% 2.37%

# internal hosts making suspicious flows 262 2367 45 2488

# hosts with all flows malicious 239 1731 20 1818

# hosts with malicious and benign flows 17 533 25 567

# hosts with all flows benign 6 103 0 103

flows with 14 DNS responses (average TTL ≈4 hours), while
Suppobox (37 flows, 97 DNS responses, average TTL ≈1.5
hours) and Bamital (4 flows, 11 DNS responses, average TTL
≈10 minutes) display a pattern like ModPack.

Diagnosing DGA Flows: Of the total of 56,957 suspicious
flows (mirrored by our system during this trial period), 35645
are HTTP, 19674 are HTTPS, and 1638 are UDP. Recall from
the previous section that we trained three EiF models (HTTP,
HTTPS, and UDP) each with their respective malicious flows
extracted from the CTU-13 dataset.

Table XII shows the testing results of suspicious flows
against their corresponding EiF model. It can be seen that more
than 90% of suspicious flows across the three types (HTTP,
HTTPS, and UDP) have been classified as malicious. These
high detection rates verify the efficacy of our trained models
in diagnosing suspicious DGA flows.

In absence of ground-truth data whether suspicious flows
are indeed malicious or not, we further analyzed these selected
flows and their attributes. It is seen that 99.94% of suspicious
HTTP flows are predicted as malicious. We found that a
vast majority of suspicious HTTP flows (33.5K) consist of
the only three-way handshake (initiated by internal hosts)
followed by a TCP RST (reset) packet sent by the initiating
host. Almost all of these 33.5K HTTP flows are classified as
malicious – the CTU-13 dataset also had 810 flows (17% of
total HTTP flows) of this kind. Excluding these specific 33.5K
HTTP flows, again a vast majority (98.33%) of the remaining
2046 suspicious HTTP flows are predicted to be malicious,
highlighting the fact that their traffic behavior conforms to
the norms of known malware (i.e., the CTU-13 dataset).
Only 34 HTTP flows are classified as benign that carry a
large number of packets (about 35 packets) compared to the
malware norms (5 packets) – this corroborates to a great extent
with our observations from misclassified flows during model
validation, shown in Fig. 10(a). Similarly, we investigated
the attributes of suspicious HTTPS and UDP flows that are
classified as benign during trial evaluation, and found that
benign-predicated: HTTPS flows contain an average of more
than 200 packets, carrying relatively high volume (≈25 KB)
of traffic (conforming to Fig. 10(b)); and UDP flows contain
320 to 390 packets, resulting in flow volume of average 350
KB (conforming to Fig. 10(c)). In summary, suspicious flows
which are classified as benign are probably misclassified by
the EiF models. This means that traffic flows subsequent to a
DGA-based query are likely to be malicious.

Infected Hosts Initiating Malicious DGA Flows: We have
so far identified malicious flows succeeding DGA queries, but
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Fig. 13. CCDF of malicious fraction of flows per host in mix-malicious-
benign category.

network operators are more interested in identifying hosts that
are infected by malware. We mapped all of the suspicious
flows (dynamically selected and mirrored by our system) to
their corresponding hosts (inside the campus network) that
initiated those flows. These hosts are in three categories, as
shown by the bottom rows in Table XII: (a) hosts with all
of their suspicious flows are predicted as malicious (“pure-
malicious”), (b) hosts with some of their suspicious flows are
predicted as malicious and some as benign (“mix-malicious-
benign”), and (c) hosts with all of their suspicious flows are
predicted as benign (“pure-benign”).

It can be seen that at the aggregate level, shown in the last
column of Table XII, the pure-malicious category dominates
with 1818 hosts, followed by mix-malicious-benign and pure-
benign, respectively with 567 and 103 hosts – across the
campus network, there are a total of 2488 internal hosts that
generate some suspicious flows (HTTP and/or HTTP and/or
UDP). Note that 302 of these hosts are NAT gateways (each
representing a number of wireless hosts), and the remaining
2186 are actual end hosts (clients or servers which are not
NATed).

Focusing on the infected hosts, we found that they belong
to 226 different subnets of size /24. Of these subnets, 34%
have more than 10 infected hosts and 25% have more than
20 hosts infected. These insights help network operators who
want to tighten the security posture of certain subnets those
that have some degree of infection.

Next, we performed reverse lookups to infer the na-
ture of infected hosts, and found that: 302 hosts are WiFi
NAT gateways (from two dedicated subnets) with names
as “SSID-pat-pool-a-b-c-d.gw.univ-primay-domain” where
“a.b.c.d” is the public IP address of the NAT gateway, and
SSID is the WiFi SSID for the University campus network;
34 hosts are the Mac devices (spread across 23 subnets) with
names containing strings like “mbp” or “imac”; 616 hosts are
returned with names including strings like ‘desktop” that they
indicate are a user desktop machine (Windows/Linux); and the
remaining 1433 hosts (spread across 186 subnets) are returned
with no name – they are also typically regular end-hosts.

We plot in Fig. 12 the CCDF of suspicious flow count per
host, within each of the three categories mentioned above. It
can be seen that 99% of pure-benign hosts have at most two
suspicious flows – rarely active. In the other two categories,

instead, far more suspicious flows are observed per host
(average of 22 flows) – several hosts in both of these very
active categories have more than 1000 flows. Focusing on the
mix-malicious-benign category, we see that 50% of hosts have
more than 10 suspicious flows, represented by the tail of their
CCDFs. Also, more than 80% of hosts in the mix category
have more than half of their suspicious flows classified as
malicious – the CCDF plot in Fig.13 particularly illustrates the
distribution of the malicious fraction of flows across all hosts
of this category. For these reasons, we deem the two active
categories, consisting of 2385 hosts, to be likely “infected” by
malware.

We plot in Fig. 14 the daily time trace of active malicious
flows detected during our trial. Each data-point represents
the number of active flows over a 24-hour window. Looking
at Fig. 14(a), we observe that the activity of DGA-enabled
C&C communications across the aggregate of all campus
hosts was relatively high during the first half of December
(peaking at a total of ≈5500 flows on 12th Dec), gradually
fell reaching to a complete no-show during holiday shutdown
periods (between 25-Dec-2019 and 8-Jan-2020), and afterward
revived slowly. This pattern of malware activity correlates
(to a great extent) with the number of active users on the
network, suggesting infected regular hosts. Moving on to
Fig. 14(b), we see malicious flow activity of two hosts. The
top subplot corresponds to the most active infected end-host
that generated a total of 24.8K malicious flows (all preceded
by DGA responses of ModPack family). This host was active
at the beginning of the trial (first three weeks in December)
by making on average more than 1000 malicious flows per
day, but its hyperactivity slowly diminished in the second
half of our trial. The bottom subplot is a NAT gateway that
displays a different pattern of malware activity. It made a total
of 14 malicious flows (pertinent to Matsnu family) during
December, went silent for three weeks, and then suddenly
became heavily active in the middle of January by making
about 700 malicious flows from the Suppobox family. It is
expected to see a diversity of families in the NAT gateway
since they make flows on behalf of a group of end-hosts.

We show in Fig. 15 the CCDF plot of delay between DGA
responses (resolution of DGA query for C&C server) and the
commencement of the first associated TCP/UDP flow. It can
be seen that more than 90% flows start in less than 2 ms (very
shortly) after their DNS resolution. Since flow arrival delays do
not go beyond 100 ms, it is crucial for our detection system to
immediately insert a corresponding reactive rule into the SDN
switch, capturing and diagnosing the communication between
the internal host and the external C&C server.

Next, we analyze the size of mirrored traffic flows which
need to be analyzed in software – suggesting the computing
cost. It can be seen in Fig. 16(a) that mirrored suspicious
flows often carry a small number of packets – more than
86% of flows have less than 100 packets. Interestingly, these
flows are relatively short – as shown in Fig. 16(b) more than
90% of flows last less than 2 minutes, hence getting timed
out quickly from the switch TCAM table. This measure is
important since TCAM is one of the precious resources in our
system. Considering the time trace of reactive rules (during our
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Fig. 14. Time trace of active malicious flows (between infected internal hosts and malware servers) during the 50-day trial for: (a) aggregate of all campus
hosts, and (b) most active infected end-host (top) and a NAT gateway (bottom).
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Fig. 15. Delay between DGA-based DNS responses and commencement of
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Fig. 16. CCDF of attributes: (a) packet count, and (b) duration, of suspicious
flows.

50-day trial) in Fig. 17, we see that no more than 400 entries
per day are installed into the SDN switch by the controller.
These metrics collectively serve as clear evidence of the cost-
effectiveness of our solution.

Comparing Our Diagnosis Models with Zeek IDS: Lastly,
we validate our results against logs of an open-source IDS
Zeek (formerly Bro) – which is a powerful network analysis
tool, widely used, and consistently maintained by the commu-
nity for more than 20 years now [78]. Our main intention is
to compare our ML-based flow-level approach with a decent
rule-based packet-level method in detecting malicious traffic.

Zeek performs a packet-based analysis and raises alarms if
a known malicious signature is found in a packet. We replayed
the 50-day worth of selected traffic (of suspicious flows) onto
Zeek to check how it flags malicious activities. Of a total of
5.5 M packets, Zeek raised alarms for 23.7 K (0.4%). In order
to compare with our flow-level analysis, we aggregate those
packets flagged by Zeek into flows. It turns out 14,455 flows
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Fig. 17. Daily number of reactive flow entries installed by the SDN controller
into the SDN switch, during the 50-day trial.

(i.e., 25.3% of suspicious flows), belonging to all of the five
malware families (Table X), are detected as malicious by Zeek.

We found that all of Zeek flagged flows are a subset of
malicious flows classified by our models. Starting from the
HTTP flows, we found a small overlap (only 1087 flows,
about 3%) in the outputs of our HTTP model and Zeek.
This is mainly because those 33.5K HTTP flows (94% of
total) that only carry three-way handshakes with a reset
do not cause Zeek to raise any alarms when inspecting
their individual packets. For HTTPS flows, instead, the
overlap was far better – Zeek corroborates our HTTPS
model by flagging 13368 flows (≈ 68%) that we classified as
malicious. Lastly, none of the UDP flows are flagged by Zeek,
probably because individual UDP packets did not display
any malicious pattern matching Zeek’s known signatures.
Zeek raises a number of different alert types for malicious
HTTP and HTTPS packets – about half of malicious HTTP
and HTTPS receive more than one alert type. The top
four alerts are: “above hole data without any acks”,
“bad TCP checksum”, “possible split routing”, and
“data before established”.

VI. CONCLUSION

Cyber-attacks on enterprise networks are increasingly be-
coming sophisticated. We have developed and validated a
method for real-time selective mirroring of network flows for
diagnosis by trained models in real-time. We analyzed 75 days’
worth of DNS traffic (2.4B records), highlighted the prevalence
of more than twenty DGA-enabled malware families across
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internal hosts, and obtained insights into their behavioral
patterns while communicating with their corresponding C&C
server by analysis of a large PCAP collected during peak hour.
We identified their traffic attributes and trained three one-class
classifier models specialized in HTTP, HTTPS, and UDP pro-
tocols using public PCAP traces of known malware families.
We then developed a system that continuously monitors DNS
traffic, and automatically (using SDN reactive rules) select and
mirror communications between internal hosts and malware
C&C servers pertinent to DGA queries. We then evaluated
the efficacy of our models by testing suspicious traffic flows
against our trained models, identified infected hosts from
suspicious flows. Finally, we compared our detection approach
with software IDS Zeek.
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