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Enterprise DNS Asset Mapping and Cyber-Health
Tracking via Passive Traffic Analysis

Minzhao Lyu, Hassan Habibi Gharakheili, Craig Russell, and Vijay Sivaraman

Abstract—The Domain Name System (DNS) is a critical service
that enables domain names to be converted to IP addresses
(or vice versa); consequently, it is generally permitted through
enterprise security systems (e.g., firewalls) with little restriction.
This has exposed organizational networks to DDoS, exfiltration,
and reflection attacks, inflicting significant financial and repu-
tational damage. Large organizations with loosely federated IT
departments (e.g., Universities and Research Institutes) often are
not fully aware of all their DNS assets and vulnerabilities, let
alone the attack surface they expose to the outside world.

In this paper, we address the “DNS blind spot” by developing
methods to passively analyze live DNS traffic, identify organiza-
tional DNS assets, and monitor their health on a continuous
basis. Our contributions are threefold. First, we perform a
comprehensive analysis of all DNS traffic in two large orga-
nizations (a University Campus and a Government Research
Institute) for over a month, and identify key behavioral profiles
for various asset types such as recursive resolvers, authoritative
name servers, and mixed DNS servers. Second, we develop an
unsupervised clustering method that classifies enterprise DNS
assets using the behavioral attributes identified, and demonstrate
that our method successfully classifies over 100 DNS assets across
the two organizations. Third, our method continuously tracks
various health metrics across the organizational DNS assets
and identifies several instances of improper configuration, data
exfiltration, DDoS, and reflection attacks. We believe the passive
analysis methods in this paper can help enterprises monitor
organizational DNS health in an automated and risk-free manner.

Index Terms—DNS analysis, host monitoring, network security

I. INTRODUCTION

ENTERPRISE networks are large in size with many
thousands of connected devices and dynamic in nature

as hosts come and go, and servers get commissioned and
decommissioned to adapt to the organization’s changing needs.
Enterprise IT departments often track such assets manually
today, with records maintained in spreadsheets and configura-
tion files. This is not only cumbersome, but also error-prone
and almost impossible to keep up-to-date. It is, therefore, not
surprising that many enterprise network administrators are not
fully aware of their internal assets [40], and consequently do
not know the attack surface they expose to the outside world.
The problem is even more acute in University and Research
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Institute campus networks [20] that host a wide variety of
sensitive/lucrative data and provide an attractive high-speed
network infrastructure for hackers to use as potential attack
launchpads. More importantly, their networks are operated
relatively loosely and under decentralized control to cater to
the fast-changing and diverse needs of various departments
and research groups. While it is common practice, distributed
(but not well-orchestrated) operation of IT resources can lead
to inefficient utilization of resources and/or security loopholes.

In this paper, we focus on DNS, a protocol of choice
exploited by cyber-crimes and botnets as it can readily bypass
firewalls and security middleboxes. Due to the open nature of
DNS, it is common for organizations to apply few (if any)
restrictions (e.g., firewall rules) to DNS traffic. Thus, it is
unsurprising to see the increasing frequency and quantity of
malware compromised devices and attacks that leverage DNS
protocol [24], [51], [25], [15], [6], such as DDoS attack, DNS
tunneling and sensitive data exfiltration.

Enterprises typically host various kinds of DNS assets.
They often host a few recursive resolvers that proxy DNS
requests from internal hosts to the respective DNS servers
(internal or external) and cache the returned results to reduce
the number of repeated queries. Individual hosts may choose
to over-ride the enterprise recursive resolvers, such as by
manually changing their preferred resolver to a public one
(such as Google’s and CloudFlare’s public resolvers), but in
general, a majority of hosts will use the default recursive
resolver provided by their organization. In addition, enterprises
typically host a number of authoritative name servers to
serve the various domains belonging to the organization. For
example, organization-wide services (like email, VPN, etc.)
may be managed by central IT. At the same time, each
department may operate its own authoritative name server to
resolve department-specific web pages. It is not uncommon
for the various IT entities to operate in silos, often unaware
of the assets being managed by the other. To make matters
worse, on-campus retail stores (bookshops, food outlets, etc.)
that lease connectivity from the campus may also be housing
their own DNS assets, which are often poorly secured as they
lack the skills.

According to the IT department of the two networks studied
in this paper, existing commercial products and tools (border
firewalls, SIEM1 platforms, or network management middle-
boxes) often fall short of expectations, particularly in providing
fine-grained visibility into DNS asset maps and DNS asset
behaviors, and hence creating significant blind spots during

1Security Information and Event Management.
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operation [16]. There exists a significant body of academic
research on DNS traffic analysis and security. Existing works
either focus on forensic analysis of logs collected from DNS
servers, such as recursive resolvers on the Internet [7], [29],
[38], [12] and domain registrars [31], or characterizing (mali-
cious) query names in DNS packets [34], [2], [4], [48]. Our
prior work in [35] is among the few to analyze DNS traffic in
enterprise networks with a view to identifying and monitoring
DNS assets to facilitate better security management.

In this paper, we develop a data-driven method to auto-
matically map and track cyber-health of DNS assets in an
enterprise network. Commercial security appliances can con-
sume insights obtained from our methods. Our contributions
are three-fold:

• In §III, we perform a comprehensive forensic analysis of
DNS traffic from two large organizations collected over
32 days, comprising nearly a billion queries/responses.
We examine their network properties (IPv4/v6, UDP/TCP,
etc.), functional properties (unpaired queries/responses,
errors, etc.), and service properties (lookup types, record
types, etc.). These enable us to build behavioral profiles of
how various DNS assets (recursive resolvers, authoritative
name servers, and mixed servers) behave.

• In §IV, we use the behavioral characteristics learned
in §III to identify key attributes of DNS assets, extract
such attributes from network/transport layer header fields
without payload inspection, and develop an unsupervised
machine learning model using clustering algorithms to
dynamically and continuously classify asset types, in-
cluding recursive resolvers, authoritative name-servers,
mixed DNS servers, and regular end-host clients that
may or may not be subject to enterprise network address
translation (NAT). We apply our method to identify over
100 different DNS assets across the two organizations,
and validate our results by cross-checking with IT staff.
Our method further identifies assets that were commis-
sioned/decommissioned or changed use during the moni-
toring period, further validating its utility in dynamically
evolving environments.

• In §V, we develop data-driven metrics that commercial
SIEM platforms can consume to track the cyber health
of DNS assets or identify their anomalous behaviors –
our metrics are inspired by the insights obtained from
§III. Our methods reveal a prevalence of poor server
configurations in both organizations, allowing attackers to
exploit them for reflection attacks. Further, our methods
are able to identify the organizational DNS assets that are
complicit in scans, DDoS, and data exfiltration. We also
give proposals on how these DNS threats can be miti-
gated. Our prototype runs on a commodity server (with
a four-core 2.10GHz CPU, 48GB RAM, and 10Gbps
network interfaces) and is ready to be deployed at the
border of an enterprise network.

This paper is an extension of our previous work presented
in [35]. Extensions and new contributions can be summarized
as follows. First, we have improved our dataset by collecting
more inclusive traffic (i.e., IPv4 and IPv6) with a 32-day

duration (i.e., from 3rd June 2019 to 4th July 2019), while
in [35] the dataset only contained IPv4 traffic with a 7-
day duration. Second, we have enriched our baseline analysis
to highlight fine-grained characteristics, namely, “network”,
“functional” and “service” properties of DNS traffic measured
at the border of enterprise networks (§III-B); added discussions
on the composition of normal and abnormal DNS lookups
(i.e., contents and query names) across DNS assets (§III-C),
while in [35], the analysis was only limited to volumetric DNS
activities (i.e., Fig. 4). Third, while the methodology for DNS
asset classification remains unchanged, we have updated our
results using the 32-day dataset (§IV). Finally, motivated by
insights pertinent to network security and operations obtained
from the analysis phase, we have developed new metrics (not
presented in [35].) to monitor the “general” cyber health of
individual DNS assets (§V). We demonstrate how they can
trigger further investigations for specialized inference on DNS
assets.

Taken together, our contributions help enterprises address
their current blind spot in monitoring their DNS assets and
the threats they are exposed to. The passive analysis we
propose is automated, risk-free, and particularly beneficial to
large organizations with numerous assets managed by diverse
personnel.

II. RELATED WORK

We now discuss related works on DNS traffic analysis
(§II-A) and DNS attacks (§II-B) with highlights on the novelty
of our work and details of extensions from our previous
conference paper [35].

A. Analysis of DNS Traffic

DNS traffic has been analyzed for various purposes, ranging
from measuring performance (effect of Time-to-Live of DNS
records) [29], [44], [4] to identifying malicious domains [30],
[31], [2] and the security of DNS [14], [39], [50]. In this paper
we have profiled the pattern of DNS traffic for individual hosts
of two enterprise networks to map DNS assets to their function
and thereby identify their relative importance and health for
efficient monitoring and security.

DNS data can be collected from different locations (such
as from log files of recursive resolvers [29], [13] or author-
itative name servers) or with different granularity (such as
query/response logs or aggregated records). Datasets used in
[39], [14] contain DNS traffic for top level domains such as
.com, and .net. The work in [52] studies the root cause of
query failures by analyzing DNS logs collected from recur-
sive resolvers operated by three Internet service providers.
We collect our data at the edge of an enterprise network,
specifically outside the firewall at the point of interconnect
with the external Internet. We note that while using data from
resolver logs can provide detailed information about end hosts
and their query types/patterns, this approach limits visibility
and may not be comprehensive enough to accurately establish
patterns related to the assets of the entire network. Specifically,
recursive resolvers configured by the central IT department
do not handle inbound DNS lookups toward authoritative



3

Enterprise 
network

Internet
gateway

Access 
gateway

filter only DNS traffic (in/out)  

Internet

Virtual Network 
Functions

Our DNS 
measurement
setup

store metadata, headers, 
and payloads of DNS packets

Border
firewall

copy all traffic (in/out)  

A Programmable 
Network Switch

Database

Fig. 1: Our DNS measurement setup.

name servers. Additionally, they may miss outbound lookups
made by those internal hosts that are configured to use public
resolvers (e.g., Google, Cloudflare) on the Internet – some of
these examples will be discussed in §III-C.

There are also studies characterize malicious domain names.
[30] inspects DNS traffic from top-level domain servers to
detect abnormal activity and identifies key characteristics of
malicious domains in terms of their resource records and
lookup patterns, PREDATOR [31] derives domain reputation
using registration features to enable early detection of poten-
tially malicious DNS domains without capturing traffic, and
[47] gives practical recommendations for using public domain
ranking lists in security research, based on their temporary
changes. As for detection of such suspicious domain names,
[38] investigates into the coexistence of names in distributed
DNS recursive resolvers, [27] explores the value of game
theory in detecting malicious domain names generated by hid-
den Markov models and probabilistic context-free grammars,
which can bypass legacy detection methods.

Prior works analyzed DNS traffic collected from different
vantage points with various objectives. This paper measures
traffic at the edge of an enterprise network where border
firewalls are typically deployed. We profile the behavior and
traffic health of enterprise DNS assets by identifying patterns
in DNS communications and distributions of DNS packet
types. We also highlight some observations, such as benign
query names like “google.com” are misused in cyber-attacks
(scans and query-floods) targeting enterprise networks and
services.

B. Studies on DNS Security

There are protocols developed by the community to address
security issues of DNS. For example, DNSSEC [8] was
proposed more than two decades ago to protect data integrity,
preventing attacks such as cache poisoning [49]. Authors
of [14] conducted a large-scale measurement study on the
adoption of DNSSEC in 2017 and found that only 1% of
domains implement this secure protocol due to difficulties
in the registration process as well as operational challenges
involved. We will, in §II-A, highlight our observations (of
course, in the context of network traffic for the two enterprises
analyzed in this paper) on how a tiny fraction of DNS traffic
is mapped to DNSSEC.

In addition to efforts to embed security measures into the
protocol, the frequent use of DNS in volumetric attacks has

raised concerns. Authors of [50] reported the amplification
factor (i.e., the ratio between the size of a DNS response and
that of its corresponding query) of DNS service. Works in [39]
focus on authoritative name servers used as reflectors in DNS
amplification attacks – this indicates certain vulnerabilities of
enterprise DNS servers that may be misused in DDoS attacks.
The work in [36] proposed a hierarchical graph structure
with anomaly detection models to identify distributed DNS
attackers outside an enterprise network at various levels of
aggregation (e.g., host, subnet, and AS2).

Existing works focus on highlighting certain vulnerabilities
of the DNS protocol or developing methods for detecting DNS
attacks. Our work, instead, systematically profiles and tracks
the DNS behavior of active hosts in an enterprise by analyzing
DNS traffic from the network border. The system we develop
and the insights we draw will help IT departments better
map their assets, discover potential DNS vulnerabilities, and
identify misbehaved (potentially infected) hosts within their
network.

III. ANALYSIS OF DNS TRAFFIC FROM TWO ENTERPRISES

In this section, we analyze the characteristics of DNS traffic
collected from the border of two enterprise networks, a large
university campus and a national research institute. We start
by introducing our measurement setup in §III-A. In §III-B, we
discuss the “network”, “functional”, and “service” properties
of one-week DNS packets collected from both organizations
to highlight their normal and abnormal profiles. We then (in
§III-C) focus on the distribution of DNS packets among each
enterprise host to reveal their DNS behavioral patterns and
unhealthy traffic compositions.

A. Measurement Setup

In both organizations, the corresponding IT department
provisioned a full mirror (both inbound and outbound) of
their Internet traffic (each on a 10 Gbps interface) to our
data collection system, shown in Fig. 1, from their border
routers (outside of the firewall). Therefore, we focus on DNS
communications that cross the border between enterprise hosts
and outside servers on the Internet. It is important to note
that our measurement setup at the border would not see
requests of internal hosts for internal DNS servers, but they
certainly exist and are handled internally processing internal
communications is beyond the scope of this work. Appropriate
ethics clearances for this study are granted3. We extracted
DNS packets in real-time by packet mirroring rules for IPv4
and IPv6 TCP/UDP packets with port 53 on an OpenFlow-
enabled network switch (i.e., NoviFlow 2122 [45]). In this
paper, we focus on unencrypted DNS traffic via its typically
assigned port 53, while it is worth noting that a tiny fraction of
(encrypted) DNS lookups between resolvers and clients might
be carried by TLS [22] and HTTPS [32] that are beyond the
scope of this paper. It is important to note that our clustering
model in §IV and six of eight health metrics (QSRI, QSRO,

2Autonomous System.
3UNSW Human Research Ethics Advisory Panel approval number

HC17499, and CSIRO Data61 Ethics approval number 115/17.



4

TABLE I: Network properties of DNS packets in our dataset.

Incoming Outgoing
query response malformed query response malformed

U
ni

ve
rs

ity

IP
v4 TCP 258, 315 217, 210 298,979 (38%) 244, 633 553, 097 4, 824(0.3%)

UDP 166, 492, 688 181, 610, 373 56,665,050 (14%) 190, 974, 279 38, 321, 129 2, 158, 933(0.9%)
IP

v6 TCP 1, 223 23, 080 5, 261(17%) 25, 525 1, 203 38(0.1%)

UDP 10, 989, 944 53, 592, 304 200, 323(0.3%) 54, 673, 191 7, 182, 025 207(0.0006%)

R
sr

ch
.I

ns
.

IP
v4 TCP 25, 829 175, 786 18, 542(8%) 200, 269 28, 421 3, 375(1.4%)

UDP 48, 629, 262 53, 423, 998 1, 034, 531(1.0%) 59, 638, 578 22, 344, 154 2, 493(0.003%)

IP
v6 TCP 425 11, 445 14, 394(55%) 19, 708 338 274(1.3%)

UDP 5, 889, 648 14, 068, 272 82, 050(0.4%) 16, 455, 764 6, 502, 566 224(0.0009%)

QRI, RRO, QRO, and RRI) in §V employ volumetric DNS
traffic attributes and are agnostic to packet content. Hence,
they can still be applied to encrypted DNS traffic. That said,
two of the health metrics, namely LEF and NELF, require DNS
payload and are hence inapplicable to encrypted traffic [37].
The mirrored DNS traffic is processed by a virtual network
function running on a generic server with DPDK libraries
[23] which reassemble packet streams, parse headers (network,
transport, application) extract the payload of each DNS packet,
and stores them into our database.

Time span of our dataset: This paper considers the data
collected from both organizations for 32 days, from 3 June
to 4 July 2019 (i.e., the first few weeks of an academic
term in the university). In §III, we use the first-week data
(from 3 June to 9 June) for a comprehensive analysis. In §IV
and §V, we apply our asset classification and health tracking
methods to the entire (32 days) dataset. It is important to
note that the insights we draw from our measurement in
2019 pertain to specific behaviors DNS assets display on the
network and how accurately modeling these behaviors can
highlight certain issues related to configurations, performance,
or cybersecurity of these assets. Compared to what it was
in 2019, the volume of network traffic in universities and
research institutes has slightly dropped (observed from our
ongoing traffic measurement now in 2022) due to increased
working/learning from home. Our work (methods, metrics,
and insights) is sufficiently generic for analyzing DNS traffic
(regardless of traffic volume and frequency of anomalies) that
assists network operators in systematically managing their
DNS assets and infrastructure.

B. Understanding DNS Traffic at Enterprise Network Border

We begin by examining “network”, “functional”, and “ser-
vice” properties of DNS packets, which provide answers for
the following three questions related to DNS traffic profiles
of an organization. How does each DNS packet get carried at
network-level (§III-B1)? How are DNS queries responded to
with or without errors (§III-B2)? What is the service type of
each DNS packet (§III-B3)?

1) Network Property: DNS packets can be carried by either
TCP or UDP at the transport layer (TCP/53 [21] or UDP/53)
via IPv4 or IPv6 protocols. Table I summarizes DNS packets
are distributed by transport-layer and network-layer properties.

IPv4 versus IPv6: Unsurprisingly, the majority of DNS
packets are carried by IPv4 protocol, and it is clear that

the adoption of IPv6 in DNS communications has become
non-negligible in both organizations. We found that 21.03%
and 21.84% of outgoing4 DNS packets in the university and
research networks, respectively, are IPv6, while this measure
for incoming DNS traffic of the two organizations is 13.78%
and 16.26%.

TCP versus UDP: Considering the transport layer, DNS
over UDP seems to be default for enterprise hosts, accounting
for more than 99% of outgoing and incoming packets in both
organizations, while DNS over TCP is still staying minority
(less than 0.3%). We also observe that DNS responses over
TCP often have larger sizes (i.e., consist of many resource
records) than their UDP counterparts. Such a distinction
between TCP-based and UDP-based DNS responses is more
pronounced in DNS responses carried by IPv6 in our dataset.

Queries versus Responses: Focusing on the correlation
between DNS queries and responses, we highlight four pairs
of query/response in Table I, as examples – each pair is
color-coded for identification. It can be seen that the number
of outgoing queries is slightly higher than the number of
incoming responses, suggesting unanswered DNS lookups
made by enterprise hosts (green and purple pairs in Table I).
We also observe that count of incoming queries over IPv4
UDP is more than double the count of outgoing responses
in both organizations (e.g., red and yellow pairs in Table I),
highlighting the prevalence of DNS scans and floods on
enterprise networks. However, this is not substantiated in IPv6
packets.

Lastly, let us look at two specific categories of DNS
packets measured from the border of the university network,
as highlighted by a pair of gray cells in Table I. We note that
the count (i.e., more than half a million) of outgoing TCP-
based response packets, those sourced from TCP port 53, over
IPv4 is more than double the number (i.e., about a quarter a
million) of incoming TCP-based query packets, those destined
to TCP port 53. Manual investigations revealed that 53% of
those outgoing TCP responses are single ACK packets on their
TCP flow, without having any corresponding incoming TCP
packet. We also found that those single TCP ACK packets are
generated by 640 enterprise IP addresses (that are end-hosts)
– none of them are classified as authoritative name server or
recursive resolver later in §IV. Note that such behaviors are

4This paper uses the terms “outgoing” and “incoming” to denote the
direction of packets, respectively, “exiting” and “entering” the border of the
enterprise network.
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TABLE II: Functional properties of DNS packets.

Incoming Outgoing
IPv4 IPv6 IPv4 IPv6

U
ni

ve
rs

ity

Unanswered qry. 130, 683, 135 3, 813, 677 11, 431, 123 1, 105, 818

Unsolicited resp. 2, 039, 794 22, 486 2, 806, 358 5, 738

NXDOMAIN pairs 7, 493, 599 1, 885, 742 5, 164, 713 1, 532, 410

SERVFAIL pairs 3, 897, 549 34, 643 1, 363, 391 112, 618

REFUSED pairs 24, 820, 580 16, 409, 541 2, 102, 724 26, 130

OtherError pairs 113, 291 90 794 0

Non-enterprise pairs 9, 153, 748 252, 860 178, 234, 417 53, 096, 280

Enterprise pairs 26, 914, 120 6, 924, 630 1, 553, 372 496, 618

R
es

ea
rc

h
In

st
itu

te

Unanswered qry. 29, 159, 158 182, 886 9, 912, 604 2, 843, 892

Unsolicited resp. 3, 673, 541 448, 137 2, 876, 642 795, 717

NXDOMAIN pairs 2, 730, 158 974, 480 3, 775, 508 1, 011, 591

SERVFAIL pairs 248, 275 19, 715 2, 389, 070 5, 601

REFUSED pairs 1, 390, 138 245, 390 781, 259 133, 599

OtherError pairs 17, 061 50 621 230

Non-enterprise pairs 2, 071, 310 558, 205 48, 754, 035 13, 275, 249

Enterprise pairs 17, 424, 623 5, 148, 982 1, 172, 208 356, 331

often seen in malicious TCP activities such as ACK-based host
scans [11] or ACK flooding attacks [19] on DNS services.
Therefore, we suspect those single outgoing ACK packets in
our dataset are crafted (perhaps by malware) to look like DNS
responses (sourced from port 53), bypassing the enterprise
firewalls.

Malformed Packets: We found that 9.8% and 0.5% of
total DNS packets in the university and research institute
datasets, respectively, are malformed. Malformed packets can-
not be correctly parsed since their header information do not
match their payload content (e.g., the number of resource
records indicated in the header is inconsistent with the actual
content in the payload). There are various reasons [9], [10],
[42] for malformed packets such as broken software, packet
truncation/distortion during transmission, or malicious traffic
crafted by attackers. It can be seen that there are more
malformed incoming packets compared to outgoing packets, as
highlighted by percentage values (computed per each row per
direction) under malformed columns in Table I. We note that
all malformed packets result in no response (i.e., probably they
get filtered by the border firewall or dropped by the destination
host).

Another observation is that malformed DNS packets are
more likely carried over TCP. For example, an inbound packet
over IPv4 TCP in the university network is malformed with
a probability of 38%, while that is 14% over IPv4 UDP
(bold text in Table I). Besides, when comparing the two
organizations, we observed that the university network sends
more malformed packets in total fraction than the research
institution, particularly for outbound IPv4 UDP packets (0.9%
versus 0.003% for the university and the research institute,
respectively). It possibly indicates malicious activities orig-
inated from university hosts, as the university network is
open and less restricted, while the research institute does
not allow BYOT (bring-you-own-technology) devices and has
strict enforcement for network security.

2) Functional Property: In terms of functional property,
we categorize DNS packets into three clusters: (a) unpaired
packets (i.e., queries with no reply or responses without a cor-
responding query), (b) DNS lookups with a reply containing
response code other than NOERROR, and (c) successful DNS
lookups.

TABLE III: Service properties of DNS packets in our dataset.

Incoming Outgoing
IPv4 IPv6 IPv4 IPv6

U
ni

ve
rs

ity

A pairs 19, 986, 211 3, 692, 671 111, 896, 351 29, 538, 537

AAAA pairs 7, 782, 897 2, 014, 541 32, 223, 426 6, 615, 980

PTR pairs 2, 927, 101 594, 635 24, 749, 068 15, 775, 549

MX pairs 1, 413, 019 210, 452 831, 571 192, 365

SPF pairs 43, 943 8, 600 109 28

TXT pairs 723, 796 64, 690 4, 415, 435 659, 723

CNAME pairs 79, 235 23, 408 11, 708 1, 693

SRV pairs 599, 022 197, 023 2, 678, 513 103, 494

SOA pairs 220, 711 88, 752 714, 524 299, 316

NS pairs 1, 057, 700 223, 808 727, 438 358, 427

ANY pairs 1,205,822 46, 315 114, 584 9, 592

Other pairs 21, 990 10, 305 1, 209, 553 3, 754

R
es

ea
rc

h
In

st
itu

te

A pairs 7, 664, 442 1, 585, 811 21, 571, 867 6, 174, 823

AAAA pairs 2, 287, 039 755, 134 23, 774, 650 6, 107, 818

PTR pairs 7, 677, 620 2, 998, 552 2, 040, 424 599, 030

MX pairs 441, 075 117, 015 301, 651 84, 904

SPF pairs 3, 782 662 15, 974 3, 984

TXT pairs 120, 308 13, 198 1, 099, 786 342, 250

CNAME pairs 43, 399 5, 556 19, 933 116

SRV pairs 230, 046 33, 483 364, 039 79, 366

SOA pairs 222, 796 40, 515 0 0

NS pairs 683, 641 132, 410 532, 757 179, 340

ANY pairs 101, 867 23, 012 830 447

Other pairs 18, 054 988 1, 512 165

Unpaired Packets: This category is captured by two rows
labeled as “unanswered qry.” and “unsolicted resp.” in Table
II. Unanswered queries (highlighted by red cells in Table II),
carried over both IPv4 and IPv6, contribute to a large frac-
tion of total incoming DNS packets – 40.4% and 30.8% in
the university and research institute, respectively – this is
mostly due to frequent DNS scans and query floods targeting
enterprise DNS infrastructure. They are identified by their
behavioral patterns, such as periodic, focused, slow-rate, and
distributed that are typically expected from external malicious
sources toward enterprise hosts. Temporal characteristics and
behavioral patterns of network-based DNS attacks have been
extensively analyzed by our previous work [36] that specifi-
cally develops methods for detecting distributed DNS attacks.
On the other hand, unanswered outgoing queries only account
for a relatively smaller fraction in each organization (i.e.,
2.4% and 7.9%). We note that unanswered queries are fairly
normal in modern networks for a number of reasons, such
as service outages, mis-routes, or dropped packets. However,
persistently observing such issues for a certain host within
an enterprise network is worth further investigations from
security and/or operational viewpoints. Moving to unsolicited
responses, their fraction in both inbound and outbound traffic
are quite similar. This is mainly because of packet drop during
transmission, misconfiguration of external DNS servers or
DNS-based reflection attacks [28],[5] from/to the enterprises.

DNS Lookups without NOERROR Response Code: Now
we focus on those DNS lookups whose response code (in the
header of their corresponding response packet) is not NOERROR
( response codes like NXDOMAIN, REFUSED). It is important to
note that response codes other than NOERROR do not necessar-
ily indicate malicious activities. Top three popular response
codes in both enterprises are listed as NXDOMAIN, SERVFAIL
and REFUSED in Table II – all other codes are grouped
under OtherError. NXDOMAIN (not-existent domain) is
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returned if the requested domain name is incorrect (does
not exist). They are often the result of a typo in the web
address, or they might be an attempt to access a website
that no longer exists. This response code indeed highlights
a negative response (not necessarily an error) saying the name
a client asked for does not exist. That said, it is important to
note that persistent NXDOMAIN messages are early indicators
of security issues like malicious queries (e.g., command-
and-control and data exfiltration) sent by malware-infected
hosts [7], [48]. SERVFAIL and REFUSED indicate that target
DNS servers are unable to provide a resolved answer for
various reasons such as zone restrictions or incorrect query
formats. A frequent occurrence of those errors could indicate
improper configurations on hosts/servers, or DNS attacks. As
highlighted by yellow cells in Table II, for the university
network, REFUSED and NXDOMAIN are the most popular error
types of incoming and outgoing lookups, respectively; while
NXDOMAIN dominates the error types of both incoming and
outgoing lookups in the research institute.

Successful DNS Lookups: Given a successful (i.e., with
NOERROR flag) pair of DNS query and response packets, their
requested domain name is either “relevant” (i.e., belonging to
services provided by the organization) or “irrelevant” to the
enterprise. Large enterprises often operate authoritative name
servers for their own domain names. In addition, some like
universities and research institutes may support other names-
paces (e.g., corresponding to various groups and projects). We
create allowlists of domain names whose authoritative name
servers are managed within these two enterprises – we refer
to corresponding inbound queries as “enterprise lookups”.
Therefore, inbound DNS lookups are expected to be relevant to
all domains managed by the corresponding enterprise network.

We found a non-negligible portion (21.7% and 10.4%,
respectively) of inbound non-error DNS lookups that ask for
irrelevant domain names in both enterprises. These inbound
queries (asking for irrelevant domains) could be attributed to
misconfigurations in the origin networks or even malicious
traffic (e.g., scans or floods) sourced from external entities.
Surprisingly, some of the enterprise DNS servers (probably
misconfigured) resolved those irrelevant questions. We will
(in §V) take into account inbound DNS queries asking for
irrelevant domain names, which enterprise authoritative name
servers should not resolve, thus, are flagged as unwanted.

Also, we found that a tiny portion (0.8% and 2.4%) of
outbound DNS lookups in both networks contain questions for
their corresponding enterprise services. Further investigations
revealed that the top destinations of those queries are public
recursive resolvers such as 8.8.8.8 and 8.8.4.4 operated
by Google. Contacting public DNS resolvers could have been
configured manually by the user of those internal hosts or
automatically by a departmental DHCP server (not necessar-
ily managed centrally). Although best practice guidelines do
not recommend such configurations, they are not necessarily
malicious.

3) Service Property: Successful DNS lookups are asking
for various types of services, such as IPv4 address (A type),
IPv6 address (AAAA type), and reverse lookup for domain
names (PTR type). We now focus on the question type spec-

ified in the query header of each successful lookup. Statistics
for success inbound/outbound lookup pairs are shown in Table
III.

Successful Lookups: We start with successful lookup types
in both networks. As highlighted by blue cells in Table III, as
expected, we observe that requests for IPv4/IPv6 addresses and
reverse lookups for domain names are most common types of
both inbound and outbound DNS traffic in both organizations.
Besides, non-negligible amounts of email-related (i.e., MX and
SPF), text exchange (TXT), authoritative name service-related
(i.e., CNAME, NS and SOA), and service location (SRV) lookups
are observed in both organizations, indicating the popularity of
their corresponding services. Note that CNAME, NS and SOA are
generated by authoritative name servers to indicate canonical
names, name servers, and authoritative domains, respectively.
On the University network, those outgoing responses are
generated by 25 internal hosts that all will be classified as
authoritative name servers later in §IV – two main servers
contributed to more than 95% of those packets. Apart from
these top contributing types consistently seen in both networks,
we observe some different service profiles across the two
organizations. For example, as highlighted by yellow cells in
Table III, no outbound DNS lookup is found for SOA (that
asking for authoritative information of a zone) in the research
institute, while a few outbound lookups for SPF (requesting
authorized email servers of a domain) are seen in the university
network.

Uncommon Services: Some types of DNS lookups are
found to be relatively infrequent (e.g., less than 1% of total
DNS lookups) in the two enterprise networks. For example,
we observe inbound DNS lookups with the query type “ANY ”
in both organizations, particularly for the university network
(marked as bold red text in Table III), that get answered by the
enterprise servers. Though ANY queries can be legitimately
used for debugging and checking the state of a DNS server
for a particular name, DNS operators are recommended by the
Internet community [1], [18] to take some prudent measures
on how to handle these specific queries due to possible exploits
or vulnerabilities (e.g., amplification attacks). Focusing on the
outbound traffic, university hosts sent out many ANY type
requests. In contrast, hosts in the research institute rarely had
such activities (relevant cells are marked as red). Besides, a
small number of A6 (deprecated version of lookups for IPv6
address) and NAPTR (mapping domain names to host URLs)
are found in outbound requests in the university network,
respectively contributing to 0.15% and 0.31% of the total
count of outbound queries.

Adoption of DNSSEC: We now look at statistics of suc-
cessful DNS lookups related to DNSSEC in both organiza-
tions. DNSSEC [8] was proposed almost two decades ago to
provide origin authentication and integrity assurance services
for DNS data. Authoritative servers may or may not implement
DNSSEC and hence indicate it in their responses to revolvers
or clients. Prior measurement studies [14] on domain registrars
resulted that the adoption of such an extension is still in
the early stage. Fairly similar observations were made in our
dataset. In our dataset from the university campus, we found
tiny fractions of both inbound (0.005%) and outbound (0.1%)



7

3/6 4/6 5/6 6/6 7/6 8/6 9/6 10/6
Time

0

200

400

600

800

1000

co
un

t /
 se

c

Univ host A
Univ host B

6089 other Univ hosts

(a) Outgoing DNS queries.

3/6 4/6 5/6 6/6 7/6 8/6 9/6 10/6
Time

0

200

400

600

800

1000

co
un

t /
 se

c

Univ host A
Univ host B

196898 other Univ hosts

(b) Incoming DNS responses.

Fig. 2: University campus: outgoing queries and incoming
responses, measured during 3 June to 9 June 2019.

lookups associated with DNSSEC services, including DNSKEY,
DS, RRSIG, NSEC, NSEC3, and DLV. These measures indicate
that the adoption of DNSSEC (within these organizations as
well as across the Internet) is relatively slow. We made similar
observations in the dataset from the research institute, where
0.005% of inbound and 0.2% of outbound lookups pertain to
DNSSEC services.

C. Profiling DNS Behaviors of Enterprise Hosts

Enterprises typically operate two types of DNS servers:
(a) recursive resolvers are those that act on behalf of end-
hosts to resolve the network address of a domain name
and return the answer to the requesting end-host (recursive
resolvers commonly keep a copy of positive and negative
responses in a local cache to reduce frequent recursions and
prevent certain types of DNS-related DDoS attacks [43]), and
(b) authoritative servers of a domain/zone are those that
receive queries from anywhere on the Internet for the network
address of a sub-domain within the zone for which they are
authoritative (e.g., organizationXYZ.net).

In order to better understand the DNS behavior of various
hosts (and their role) inside an enterprise network, we divide
the DNS dataset into two categories: (a) DNS queries from
enterprise hosts that leave the network towards a server on
the Internet along with DNS responses that enter the network
(§III-C1), (b) DNS queries from external hosts that enter the
network towards an enterprise host along with DNS responses
that leave the network (§III-C2).

This analysis helps us identify important attributes related to
host DNS behavior, characterizing its type/function, including
authoritative name server, recursive resolver, or end-host inside
the enterprise that may not always be fully visible to the
network operators. This also enables us to capture the normal
pattern of DNS activity for various hosts and identify the
abnormal traffic status of DNS infrastructures.

1) Outgoing Queries & Incoming Responses: Fig. 2 shows
a time trace of DNS outgoing queries and incoming responses
for the university campus5, with granularity over 10-minute
intervals on a typical semester week.

The university network handles on average 417 outgoing
queries and 408 incoming responses per second. As discussed

5We omit results for the research institute in this section, as fairly similar
observations were made.

(a) CCDF: # unwanted DNS pkts per host.

0 20 40 60 80 100
Enterprise hosts

0

20

40

60

80

100

120

Fr
ac

tio
n 

(%
)

normal lookups
unanswered Qry.

unsolicited Resp.
error lookups

(b) ↑ lookups composition per host.

Fig. 3: Outbound lookups for the university network: (a)
CCDF of # unwanted (outgoing queries and incoming re-
sponses) DNS packets, and (b) composition of ↑lookups per
enterprise host.

in Table I, 4.9% of outgoing queries are “unanswered” (i.e.,
12.5M out of 256.2M) during the week. And 2.06% of
incoming responses to the university campus network (i.e.,
2.1M out of 99.9M ) are “unsolicited” on the same day.

Query Per Host: We now consider individual hosts in
each enterprise. Unsurprisingly, the majority of outgoing DNS
queries are generated by only two hosts, A and B, in the
network, i.e., 66.8% of the total in the university campus
(shown by blue and yellow shades in Figures 2(a)). These hosts
are also the primary recipients of incoming DNS responses
from the Internet. We have verified with the IT department of
the enterprise that both hosts are primary recursive resolvers
of this organization. In addition to these recursive resolvers,
we observe a number of hosts shown by red shades in Fig. 2(a)
that generate DNS queries outside of the enterprise network.
The 6,089 other University hosts in Fig. 2(a) are either: end-
hosts configured by public DNS resolvers that make direct
queries out of the enterprise network, or secondary recursive
servers operating in smaller sub-networks at the department
level. We found that 301 of these 6,089 University hosts ac-
tively send queries (at least once every hour) over the day and
contact more than 10 Internet-based DNS servers (resolvers
or name-servers). These 301 hosts display the behavior of
recursive resolvers but with fairly low throughput; thus, we
deem them secondary resolvers. The remaining 5,788 hosts
are only active for a limited interval (i.e., between 5 min to
10 hours) and contact a small number of public resolvers over
the day.

Response Per Host: Considering incoming responses in
Fig. 2(b) for the university network, a larger number of “other”
hosts in the organization are observed – approximately 196K
IP addresses corresponding to the three subnets of size /16
owned by the university. Most of these “other” hosts (i.e.,
97%) are the destinations of unsolicited responses, which
indicates that either misconfiguration of external DNS servers,
or the university network is suffering from DNS reflections.

Unwanted DNS Packets Per Host: To better understand
these potentially abnormal unanswered outgoing queries, unso-
licited incoming responses, and error outgoing DNS lookups,
we analyze their distribution among hosts in the two enter-
prises.
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Fig. 4: University campus: incoming queries and outgoing
responses, measured during 3 June to 9 June 2019.

Fig. 3(a) shows the CCDF plot of the distributions per
host for the university campus. All enterprise IP addresses
in our dataset received unsolicited responses, and it is clear
from the blue line that 99.9% of them are associated with
10 to 100 such packets – they did not have any outbound
queries over the week. We observe that the hosts that have
sent outbound queries to the public Internet received more
unsolicited responses than those hosts that have never sent
any DNS lookup. Outbound unanswered queries and lookups
without NOERROR response code are more concentrated on a
small fraction of hosts, as shown in the tail of black and red
lines. 2,140 and 1,812 (out of 6,091) hosts sent unanswered
queries or lookups without NOERROR response code – possibly
due to packet drops during forwarding, typos in domain names,
or malicious activities such as generating scans and DoS
attacks.

Unsurprisingly, the primary recursive resolvers in both
organizations are top sources and targets. In the University
campus, hosts A and B respectively are the sources of 4M
(33%) and 3M (25%) unanswered queries, 12M (22%) and
10M (18%) lookups without NOERROR response code, and
are the destinations of 66K (3%) and 42K (2%) unsolicited
responses.

Outbound Lookups Composition of Each Host: Let us
have a closer look at the composition of outbound lookups
along with inbound responses for selected hosts on the uni-
versity network, as shown in Fig. 3(b). These hosts are among
the top 100 in terms of outbound lookups (more than 35K
over a week) with no error replies. Each bar represents an
individual host. Note that each normal (green bars) or error
(red bars) lookup refers to a pair of an outbound query and its
corresponding inbound response – two-way communication.
On the other hand, unanswered outbound queries (black bars)
miss their corresponding responses, and unsolicited inbound
responses (blue bars) miss their corresponding queries – one-
way communication. Seventy-three of these hosts have more
than 80% normal DNS packets in their outbound queries and
inbound responses. The major unwanted DNS packet type is
lookups without NOERROR response code (red shades), such
as NxDomain, ServerFailure and QueryRefused. It might
be because of typo error in domain names or malicious DNS
activities such as DoS attack or contacting remote attackers
using random domain strings [48]. Unanswered queries (black

(a) CCDF: # unwanted DNS pkts per host. (b) ↓ lookups composition per host.

Fig. 5: Inbound lookups for the university network: (a) CCDF
of # unwanted (incoming queries and outgoing responses)
DNS packets, and (b) composition of ↓lookups per enterprise
host.

shades) sent to external IP addresses that do not get a reply
back are the second popular reason. We focused on hosts
13, 14, 15, and 19, which are found to have respectively
23.5%, 23.2%, 23.3%, and 50.1% of their outgoing queries
unwanted, and investigated their packet traces. These specific
hosts seem to be likely infected servers or hosts that generate
DNS scans or DoS attacks based on their traffic patterns. They
consistently sent repetitive queries to many different external
IP addresses or a surge of queries to an external DNS server.
As we will explain later, repetitive queries and responses
are patterns that are commonly found in malicious activities
like scans and DoS attacks. More examples and additional
insights will be provided in §V. Besides, three university
hosts (index 56, 60, and 62) are also suffering from many
unsolicited responses, occupying 9.29%, 3.96%, and 6.92%
of their total number of packets for outbound queries and
inbound responses. After manually investigating packet traces,
they are found to be the target of activities resembling small-
scale DNS reflection attacks. They received surges of repetitive
unsolicited responses from external IP addresses during short
periods; for example, 99.04% of unsolicited responses destined
to host 56 were sourced from a recursive resolver belonging
to a private company in China.

2) Incoming Queries & Outgoing Responses: Enterprises
commonly receive DNS queries from the Internet that are
addressed to their authoritative name servers.

It can be seen that two hosts of the University campus (i.e.,
hosts C and D in Fig. 4(b)) are the dominant contributors
to outgoing DNS responses – we have verified (by reverse
lookup) that these hosts are indeed the name servers of the
organization. Interestingly, for both organizations, we observe
that a large number of hosts (i.e., 197K IP addresses (shown
by red shades in Fig. 4(a) for the university network) receive
queries from the Internet. Still, a significant majority of
them are unanswered (i.e., 75.6%). These hosts are supposed
to neither receive nor respond to incoming DNS queries,
highlighting the amount of unwanted DNS traffic that targets
enterprise hosts for scanning or DoS purposes.

Unwanted DNS Packets Per Host: To better understand
hosts involved in incoming queries and outgoing responses, we
show the distribution of inbound unanswered queries, lookups
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TABLE IV: Samples of host attributes.

QryFracOut fracExtSrv fracExtClient actvQryOutTime
Univ name serv. (host C) 0 0 0.26 0
Rsch main name server 0 0 0.42 0
Univ rec. resolv. (host A) 1 0.23 0 1
Rsch main recurs. resolv. 1 0.43 0 1
Univ mixed DNS Server 0.31 0.02 0.03 1
Rsch mixed DNS Server 0.23 0.0003 0.0013 1
Univ end-host 1 0.00001 0 0.041
Rsch end-host 1 0.00001 0 0.25

replied without NOERROR responses and unsolicited outgoing
responses from hosts inside the two enterprises.

Fig. 5(a) shows the CCDF plot of the distributions per host
for the university campus. More than 99% enterprise IPs (in-
cluding unassigned IP addresses) received unanswered queries
from the Internet. As shown as the black line, almost all IPs
are targeted by a small number (i.e., less than 100) of such
queries over a week – it indicates active and frequent DNS
scans toward the organization. Some internal hosts received
a massive amount of inbound queries at a high packet rate,
located at the tail of the black line in Fig. 5(a), are likely to be
victims of query flooding attacks. For example, a mixed DNS
server (i.e., performs as both authoritative name server and
local recursive resolver) operated by a school in engineering
faculty received 102M (75.5% of all unanswered incoming
queries) lookups asking for non-enterprise services such as
“google.com” and “163.com”.

Moreover, 59 hosts sent unsolicited outbound responses
(due to server misconfiguration, used as a reflector by internal
attackers or packet drop); 47 hosts sent responses without
NOERROR (due to typos in domain names by outside users or
being as victims in query-based attacks). In Fig. 5(a), the hosts
that send unsolicited outbound responses are shown as blue
dots, and the hosts that send responses without NOERROR
are shown as red dots. The top 3 hosts that sent most of
the unsolicited responses (86.1%) are all servers operated
by sub-department (verified by reverse lookups), and the
organizational IT department does not have knowledge and
control over them, highlighting the security blind spots for a
large enterprise network.

Inbound Lookups Composition of Each Host: Similar to
what we saw earlier in Fig. 3(b), we now illustrate the compo-
sition of inbound lookups along with outbound responses for
selected hosts on the university network in Fig. 5(b). These 47
hosts are among those that sent at least one outbound response
over the week. Only six hosts are associated with more than
80% normal inbound lookups, and 45 hosts have error inbound
lookups with response code other than NOERROR. Interestingly,
2, 083 out of 2, 085 outbound responses from the 45th host
are labeled as lookups without NOERROR response code. This
host could possibly be an authoritative name server dedicated
for internal use, which received irrelevant questions such as
“researchscan541.eecs.umich.edu”, “www.qq.com” and
“www.wikipedia.org” and respond with REFUSED. Again,
we acknowledge that our measurement setup at the border
would not see requests of internal hosts for internal DNS
servers, but they certainly exist and are handled internally.
Three hosts (ranked 26, 27, and 44 in terms of the number
of outgoing responses) are occupied by more than 90% unso-

TABLE V: University campus: host clusters (3 June 2019).

Count QryFracOut fracExtSrv fracExtClient actvQryOutTime
name server 24 0.0004 1e-5 0.03 0.04
recursive resolver 21 0.99 0.04 6e-5 0.77
mixed DNS srv. 22 0.57 0.008 0.01 0.64
end-host 2,518 1.00 3e-5 0.00 0.24

TABLE VI: Research institute: host clusters (3 June 2019).

Count QryFracOut fracExtSrv fracExtClient actvQryOutTime
name server 13 0.00 0.00 0.07 0.00
recurs. resolv. 25 1.00 0.03 0.00 0.86
mixed DNS srv. 2 0.81 0.05 0.04 0.54
end-host 245 1.00 5e-4 0.00 0.17

licited responses. They are all operated by sub-departments
and are potential error-configured (such as unsynchronized
timing) or reflecting DNS responses for internal attackers,
as we observed a significant amount of unsolicited responses
for question name miep under the deprecated service type
ANY and other irrelevant to the enterprise zone. Finally, three
internal hosts suffered from a large fraction (more than 50%)
of unanswered queries, especially for the 7th host – it is
the mixed DNS server in engineering faculty as mentioned
above, which was consistently under DoS attacks by irrelevant
queries. The exhaustion of server resources led to it becoming
unresponsive to most incoming queries (and only about 1%
of queries got answered, including relevant and irrelevant
questions).

IV. CLUSTERING ENTERPRISE DNS ASSETS

In this section, we firstly articulate key attributes that can
effectively differentiate types of DNS-related enterprise hosts
(§IV-A). We then develop a unsupervised clustering technique
to determine if an enterprise host with a given DNS activity is
a “name server”, “recursive resolver”, “mixed DNS server”, or
a “regular end-host” (§IV-B). We then rank the enterprise DNS
servers into “name server” and “recursive resolver” by their
importance, whereas mixed DNS servers are ranked in both
types (§IV-C). Finally, the regular end-hosts can be further
clustered as “NATed” or “not-NATed” based on their DNS
activities as described by the proposed attributes (§IV-D).

Our proposed system automatically generates lists of active
servers into three categories located inside enterprise networks
and rankings in terms of their name server and resolver
functionalities, with the real-time DNS data mirrored from
the border switch of enterprise networks. The system first
performs “Data cleansing” that aggregates DNS data into
one-day granularity and removes unsolicited responses and
unanswered queries (i.e., step 1); then “Attribute extraction”
in step 2 computes attributes required by the following algo-
rithms; “Server mapping” in step 3 classify DNS assets of
various types; and finally “Server ranking” in step 4 ranks
their criticality. The output is a classification and a ranked
order of criticality, which an IT manager can then use to
accordingly adjust management and security policies.

A. Attributes

Following the insights obtained from the DNS behavior of
various hosts, we now identify attributes that help automati-
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cally (a) map a given host to its function including authorita-
tive name server, recursive resolver, mixed DNS server (i.e.,
both name server and recursive resolver), or a regular client;
and (b) rank the importance of DNS servers. All attributes are
computed from DNS packets’ metadata (i.e., headers) without
inspecting their payload, resulting in a cost-effective inference
method.

1) Dataset Cleansing: We first clean our dataset by remov-
ing unwanted (or malicious) records including unsolicited re-
sponses and unanswered queries – it removes the large fraction
of unassigned or inactive IP addresses that are only associated
with incoming DNS traffic. This is done by correlating the
transaction ID of responses with the ID of their corresponding
queries. In the cleaned dataset, incoming responses are equal
in number to outgoing queries, and similarly for the number
of incoming queries and outgoing responses.

2) Functionality Mapping: As discussed in §III-C1, re-
cursive resolvers are often fairly active in terms of queries-
out and responses-in, while name servers, on the other hand,
are typically found with a high volume of queries-in and
responses-out. Hence, a host attribute defined by the query
fraction of all outgoing DNS packets (QryFracOut) should
distinguish recursive resolvers from name servers. As shown
in Table IV, this attribute has a value close to 1 for recursive
resolvers and a value close to 0 for name servers.

Also, some end-hosts, configured to use public resolvers
(e.g., 8.8.8.8 of Google), contribute to parts of DNS queries
out of the enterprise network. We note that these end-hosts
ask a limited number of Internet servers during their activity
period whereas the recursive resolvers typically communicate
with a larger number of external servers. Thus, we define a
second attribute as the fraction of total number of external
servers queried (fracExtSrv) per individual enterprise host.
As shown in Table IV, the value of this attribute for end-
hosts is much smaller than for recursive resolvers. Similarly
for incoming queries, we consider a third attribute as the
fraction of total number of external hosts that initiate query
in (fracExtClient) per individual enterprise host. Indeed, this
attribute has a larger value for name servers compared with
other hosts, as shown in Table IV.

Lastly, to better distinguish between end-hosts and recursive
resolvers (high and low profile servers), we define a fourth
attribute as the fraction of active hours for outgoing queries
(actvQryOutTime). For each host, this attribute indicate the
fraction of time it sends outgoing queries. Regular clients
have a smaller value of this attribute compared with recursive
resolvers and mixed DNS servers, as shown in Table IV.

3) Importance Ranking: Two different attributes are used to
rank the importance of name servers and recursive resolvers
respectively. Note that we rank mixed DNS servers within
both name servers and recursive resolvers for their mixed
DNS behaviour. For recursive resolvers, we use QryFracHost
defined as the fraction of outgoing queries sent by each
host over the cleaned dataset. And for name servers, we use
RespFracHost as the fraction of outgoing responses sent by
each host.

B. Host Clustering
We note that the task of grouping instances (network hosts

in our case) can be done using multi-class classification or
clustering algorithms. Multi-class classifiers often need to be
trained by a sufficient amount of labeled data to yield a decent
accuracy. Given the limited number of hosts with ground-
truth labels in both networks studied in this paper, we employ
clustering techniques to identify groups of hosts that display
distinct patterns in their DNS traffic.

1) Selecting Algorithms: We considered three common
clustering algorithms, namely Hierarchical Clustering (HC),
K-means and Expectation-maximization (EM). HC is more
suitable for datasets with a large set of attributes and instances
that have logical hierarchy (e.g., genomic data). In our case
however, hosts of enterprise networks do not have a logical
hierarchy and the number of attributes are relatively small,
therefore HC is not appropriate. K-means clustering algorithms
are distance-based unsupervised machine learning techniques.
By measuring the distance of attributes from each instance and
their centroids, it groups data-points into a given number of
clusters by iterations of moving centroids. In our case there is a
significant distance variation of attributes for hosts within each
cluster (e.g., highly active name servers or recursive resolvers
versus low active ones) which may lead to mis-clustering.

The EM algorithm is a suitable fit in our case since it uses
the probability of an instance belonging to a cluster regardless
of its absolute distance. It establishes initial centroids using
a K-means algorithm, starts with an initial probability dis-
tribution following a Gaussian model and iterates to achieve
convergence. This mechanism, without using absolute distance
during iteration, decreases the chance of biased results due
to extreme outliers. Hence, we choose an EM clustering
algorithm for “DNS Host Clustering Machine”.

2) Number of Clusters: Choosing the appropriate number
of clusters is the key step in clustering algorithms. As dis-
cussed earlier, we have chosen four clusters based on our
observation of various types of servers. One way to validate
the number of clusters is with the “elbow” method. The idea of
the elbow method is to run k-means clustering on the dataset
for a range of k values that calculates the sum of squared errors
(SSE) for each value of k. The error decreases as k increases;
this is because as the number of clusters increases, the SSE
becomes smaller so the distortion also gets smaller. The goal
of the elbow method is to choose an optimal k around which
the SSE decreases abruptly (i.e., ranging from 3 to 5 in our
results, hence, k = 4 clusters seems a reasonable value for
both the university and the research institute).

3) Clustering Results: We tuned the number of iterations
and type of covariance for our clustering machine to maximize
the performance in both enterprises. Tables V and VI show the
number of hosts identified in each cluster based on data from 3
June 2019. We also see the average value of various attributes
within each cluster. For the cluster of name servers, QryFra-
cOut approaches 0 in both organizations (some name servers
performed outbound DNS lookups for its own operational
purposes), highlighting the fact that almost all outgoing DNS
packets from these hosts are responses rather than queries,
which matches with the expected behavior. Having a high
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(a) Univesity campus. (b) Research institute.

Fig. 6: Hosts clustering results across 32 days.

number of external clients served also indicates the activity of
these hosts – in the University campus and research institute
respectively 24 and 13 name servers collectively serve 81.6%
and 91% (i.e., 24× 3.4% and 13× 7%) of external hosts.

Considering recursive resolvers in Tables V and VI, the
average QryFracOut is close to 1 for both organizations as
expected. It is seen that some of these hosts also answer
incoming queries (from external hosts) possibly due to their
mis-configuration. However, the number of external clients
served by these hosts is very small (i.e., less than 5 per
recursive resolver) leading to an average fraction near 0.
Also, looking at the number of external servers queried (i.e.,
fracExtSrv), the average value of this attribute for recursive
resolvers is reasonably high, i.e., 21 and 25 hosts in the
University and the research network respectively contribute
to 83% and 89% of total fracExtSrv – this is also expected
since they commonly communicate with public resolvers or
authoritative name servers on the Internet.

Hosts clustered as mixed DNS servers in both organizations
have a moderate value of the QryFracOut attribute (i.e., 0.57
and 0.81 for the University and the research network respec-
tively) depending on their varying level of inbound/outbound
DNS activity. Also, in terms of external clients and servers
communicated with, the mixed servers lie between name
servers and recursive resolvers. Lastly, regular end-hosts gen-
erate only outbound DNS queries (i.e., QryFracOut equals to
1), contact a small number of external resolvers, and are active
for shorter duration of time over a day (i.e., actvQryOutTime
less than 0.5).

4) Interpreting the Confidence of Clustering: Our cluster-
ing algorithm also generates a confidence level as an output.
This can be used as a measure of reliability for our classifier.
If adequate information is not provided by attributes of an
instance then the algorithm will decide its cluster with a low
confidence level – this can be interpreted as an “unknown”
cluster. The average confidence level of the result clustering
is 98.13% for both organizations, with more than 99% of
instances classified with a confidence-level of more than 85%.
This indicates the strength of our host-level attributes, enabling
the algorithm to cluster them with a very high confidence-
level.

5) Server Clusters Across 32 Days: We now check the
performance of our clustering algorithm over 32 days. Fig. 6
shows a heat map for clusters of servers. Columns list server
hosts that were identified in Tables V and VI (i.e., 66 hosts in
the University network and 40 hosts in the research network).

Rows display the cluster into which each server is classified.
The color of each cell depicts the number of days (over 32
days) that each host is identified as the corresponding cluster
– dark cells depict a high number of occurrences (approaching
32), while bright cells represent a low occurrence closer to 0.

In the University network we identified 25 name servers,
shown by H1 to H25 in Fig. 6(a); the majority of which
are repeatedly classified as a name server over 32 days, thus
represented by dark cells at their intersections with the bottom
row, highlighting the strong signature of their profile as a name
server. Exceptions is H25, which was only active for 7 days as
name server and 1 day as end-host. It is an IP address belong
to school of physics under department of science, as verified
by reverse lookups.

Among 21 recursive resolvers of the university campus,
shown by H25 to H46 in Fig. 6(a); 7 of them (including hosts
A and B in Fig. 2) are consistently classified as recursive
resolver, and the rest are re-classified as end hosts (due to
their varying activity). Lastly, 20 mixed servers, shown by
H46 to H66 in Fig. 6(a), are classified consistently though
their behavior sometimes is closer to a end-host or a name
server.

Our results from the Research Institute network are fairly
similar – Fig. 6(b) shows that hosts H1-H13 are consistently
classified as name servers, while hosts H14-H38 are recursive
resolvers and H39-H40 are mixes servers. Unlike the Univer-
sity Campus, 9 recursive resolvers are classified as mixed-
server from 1 to 6 days. They are owned by business units
in the organization, revealing the dynamicity of their DNS
infrastructures.

6) IT Verification of Clustering Results: The IT department
in both organizations verified the top-ranked DNS resolvers
and name-servers found across the 32 days, meaning 100%
accuracy for ground-truth DNS assets, as they are directly
configured and controlled by the IT departments. For the
university campus, three authoritative name servers and three
recursive resolvers directly operated at the university level
are consistently labeled as their true types. One mixed DNS
server configured by our research group is also being clas-
sified correctly. As for the research institute, same results
are obtained for the two authoritative name servers and one
recursive resolver by the organization, and one mixed DNS
server by our lab. Additional to the known DNS assets, we
revealed unknown servers configured by departments of the
two enterprises (we verified their functionality by reverse
DNS lookup and their IP range allocated by IT departments).
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Fig. 7: CCDF: fraction of active hour per day for NATed and
not-NATed end-host IP addresses.

Interestingly, three of the department-level name servers our
method identified were involved as reflectors in a DNS am-
plification attack, and IT was able to confirm that these were
managed by affiliated entities (such as retail stores that lease
space and Internet connectivity from the University) - this
clearly points to the use of our system in identifying and
classifying assets whose security posture the network operators
themselves may not have direct control over.

C. Server Ranking

Our system discovered 46 authoritative name servers and
43 recursive resolvers in the University (a mixed DNS server
are treated as both name server and recursive resolver), and
15 authoritative name server and 27 recursive resolvers at
the Research Institute. However, only 6 top ranked DNS
servers, in each organization, contribute to more than 90%
of outgoing queries and responses. Servers ranking provides
network operators with the popularity of their DNS assets.

D. Clustering of End-hosts: NATed or Not?

We note that NAT gateways (their IP addresses) appear in
our dataset as enterprise assets because of the associated DNS
traffic. We, therefore, believe that NAT gateways (though they
are not directly indicative of end-hosts or servers) should be
considered and classified for comprehensive asset monitoring.
Determining whether an asset is NATed or not-NATed would
help the network operator (IT department) better choose infer-
ence metrics (will be discussed in §V), indicating the end-host
is performing healthily. For example, the operator may choose
relatively less tight thresholds (a wider range of acceptable
values) for NATed hosts than not-NATed ones as they represent
a collection of end-hosts. We, therefore, applied our clustering
algorithm (using the same attributes introduced in §IV-A) to
those IP addresses identified as endhosts, determining whether
they are behind a NAT gateway or not (i.e., two clusters:
NATed and not-NATed).

We, therefore, applied our clustering algorithm (using the
same attributes introduced in §IV-A) to those IP addresses
identified as end-hosts, determining whether they are be-
hind a NAT gateway or not (i.e., two clusters: NATed
and not-NATed). In both networks, all WiFi clients are

behind NAT gateways. Additionally, some specific depart-
ments of the two enterprises use NAT for their wired
clients too. We verified our end-host clustering by reverse
lookup for each enterprise network. Each NATed IP ad-
dress has a corresponding domain name in specific forms
configured by IT departments. For example the University
campus wireless NAT gateways are associated with domain-
names as “SSID-pat-pool-a-b-c-d.gw.unsw.edu.au”,
where “a.b.c.d” is the public IP address of the NAT gateway,
and “SSID is the the WiFi SSID for the University campus
network. Similarly, in the Research institute NAT gateways
use names in form of “c-d.pool.rsch-primary-domain”
where “c.d” is the last two octets of the public IP address of
the NAT gateway in the Research institute.

1) Clustering Results: On 3rd June 2019, our end-host
clustering shows that 337 and 42 of end-hosts IP addresses
are NATed in the University campus and the Research institute
respectively. We note that the two clusters of end-hosts are dis-
tinguished primarily by two attributes, namely actvTimeFrac
– a NATed IP address (representing a group of end-hosts) is
expected to have a longer duration of DNS activity compared
to a not-NATed IP address (representing a single end-host), as
illustrated in Fig. 7, and numExtSrv – a NATed IP address is
expected to have more than one queried public DNS resolvers,
as it is represent many individual hosts each connect with their
selected resolvers on the Internet. All classified not-NATed
hosts contacted less than 10 external DNS servers in both
organizations during 3rd June, while 54% and 26% NATed
IPs in the university and research institute were queried more
than 10 public servers.

2) IT Verification by Domain Names: We verified their
corresponding domain names configured by their IT depart-
ments. Some IPs with domain-names of NAT gateways are
incorrectly classified as not-NATed end-hosts – this is because
their daily DNS activity was fairly low, i.e., less than an hour
with only one external resolver contacted. On the other hand,
not-NATed end-hosts, expected bo be less active but with
long duration and high volume of DNS activity (i.e., almost
the whole day), were misclassified. While we have limited
ground-truth data on DNS assets, parts of our classifications
are verified by their DNS names assigned by IT departments.
For assets classified as NATed end-hosts, we managed to verify
our classification for 77.2% of them on the university campus
and 75.0% in the research institute that have domain-name
patterns dedicated for NAT gateways by IT departments. For
assets classified as not-NATed end-hosts, the majority of them
(more than 90%) in both organizations do not map to any
organizational domain-names, hence implying typical (not-
NATed) end-hosts. It is important to note that an IP address
classified as NAT or not-NATed but could not be verified by
the respective IT department does not mean false classification.
That address could have been allocated by sub-departments
or groups. For example, in our research laboratory, we have
configured several WiFi routers to connect experimental and
commercial devices (e.g., IoT) to the Internet via the campus
network. Those public IP addresses do not necessarily map to
any domain names managed by our university IT department.
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Fig. 8: CCDF: Consistency of end-hosts clustering.

3) Clustering Results Across 32 Days: Looking into the
consistency of end-hosts clustering across 32 days, we note
that more than 90% end-hosts in the University campus
are consistently labeled as NATed over 7 days (as show in
Fig. 8(a)). 52% end-hosts are classified as NATed from 7 days
to 15 days. Those IP addresses are owned by sub-departments
in the university, and re-shuffled within their subnets by the
organizational DHCP servers periodically. As for the Univer-
sity IP addresses get classified as not-NATed (e.g., desktops
with public IP addresses through wired connection), majority
(63%) of them only appear once during 32 days. It is because
of their low-profile activities and daily IP re-shuffling.

Similar observations were obtained from the research in-
stitute (shown in Fig. 8(b)) , except there are 5 IP addresses
appeared as NATed across the 32 days – they belongs to IT
infrastructures controlled by critical scientific basements such
as Australia Telescope National Facilities, which are separated
controlled with more freedom thus not affected by periodically
DHCP reallocation.

V. MONITORING DNS ASSET HEALTH

Having shown how DNS assets in an enterprise network can
be identified and classified based on their network behavior, we
now extend the study to monitor their health continuously. The
objective is to detect anomalous behavior, indicating that the
asset is being misused or attacked, and identify the root cause
of such deviations in behavior. We begin in §V-A by providing
two examples of observable anomalies from our dataset – one
attributable to poor configuration and the other subject to a
DDoS attack. Inspired by these examples, in §V-B we develop
a set of health metrics that can track the behavior of each asset
along various dimensions, and in §V-C develop a method to
label and warn anomalous behaviors based on these health
tracking metrics. Finally, in §V-D we apply our methods to the
32-day dataset from the two organizations and present results
into misuse and attack patterns detected by our methods.

A. Examples Illustrating Anomalous DNS Asset Behavior

By manually inspecting our dataset, we could identify
several behavioral patterns that seemed unusual. In total, we
identify six types of anomalous DNS behaviors, which will
be discussed later in §V-B and Table §VIII. We now begin
by providing a couple of illustrative examples of anomalous

behavior and subsequently develop methods to automatically
detect misbehaviors by tracking various health metrics.

Example 1 – DNS Misuse: We found that one of the author-
itative DNS servers at the Research Institute was responding
with an unexpected high number of “NXDOMAIN” messages,
indicating that corresponding queried domain names do not
exist. Manual investigation revealed that those queried names
were irrelevant (e.g., “www.taobao.com”) to the organization.
In fact, almost a third of DNS queries to this server were
irrelevant. Note that the enterprise network does not manage
the authoritative name server of those queries (as discussed in
§III-B2). However, all of them got responded. We also found
that about 15% of incoming queries were asking for “com”,
which is irrelevant to the enterprise. The enterprise server
responded with an “NXDOMAIN” message. Note that network
administrators may employ certain policies to better manage
their service infrastructure. DNS policies allow administrators
to configure their DNS server to respond in a custom manner
based on DNS queries and DNS clients that send queries [41].
An authoritative name server may, by default, give NXDO-
MAIN responses to irrelevant queries or can be configured
in a way to drop certain queries. In the context of this
example, those NXDOMAIN responses which are unnecessary
and relatively large in volume could have been prevented by
appropriate policy configurations. This example demonstrates
how a poorly configured server can behave outside its intended
function. Such a vulnerability exposes the server to attackers
who aim to launch a denial-of-service attack or use it as a
reflector for attacking others.

Example 2 – DNS Flood Attack: We found one of the
authoritative DNS servers in the University dataset to show a
sustained 142% increase in inbound query rates over a 10-day
period (7-Jun 0:17am till 17-Jun 4:43pm). By investigating
packet traces for this interval, we found 3.3M queries with
the same query name “aids.gov” sourced from 974 external
IP addresses with a certain pattern of activity – each external
source (on average) launched about 300 queries within a
20-second period, and then went idle. We also verified that
this domain name “aids.gov” is irrelevant to our enterprise
network by way of performing a name server lookup. We
note that repetitive queries and/or responses are known pat-
terns in volumetric attacks like DoS and scan. As a result,
the DNS server struggled to keep up with high rates of
requests and managed to process only about 70% of incoming
queries. Lastly, we found 40.9% of the responses during this
period correspond to queries irrelevant to the organization
where almost half of these (irrelevant) responses contained
an “NXDOMAIN” response code.

B. DNS Traffic Health Metrics

Having seen some examples of poor behavior from DNS
servers, we now propose monitoring metrics that can be used
to track the health of each DNS asset in the organization.
Insights drawn from a comprehensive analysis of DNS asset
behaviors (particularly §III-B) inspired the design of four
categories of metrics encompassing four aspects of behavior,
namely, service, functional, network, and volumetric. In other
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Fig. 9: Examples of observed DNS anomalies and their cor-
responding health alerts.

words, our metrics aim to measure the “baseline” behavior of
DNS assets and track their “general” health on the network.
They are able to raise flags indicative of possible perfor-
mance, configuration, or cybersecurity issues for those assets,
triggering “specialized” investigation and/or inspection (e.g.,
involving in DNS exfiltration [2] or DGA-based [3] malware
activities).

Service Behavior: From a border perspective, authoritative
name servers are expected to only serve DNS queries seeking
to resolve domains relevant to the enterprise. Conversely,
recursive resolvers should only send outbound queries for
domains outside of the enterprise – queries for internal do-
mains are internally sent to the enterprise authoritative name
servers without crossing the network border. We therefore
define Non-Enterprise Lookup Fraction (NELF) as the
fraction of query names that are irrelevant to the enterprise
services. A properly configured authoritative name server
should have NELF of 0, while for a recursive resolver this
metric should be 1. Note that “Non-Enterprise Lookups” are
for those domains that are truly beyond the operational scope
of the enterprise network (e.g., taobao.com, google.com, and
umich.edu, as discussed in §III-C2 and §V-A). In practice,
enterprise IT departments could construct and maintain an
allowlist to dynamically add/remove domains managed in their
networks, maximizing the accuracy of NELF. A practical
method would be (reactively) performing name server lookups
(i.e., NS type) for unseen domains to verify whether their
address spaces belong to the enterprise of not.

Functional Behavior: Under ideal conditions, responses
of a properly functioning DNS server are expected to carry
“NOERROR” as response code. However, a DNS query can fail
due to various reasons (discussed in §III-B2), such as the
domain name queried may not exist, an answer cannot be
given, or the server refuses to answer due to some policies
configured. Therefore, we define Lookup Error Fraction
(LEF) for a DNS server as the fraction of its responses that
carry a response code other than NOERROR. A large value
(configurable, say, >30%) for this metric indicates potential
misbehavior that requires further diagnosis.

Network Behavior: Under normal circumstances a query is
associated with a response. However, the network trace often
reveals inbound responses with no outbound queries (e.g., a
reflective attack to a victim whose IP address was spoofed),
as well as outbound queries with no inbound response (e.g., a
malicious internal host launching a DoS attack via the DNS

TABLE VII: Alerts and occurrence frequency (in the fraction
of epochs) for our two example DNS assets.

Direction Profile Alert Exp. 1 Exp. 2
In ↓ Service high NELF 83.7% 85.6%
↓ Functional high LEF 6.6% 0.1%
↓ Network low QSRI 94.5% 15.6%
↓ Network high QSRO 0.1% 0.3%
↓ Volmetric high QRI 0.0% 29.7%
↓ Volmetric high RRI 5.1% 9.8%

Out ↑ Service low NELF 0.0% 0.0%
↑ Functional high LEF 100.0% 20.2%
↑ Network high QSRI 0.8% 0.3%
↑ Network low QSRO 0.0% 84.4%
↑ Volumetric high RRO 5.6% 7.7%
↑ Volumetric high QRO 1.0% 31.1%

cache/proxy). To track such anomalous network behavior, we
define the Query Service Ratio Inbound (QSRI), i.e., ratio of
outbound responses to inbound queries, and Query Service
Ratio Outbound (QSRO), i.e., ratio of inbound responses and
outbound queries. All DNS assets should ideally have these
two metrics as 1, showing the balanced profile of queries and
responses.

Volumetric Behavior: A sudden increase in DNS packet
rates certainly highlights an abnormal incident that may impact
enterprise assets. It is important to note that our primary aim is
to ensure classified assets display healthy behavior (in terms of
the volume of their activities) at relatively slower time scales
instead of looking for anomalies in (close to) real-time. We,
therefore, track hourly counts (rates) of inbound and outbound
queries and responses of individual DNS assets by four
metrics, namely, QryRateIn (QRI), RespRateOut (RRO),
QryRateOut (QRO), and RespRateIn (RRI). That way, the
number of alerts becomes more manageable and meaningful
for a high-level analysis of asset cyber-health (whether they
are involved in volumetric attacks or data exfiltration). Note
that a network operator may configure a different time scale
(e.g., 10 minutes) for these metrics, obtaining insights into
activities relatively faster. These metrics will flag those epochs
in which rates increase more than a configurable threshold
value (a threshold of 30% is adopted in our implementation
as will be discussed in §V-C), suggesting possible volumetric
misbehaviors. Note that the increase in each time epoch is
computed with respect to the previous epoch, representing the
time derivative of rates.

C. Using Health Metrics to Detect Anomalies

Using the health metrics identified above, we build a simple
mechanism to detect and alert various anomalous behaviors of
DNS assets. The set of anomalies we consider in this paper,
illustrated pictorially in Fig. 9, include:

• Misconfiguration: Consider an authoritative DNS server
that has been poorly configured and resolves queries for
domains that it has no authority over (i.e., do not belong
to the enterprise). The exploitation of this by attackers
(e.g., as a reflector) will manifest in an alert when the
NELF metric becomes high, while LEF could also be
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high (in case the queries are malformed or non-existent).
Conversely, a misconfiguration alert is triggered when the
NELF metric falls below a threshold value for a poorly
configured recursive DNS resolver. We acknowledge that
misconfigurations may not necessarily indicate security
events. However, they can highlight an unhealthy state
of operation for the respective DNS asset, and hence
worthwhile to get flagged for further investigations and/or
remedial actions if possible.

• DDoS Attack (query/response/reflector): A distributed
denial-of-service attack on an enterprise DNS server
will manifest in the form of a volumetric rise in QRI,
potentially accompanied by a high value in NELF and/or
LEF. Most queries in DDoS attacks tend to be either
fixed or random domains instead of customizing query
names specific to the victim enterprise. In DDoS, an
infected host could directly generate volumetric queries,
responses, or act as an attack reflector.

• DNS Exfiltration: An infected enterprise host, attempt-
ing to exfiltrate data via DNS, will cause QRO to rise,
potentially accompanied by unanswered queries (rise in
QSRO) and/or lookup errors (rise in LEF). A combination
of these metrics can be used as triggers to conduct
a deeper investigation into exfiltration, e.g., using the
method developed by [2]. One may argue that QRO is
expected to be relatively high for legitimate recursive
resolvers. Therefore, we infer from a combination of
metrics, each with specific thresholds (value ranges) to
cater for some reasonable deviations (discussed in §V-D).

• Scans: The presence of malware in the enterprise that
performs outbound scans can be detected by monitoring
for a rise in outbound queries (QRO), potentially ac-
companied by unanswered queries (rise in QSRO) and/or
lookup errors (rise in LEF).

In what follows we continuously track the health metrics
of the various DNS assets identified in the two enterprise
networks by our earlier clustering algorithm, and evaluate our
ability to identify anomalous behaviors indicative of miscon-
figurations and/or attacks. Note that our proposed metrics and
alerts from DNS behavioral monitoring could be consumed
by SIEM platforms and/or combined with security appliances
to verify whether an enterprise host is indeed involved in
malicious communications or not. Such combined inferences
are beyond the scope of this paper.

D. Insights from Two Enterprise Networks

We applied the proposed traffic health metrics to our 32-
day DNS traces captured from both organizations, comprising
the assets as identified earlier in Tables V and VI for the
University (67 DNS assets) and Research Institute (40 DNS
assets) respectively. The metrics are computed each epoch (of
one hour), and our first step is to identify epochs wherein
the health metrics deviate significantly from their expected
values. In general, DNS assets in the University raise more
alerts than the research institute. In order to limit the number
of alerts, we choose a margin value that is at the elbow points
in a curve, which is at around the 30% mark. This is also

consistent with the threshold values used by many state-of-
the-arts security appliances, e.g., from Palo Alto [46], Fortinet
[26] and Cisco [17]. While organizations are free to tune the
threshold alerting values for each health metric to suit their
environments, in this work for simplicity we will maintain it
at 30%. In what follows we first examine two DNS assets that
exhibited high rates of alerts (as shown in Table VII), followed
by a general overview of alerts across the two organizations.
We then design an inference engine that combines the health
metric alerts and deduces the nature of the underlying anomaly
causing these alerts using the relationships identified earlier in
§V-C.

Example 1: A DNS server in the University Law Depart-
ment serves as both authoritative name server and recursive
resolver. It exhibited unhealthy elevated NELF metric for
83.7% of epochs, and unhealthy depressed QSRI for 94.5%
of epochs, indicating its misconfiguration was being ex-
ploited by attackers for a potential DDoS attack. Queries for
“d.c.b.a.in-addr.arpa” were coming from many external
IP addresses, and the server was responding to a vast majority
(over 90%) of them, thereby wasting its resources. The asset
also exhibited an unhealthy LEF metrics for a non-negligible
fraction (6.6%) of epochs, indicating possible proxying scans.
On 29-Jun, this server sent queries to 131 external IP ad-
dresses, of which 18 responded – this asset is likely being
utilized as a proxy to perform slow reconnaissance scans to
discover the availability of DNS servers on the Internet, as
analyzed and explained in detail in our other work [36].

Example 2: A DNS server in the University Engineering
Department also exhibited many inbound health alerts, such
as high NELP for 85.6% of epochs, low QSRI for 15.6%
of epochs, and high QRI for 29.7% of epochs. Investiga-
tion confirmed that it was misconfigured and exploited by
attackers using it to launch reflection attacks with queries
for domain names such as dnsscan.shadowserver.org,
researchscan541.eecs.umich.edu6, and nil. The server
was also giving outbound alerts for high LEF, QSRO,
and QRO, resembling DNS exfiltration behaviors. Indeed,
our post-hoc analysis showed that on 30-Jun it sent out
709K DNS queries with pattern SARICA[10digits].com
toward an IP address in Turkey, and on the next day, an-
other 964K DNS queries to the same server with pattern
akbank[9digits].com.tr – those random 9/10 digits are
very likely encoded version of the exfiltrated data, as high-
lighted in [2].

Alerts across the two organizations: Certain DNS assets –
35% in the University and 13% in the research institute – were
consistently flagged by alerts in each epoch. These turn out to
be largely Authoritative DNS servers that are publicly facing,
and hence exposed to inbound DNS attacks (interesting, most
of these were managed by sub-departments or third-parties,
rather than central IT in the organization). Recursive resolvers
in both organizations raised relatively fewer alerts, typically
in QRO and RRI during some epochs.

6Although some of the domain names seem to be designed for research-
based scans, they are indeed misused by malicious actors to launch the
relection attacks on 30-Jun as discussed in Example 2.
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TABLE VIII: DNS anomalies considered in this paper, their
indicative alerts, and required post-hoc analysis.

DNS Anomaly Type Indicative Alerts Post Analysis
A1: Misconfiguration ↑ NELF & LEF None
A2: Query DDoS ↑ QSRI & QRI Flow profile
A3:Response DDoS ↓ QSRO & ↑ RRI Flow profile
A4: Attack reflector ↑ QRI & RRO Flow profile
A5: Generating scan ↑ LEF & ↓ QSRO Flow profile
A6: Data exfiltration ↑ LEF & QRO & ↓ QSRO Query content

A4’: Reflector (after fix) ↑ QRI & RRO Flow profile

Inferring anomalies from alerts: Tracking the health
metrics (aka “symptoms”) allows us to make inferences about
the underlying anomalies (aka “diseases”). We built a simple
inference engine using the Codebook Correlation technique
used extensively in Network Management for event correlation
[33]. A causality graph (as shown in Fig. 9) was built, a
codebook correlation model was derived, and then “alerts”
from the 32-day dataset were looked up in the codebook to
infer the underlying “anomaly” – some examples are listed in
Table VIII. The outcomes, in terms of the health of the DNS
assets across the two organizations, are shown in Fig. 10. By
employing these health metrics, one could isolate certain assets
that exhibit anomalous DNS behaviors. It is important to note
that determining the actual nature of such anomalies (whether
misconfiguration or security events) would certainly require
further analysis of corresponding flows and/or packet contents
(like works in [36] and [2]), which is beyond the scope of this
paper.

Our first observation is that misconfiguration is a significant
problem across both organizations – 56% and 33% of DNS
assets in the University and research institute, respectively,
serve DNS queries not relevant to the enterprise. This is a
serious concern – Authoritative DNS servers are resolving
non-enterprise queries and thereby being exposed to random
queries, which can lead to denial-of-service; while recursive
resolvers are resolving queries for non-enterprise hosts, thus
being made available to attackers as reflectors for DDoS
attacks on spoofed victims. Indeed, our analysis shows that
if these DNS configurations were to be rectified, the number
of DNS assets being used as reflectors falls from 25% to 3% in
the University, and from 20% to 0% in the Research Institute
(shown as the rightmost bars of Fig. 10(a) and 10(b)).

The second most significant concern is that there is evidence
of scans emanating from both organizations, as indicated
by epochs of high lookup failures (LEF) and low success
of responses (QSRO). These could indicate the possibility
of malware lurking within organizations and using DNS to
perform scans on other Internet hosts. Further investigation of
root causes and confirming whether flagged hosts are possibly
infected or misconfigured are beyond the scope of this paper.

Finally, we note that there are epochs in which some data
exfiltration-like symptoms [2] are seen in the DNS behavior
of university assets. Such concerns have been brought to
the attention of our central IT department, which is keen
to obtain any sign of DNS malware across the enterprise
network. Again, knowing the hosts complicit in this may
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Fig. 10: Severity of DNS anomalies of each enterprise asset
in both organizations.

require analysis of traffic within the organization (our traffic
feed at the border does not tell us which internal host made
the DNS request to the organizational cache/proxy), which is
beyond the scope of this paper. Similarly, a few assets in the
Research institute occasionally display anomalous volumetric
patterns resembling DDoS attacks on external victims.

While we do not intend to diagnose and confirm every
DNS problem, which may require a comprehensive specialized
post-analysis, our method continuously assesses the general
health of each DNS asset in the organization. It flags po-
tential issues that can be investigated further by the network
operator. It provides them with actionable intelligence to
rectify misconfigurations, amend firewall policy rules, rate-
limit query rates, etc., to better protect their DNS assets and
infrastructure. As an example, our system revealed volumetric
and reflection-like misbehaviors from as well as misconfigura-
tions in poorly managed DNS servers owned and operated by
affiliated entities (e.g., retail stores) and sub-departments. The
IT department thereafter communicated those issues with the
respective teams instead of directly taking remedial actions.
Recent measurements indicate some of those behaviors have
been corrected.

VI. CONCLUSION

Enterprise networks are often vulnerable to DNS-based
cyber attacks due to insufficient monitoring of DNS traffic.
In this paper, we have developed methods to classify en-
terprise assets and continuously track their cyber-health by
passively analyzing DNS traffic crossing the network border
of an organization. We performed a comprehensive analysis
of DNS packets from two large organizations to identify asset
profiles by network, functional, and service characteristics. We
highlighted the behavior of enterprise hosts, either benign and
anomalous. We then trained unsupervised machine learning
models by DNS traffic attributes that classify the DNS assets,
including authoritative name server, recursive resolver, mixed
DNS server, and end-hosts behind or not behind the NAT.
Lastly, we developed metrics to track the cyber health of
enterprise DNS assets continuously. We identified several
instances of improper configurations, data exfiltration, DDoS,
and reflection attacks. Results of our real-time application have
been verified with IT departments of the two organizations
while revealing unknown knowledge that helps them enhance
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their security management without incurring risks and exces-
sive labor costs.

REFERENCES

[1] J. Abley, O. Gudmundsson, M. Majkowski, and E. Hunt, “Providing
Minimal-Sized Responses to DNS Queries That Have QTYPE=ANY,”
RFC 8482, Jan 2019, doi: 10.17487/RFC8482.

[2] J. Ahmed, H. Habibi Gharakheili, Q. Raza, C. Russell, and V. Sivaraman,
“Monitoring Enterprise DNS Queries for Detecting Data Exfiltration
From Internal Hosts,” IEEE Transactions on Network and Service
Management, Sep 2020.

[3] J. Ahmed, H. Habibi Gharakheili, C. Russell, and V. Sivaraman, “Au-
tomatic Detection of DGA-Enabled Malware Using SDN and Traffic
Behavioral Modeling,” IEEE Transactions on Network Science and
Engineering, May 2022.

[4] M. Almeida, A. Finamore, D. Perino, N. Vallina-Rodriguez, and
M. Varvello, “Dissecting DNS Stakeholders in Mobile Networks,” in
Proc. ACM CoNEXT, Incheon, Republic of Korea, Dec 2017.

[5] M. Anagnostopoulos, G. Kambourakis, S. Gritzalis, and D. K. Y.
Yau, “Never say never: Authoritative TLD nameserver-powered DNS
amplification,” in Proc. IEEE/IFIP NOMS, Taipei, Taiwan, Apr 2018.

[6] M. Anagnostopoulos, G. Kambourakis, P. Kopanos, G. Louloudakis, and
S. Gritzalis, “DNS Amplification Attack Revisited,” Comput. Secur., Nov
2013.

[7] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From Throw-away Traffic to Bots: Detecting
the Rise of DGA-based Malware,” in Proc. USENIX Security, Bellevue,
WA, USA, Aug 2012.

[8] R. Arends, R. Austein, D. M. M. Larson, and R. Rose, “DNS
Security Introduction and Requirements,” RFC 4033, Mar 2005,
doi:10.17487/RFC4033.

[9] M. Bykova, S. Ostermann, and B. Tjaden, “Detecting Network Intrusions
via a Statistical Analysis of Network Packet Characteristics,” in Proc.
IEEE SST, Athens, OH, USA, Mar 2001.

[10] M. Bykova and S. Ostermann, “Statistical Analysis of Malformed
Packets and Their Origins in the Modern Internet,” in Proc. ACM IMC,
Marseille, France, Nov 2002.

[11] CAPEC, “CAPEC-297: TCP ACK Ping,” https://capec.mitre.org/data/
definitions/297.html, 2021, accessed: 2021-12-18.

[12] Y. Chen, M. Antonakakis, R. Perdisci, Y. Nadji, D. Dagon, and W. Lee,
“DNS Noise: Measuring the Pervasiveness of Disposable Domains in
Modern DNS Traffic,” in Proc. IEEE/IFIP DSN, Atlanta, Georgia, USA,
Jun 2014.

[13] H. Choi and H. Lee, “Identifying Botnets by Capturing Group Activities
in DNS Traffic,” Computer Networks, vol. 56, no. 1, pp. 20–33, Feb
2012.

[14] T. Chung, R. van Rijswijk-Deij, D. Choffnes, D. Levin, B. M. Maggs,
A. Mislove, and C. Wilson, “Understanding the Role of Registrars in
DNSSEC Deployment,” in Proc. ACM IMC, London, UK, Nov 2017.

[15] CISA, “Alert (TA13-088A) DNS Amplification Attacks,” https://www.
us-cert.gov/ncas/alerts/TA13-088A, 2018, accessed: 2018-05-01.

[16] Cisco Blog, “Overcoming the DNS Blind Spot,” https://blogs.cisco.com/
security/overcoming-the-dns-blind-spot, 2016, accessed: 2019-05-15.

[17] Cisco Systems, “Protection Against Distributed Denial of Service At-
tacks,” https://bit.ly/2WUbvvK, 2018, accessed: 2018-11-2.

[18] Cloudflare, “What Happened Next: The Deprecation of ANY,” https:
//blog.cloudflare.com/what-happened-next-the-deprecation-of-any/,
2019, accessed: 2019-6-17.

[19] CloudFlare, “What is an ACK Flood DDoS Attack?” https:
//www.cloudflare.com/en-au/learning/ddos/what-is-an-ack-flood/, 2021,
accessed: 2021-12-18.

[20] Deloitte. (2018) Elevating Cybersecurity on the Higher Education Lead-
ership Agenda. https://bit.ly/36w2pLx.

[21] J. Dickinson, S. Dickinson, R. Bellis, A. Mankin, and D. Wessels, “DNS
Transport over TCP - Implementation Requirements,” RFC 7766, Mar
2016, doi:10.17487/RFC7766.

[22] S. Dickinson, D. Gillmor, and T. Reddy, “Usage Profiles for DNS over
TLS and DNS over DTLS,” RFC 8310, doi:10.17487/RFC8310.

[23] DPDK Project, “Developer Quick Start Guide Learn How To Get
Involved With DPDK,” https://www.dpdk.org, 2020, accessed: 2020-01-
24.

[24] EfficientIP, “A New Era Of Network Attacks,” Global DNS Threat
Report, 2018.

[25] C. Fachkha, E. Bou-Harb, and M. Debbabi, “Fingerprinting Internet
DNS Amplification DDoS Activities,” in Proc. NTMS, Dubai, United
Arab Emirates, Mar 2014.

[26] Fortinet, “FortiDDoS and Verisign DDoS Protection Service,” https://
bit.ly/2DsDObH, 2018, accessed: 2018-11-2.

[27] Y. Fu, L. Yu, O. Hambolu, I. Ozcelik, B. Husain, J. Sun, K. Sapra,
D. Du, C. T. Beasley, and R. R. Brooks, “Stealthy Domain Generation
Algorithms,” IEEE Transactions on Information Forensics and Security,
Jun 2017.

[28] H. Gao, V. Yegneswaran, Y. Chen, P. Porras, S. Ghosh, J. Jiang, and
H. Duan, “An Empirical Reexamination of Global DNS Behavior,” in
Proc. ACM SIGCOMM, Hong Kong, China, Aug 2013.

[29] H. Gao, V. Yegneswaran, J. Jiang, Y. Chen, P. Porras, S. Ghosh,
and H. Duan, “Reexamining DNS From a Global Recursive Resolver
Perspective,” IEEE/ACM Transactions on Networking, vol. 24, no. 1, pp.
43–57, Feb 2016.

[30] S. Hao, N. Feamster, and R. Pandrangi, “Monitoring the Initial DNS
Behavior of Malicious Domains,” in Proc. ACM IMC, Berlin, Germany,
Nov 2011.

[31] S. Hao, A. Kantchelian, B. Miller, V. Paxson, and N. Feamster, “PREDA-
TOR: Proactive Recognition and Elimination of Domain Abuse at Time-
Of-Registration,” in Proc. ACM CCS, Vienna, Austria, Oct 2016.

[32] P. Hoffman and P. McManus, “DNS Queries over HTTPS (DoH),” RFC
8484, Oct 2018, doi:10.17487/RFC8484.

[33] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo, “A Coding
Approach to Event Correlation,” in Proc. IEEE/IFIP IM, Santa Barbara,
CA, USA, May 1995.

[34] Y. Lee and N. Spring, “Identifying and Analyzing Broadband Internet
Reverse DNS Names,” in Proc. ACM CoNEXT, Incheon, Republic of
Korea, 2017.

[35] M. Lyu, H. Habibi Gharakheili, C. Russell, and V. Sivaraman, “Mapping
an Enterprise Network by Analyzing DNS Traffic,” in Proc. PAM, Puerto
Varas, Chile, Mar 2019.

[36] ——, “Hierarchical Anomaly-Based Detection of Distributed DNS
Attacks on Enterprise Networks,” IEEE Transactions on Network and
Service Management, Mar 2021.

[37] M. Lyu, H. Habibi Gharakheili, and V. Sivaraman, “A Survey on
DNS Encryption: Current Development, Malware Misuse, and Inference
Techniques,” ACM Comput. Surv., Jul 2022.

[38] X. Ma, J. Zhang, J. Tao, J. Li, J. Tian, and X. Guan, “Dnsradar:
Outsourcing malicious domain detection based on distributed cache-
footprints,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 11, pp. 1906–1921, Nov 2014.

[39] D. C. MacFarland, C. A. Shue, and A. J. Kalafut, “The best bang for
the byte: Characterizing the potential of DNS amplification attacks,”
Computer Networks, Apr 2017.

[40] S. Marshall, “CANDID: Classifying Assets in Networks by Determining
Importance and Dependencies,” University of California at Berkeley,
Electrical Engineering and Computer Sciences, Tech. Rep., May 2013.

[41] Microsoft Docs, “Use DNS Policy for Applying Filters on DNS
Queries,” https://docs.microsoft.com/en-us/windows-server/networking/
dns/deploy/apply-filters-on-dns-queries, 2021, accessed: 2022-4-2.

[42] J. Mirkovic and P. Reiher, “A Taxonomy of DDoS Attack and DDoS
Defense Mechanisms,” ACM SIGCOMM Computer Communication
Review, Apr 2004.

[43] G. C. M. Moura, S. Castro, J. Heidemann, and W. Hardaker,
“TsuNAME: Exploiting Misconfiguration and Vulnerability to DDoS
DNS,” in Proc. ACM IMC, Virtual Event, Nov 2021.

[44] M. Müller, G. C. M. Moura, R. de O. Schmidt, and J. Heidemann,
“Recursives in the Wild: Engineering Authoritative DNS Servers,” in
Proc. ACM IMC, London, United Kingdom, Nov 2017.

[45] NoviFlow, “NoviSwitch 2122 High Performance Open-
Flow Switch,” https://noviflow.com/wp-content/uploads/
NoviSwitch-2122-Datasheet-1.pdf, 2018, accessed: 2018-28-1.

[46] Palo Alto Networks, “DoS and Zone Protection Best Practices,” https:
//bit.ly/2HQOMwU, 2018, accessed: 2018-28-1.

[47] W. Rweyemamu, T. Lauinger, C. Wilson, W. K. Robertson, and E. Kirda,
“Clustering and the Weekend Effect: Recommendations for the Use of
Top Domain Lists in Security Research,” in Proc. PAM, Puerto Varas,
Chile, Mar 2019.

[48] S. Schüppen, D. Teubert, P. Herrmann, and U. Meyer, “FANCI : Feature-
based Automated NXDomain Classification and Intelligence,” in Proc.
USENIX Security, Baltimore, MD, USA, Aug 2018.

[49] S. Son and V. Shmatikov, “The Hitchhiker’s Guide to DNS Cache
Poisoning,” in Proc. SecureComm, Singapore, Sep 2010.



18

[50] R. van Rijswijk-Deij, A. Sperotto, and A. Pras, “DNSSEC and Its
Potential for DDoS Attacks: A Comprehensive Measurement Study,”
in Proc. ACM IMC, Vancouver, BC, Canada, Nov 2014.

[51] J. Vijayan, “Frequency & Costs of DNS-Based Attacks Soar,” https:
//ubm.io/2Nxx5Cr, 2018, accessed: 2018-05-16.

[52] D. Yang, Z. Li, and G. Tyson, “A Deep Dive into DNS Query Failures,”
in Proc. USENIX ATC, Virtual Event, Jul 2020.

Minzhao Lyu received his B.Eng. (First Class
Hons.) and Ph.D. degree from the University of New
South Wales, Sydney, Australia in 2017 and 2022
respectively. He has worked at CSIRO’s Data61,
Sydney, Australia as a student fellow and at National
Telemedicine Center of China as a research intern.
He is currently a Postdoctoral Research Associate at
the University of New South Wales, Sydney, Aus-
tralia. His research interests include network data
analytics, network security, programmable networks,
and applied machine learning.

Hassan Habibi Gharakheili received his B.Sc. and
M.Sc. degrees of Electrical Engineering from the
Sharif University of Technology in Tehran, Iran in
2001 and 2004 respectively, and his Ph.D. in Elec-
trical Engineering and Telecommunications from the
University of New South Wales (UNSW) in Sydney,
Australia in 2015. He is currently a Senior Lecturer
at UNSW Sydney. His research interests include
programmable networks, learning-based networked
systems, and data analytics in computer systems.

Craig Russell received his Ph.D. in Applied Mathe-
matics from Macquarie University, Sydney in 1997.
He is currently Director of Engineering at Canopus
Networks and Adjunct Senior Lecturer at UNSW.
He was a principal research engineer at CSIRO’s
Data61, Sydney, Australia, and has previously held
commercial roles in the telecommunications and
software industries. He has design, implementation
and operational experience in a wide range of ad-
vanced telecommunications equipment and protocols
as well as experience in developing software appli-

cations. His research interests are in software-defined networking and the
application of machine learning techniques to solve problems in network
security.

Vijay Sivaraman received his B. Tech. from the
Indian Institute of Technology in Delhi, India, in
1994, his M.S. from North Carolina State University
in 1996, and his Ph.D. from the University of
California at Los Angeles in 2000. He has worked
at Bell-Labs as a student Fellow, in a silicon valley
start-up manufacturing optical switch-routers, and
as a Senior Research Engineer at the CSIRO in
Australia. He is now a Professor at the University of
New South Wales in Sydney, Australia. His research
interests include Software Defined Networking, net-

work architectures, and cyber-security particularly for IoT networks.


