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Abstract

A partition of an integer n is graphical if it is the degree sequence of a simple,
undirected graph. It is an open question whether the fraction of partitions of n which
are graphical approaches 0 as n approaches infinity. A partition 7 is basic if the number
of dots in its Ferrers graph is minimum among all partitions with the same rank vector
as .

In this paper, we investigate graphical partitions via basis partitions. We show how
to efficiently count and generate graphical basis partitions and how to use them to count
graphical partitions. We give empirical evidence which leads us to conjecture that, as n
approaches infinity, the fraction of basis partitions of n which are graphical approaches
the same limit as the fraction of all partitions of n which are graphical.

1 Introduction

A partition of a non-negative integer n is a sequence of positive integers 7 = (71, 72,...,T)
satisfying my > 7y > ... > w5 and 7 + 73 + ...+ 7, = n. Let P(n) be the set of
partitions of n, where P(0) contains only the empty partition A, and let p(n) = |P(n)|. The
partition 7 € P(n) is said to be graphical if there exists a simple undirected graph with
degree sequence w. Since the sum of the degrees of the vertices of a graph equals twice
the number of edges, a necessary condition for 7 € P(n) to be graphical is that n is even.
(For convenience, we consider A to be graphical.) Let G(n) denote the set of graphical

partitions of an even integer n, and let g(n) = |G(n)|. It is an open question, originally
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posed by H. Wilf, whether lim,, .., g(n)/p(n) = 0. The best upper bound known is that
lim,—cg(n)/p(n) < 0.25, due to Rousseau and Ali [11]. Recent methods for efficiently
counting and generating G/(n) [2, 3] allow g(n)/p(n) to be tabulated, but so far these

methods have given no insight into the limiting behavior of the ratio.

Several necessary and sufficient conditions to determine whether an integer sequence
(71,...,7s) is graphical have been proposed in the literature. Seven such criteria have
been listed and shown to be equivalent in [13]. Among these, the most well known is the

Erdos-Gallai condition stated below:

n

k
Zm <k(E-1)+ Z min(k,7;), k=1,...,s. (1)
=1 7=k+1

For a proof, see [8], pp 59-61.

A lesser-known condition is the Nash-Williams condition, which works with the rank
vector of the partition. For a partition 7 = (7y,...,7;), the associated Ferrers diagram is
an array of s rows of dots, where row 7 has 7; dots and rows are left justified. The conjugate
partition of 7 is denoted by ©’ = (n{,...,n}), where t = 7y and 7/ is the number of dots in
the i-th column of the Ferrers diagram of #. The Durfee square of 7 is the largest square
sub-array of dots in the Ferrers diagram of 7. Let d denote the length of a side of the Durfee
square. The rank vector of 7, defined in [7], is the vector r = [ry,79,...,74] whose entries
r; = m; — m, are the successive ranks of Atkin [1]. The Nash-Williams condition, necessary

and sufficient for 7 to be graphical, is:

Zk:(m+1)§0, k=1,....d (2)

=1
This condition is shown in [11] to be equivalent to the Erdés-Gallai condition.

Since the Nash-Williams condition uses only the rank vector of a partition to determine
whether the partition is graphical, it becomes natural to consider families of partitions

defined by their rank vectors.

As an example, let R(n) be the set of partitions of n for which all rank vector entries are
negative. It was noted by Erdés and Richmond [6] that all partitions in R(n) are graphical
and hence g(n) > r(n) = |R(n)|. They observe that r(n) = p(n) — p(n — 1) from a result
of Bressoud [5] and that (p(n) — p(n — 1))/p(n) ~ 7/v/6n, from Roth and Szekeres [10], to



conclude that

—  Vng(n)

0 T
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p(n) V6
Although every partition has a unique rank vector, the converse it not true. For example,
the partitions (8,6,4,3,3,3,1) and (5,4, 3,3) both have rank vector [1,0, —1]. Gupta, in [7],
gives a one-to-one correspondence between rank vectors and a subclass of partitions which
he calls basis partitions. Let r(7) be the rank vector of 7 = (7q,...,7,) and let the weight

of 7 be || =71 + ...+ 7. A partition 7 € P(n) is basic iff
7 = min{ || | x(x') = x(m)}.

Informally, = is basic if and only if the weight of 7 is minimum over all partitions with the
same rank vector as w. The set B(n) of basis partitions is the set of all partitions of n which

are basic.

For a partition = with rank vector r(7) = [r1,...,74], define the co-rank vector of =,
c(m) = [e1,...,¢q] by ¢; = —r; for 1 < i < d. Then the Nash-Williams condition can be

restated as
k

dAei=1)20, k=1,....d. (3)

=1
In Section 2, we survey some results on basis partitions. In Section 3, we develop a
recurrence for counting graphical basis partitions and compare the fraction of basis parti-
tions of n which are graphical to the fraction of all partitions of n which are graphical. In
Section 4, we present an algorithm to generate graphical basis partitions. The algorithm
requires only constant amortized time per partition. In fact, this algorithm, without the
test for graphical, is the first constant amortized time algorithm we know of for generating

basis partitions. Suggestions for further research follow in Section 5.

2 Results on Basis Partitions

We include here only results on basis partitions which will be required in this paper. For

further information on basis partitions, including proofs omitted in this section, see [7, 9].

We focus first on the existence and uniqueness of basis partitions.



Theorem 1 [Gupta] Among all partitions with the same rank vector v = [ry,..., 71|, there

s just one with minimum weight.

The following simple test will determine whether a partition is basic.

Lemma 1 A partition © with Durfee square of size d is basic if and only if both

Tg=d or  wy=d and (4)

forl<i<d: m=my or 7w =7, (5)

Gupta [7] notes the following bijection, where p(n, k) denotes the total number of par-

titions of n into parts of size at most k.

Theorem 2 [Gupta] Let v = [rq,...,r4] and let © be the basis partition of r. The number

of partitions of n with rank vector r is p(m,d) where m = (n — |x|)/2.

Let B(n,d) be the set of basic partitions of n which have a rank vector of length d
and let b(n,d) = |B(n,d)|. A partition can be classified according to the length of its rank
vector r and the weight ng of the basis partition associated with r. Combining this with

Theorem 2 gives the following.

Corollary 1 We have

p(n) = Zn: Zn: b(ng, d)p((n —ng)/2, d),

d=0 ng=0

where p(n,d) = 0 if n is not an integer.
A recurrence for counting B(n,d) is given in [9]:

Theorem 3 The number b(n,d) of basis partitions of n with Durfee square of size d is: 1,

ifn=d=0; otherwise, 0, if n <0 or d <0; and otherwise,

b(n,d)=b(n—d,d)+bn—2d+1,d—1)+b(n—3d+1,d—1).
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Figure 1: Deletion of dots in boxes of original partition results in a smaller basis partition

It has been shown in [7] that for a given rank vector, the corresponding basis partition
is easy to construct. However, in Section 4, given a rank vector, we will need an explicit
formula for the weight of its basis partition in terms of the rank vector elements. We now

state and prove such a result:

Theorem 4 For a rank vector v = [ry,rq,...,74], the corresponding basis partition T has
weight |7| = n(r) where
d-1
n(r) = d? 4 d|rg| + Z il — riva]- (6)
=1
Proof. Let m be the basis partition corresponding to the given rank vector r. Assume that
rq4 > 0 (the other case, ry < 0 can be handled similarly). Then by (4) above, 74 = d 4+ 74
and 7, = d. Further, by (5) above, either my_y = d + r4 or 7;_; = d. Now we delete the
dots in row d and column d of the Durfee square (a total of 2d — 1 dots deleted), as also 74
dots from each m; for ¢ < d (another dr, deleted). In the new Ferrers diagram (see Figure
(1)), either row d —1 or column d — 1 has exactly d — 1 dots. Thus, the new Ferrers diagram
satisfies both properties (4) and (5) above with d — 1 instead of d, and is therefore a basis
for the rank vector v/ = [ry — rg, 72 — r4,...,7q—1 — 74]. This gives us a recursive formula

for the number of dots in the Ferrers diagram:
n(r) = 2d — 1+ d|ry| + n(r'), (7)

which holds similarly in the case that r4 < 0. It is easy to verify that the expression in (6)
satisfies this recurrence. The recurrence holds for d > 1. For d = 0, n(r) is defined to be

Zero. O



3 Counting Graphical Basis Partitions

Let H(n) be the set of basis partitions of n which are graphical and let H(n,d) be the set
of graphical basis partitions of n with Durfee square of size d. Denote the size of these
sets by h(n) and h(n,d), respectively. By the Nash-Williams condition (2), 7 is a graphical
partition of ng with rank vector r if and only if any partition of n with rank vector r is
graphical. By Theorem 2, the number of such partitions of n is p((n — ng)/2, d) where d is
the length of r. Thus classifying graphical partitions of n according to the length d of their

rank vector and the weight of the corresponding basis partition gives

d=n n n
g(n) =Y g(n,d)=73" > h(no,d)p((n—mno)/2, d).
d=0 d=0ng=0

Since p(n, k) is easy to compute, a fast algorithm for computing h(n,d) can be used for

efficient computation of g(n).

Let H(n,d,t,s) be the set of basic partitions of n with Durfee square of size d whose

co-rank vector ¢ = [¢q,. .., ¢q] satisfies:
k
dei=1-1)>0, k=1,....d (8)
=1
and
d
dei—=1—1) > s. (9)
=1

Lemma 2 For even n, H(n,d,0,0)= H(n,d).

Proof. When s = 0, condition (9) is implied by condition (8) and when ¢ = 0, the condition
(8) is the Nash-Williams criterion (3) for graphical partitions. O

Let h(n,d,t,s) denote the size of H(n,d,t,s). The recurrence below allows h(n,d,t,s)

to be computed within time polynomial in 7.

Theorem 5 For integers n,d,t,s with s,n,d > 0, h(n,d,t,s) can be defined recursively as
follows.
Ifn < d?:
h(n,d,t,s)=0.
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Figure 2: The mapping for cases (a), (b), and (c¢) in the proof of Theorem 5.



If n = d?:

ft < — < = :
h(n,d,t,s):{(l) ift<—1ands < —d(1+1);

otherwise.
Ifn>d=1:
2 ifn+t+s<0;
h(n,d,t,s) = 1 if-n+t+s+2<0;
0 otherwise.
If n > d? > 1:
[(n—d?)/d]
h(n,d,t,s)= Z hin—d(2+|j])+1, d—1, t+ 7, max{0,s+¢+j+1}).

j==(n=d?)/d]

Proof. There are no partitions of n with Durfee square of size d if n < d?. If n = d?, the
unique partition 7 of n with Durfee square of size d has co-rank vector ¢ = [0,...,0], so

conditions (8) and (9) become

k
0 < Y (ei—1-t)=—k(1+t), k=1,....d
1=1
and
d
s < Z(Ci—l—t): —d(1+1).
=1

These are satisfied iff t < —1 and s < —d(1 + 1).

The only basis partitions of n with Durfee square of size 1 are 7 = (n) and its conjugate
' = (1,1,...,1). For 7, the co-rank vector is ¢(7) = [1 — n] so conditions (8) and (9)
become

0 <ng—-1—-t=1-n-1-t

and

s < ep—1l—-t=1—-n-1-4,

which are both satisfied iff n + ¢+ s < 0, since s > 0. TFor 7', the co-rank vector is
c(7’') = [n — 1] so conditions (8) and (9) become n —1—-1—-¢t>0andn—-1—-1—1t> s,
which are both satisfied iff

—n+t+s+2<0, (10)



since s > 0. Note that if n + ¢+ s <0, then since n > 1,
—n+t+s+2=(n+t+s)—2n—-1)<-2(n-1)<0,

so that if 7 € H(n,1,s,t) then 7’ € H(n,1,s,t) and therefore h(n,1,s,t) = 2 in this case.
Otherwise, H(n,1,s,t) contains only ' if (10) holds and is empty if (10) does not hold.

If n > d* > 1, assume inductively that the theorem holds for any (n’,d’,t', s} satisfying
the hypotheses of the theorem, with n’ < n.

Let 7 = (mq,...,7ms) € H(n,d,t,s). Since 7 is basic, by (4) either 7y = d or 7/, = d. So
7 falls into one of the three mutually exclusive cases (a) 7q = 7/, = d, (b) 74 > d, or (c)

7!, > d. Define O(7) = o, where o is the partition obtained from the Ferrers diagram of =

as follows:

(a) If 7y = 7/, = d: delete row d and column d of w. (See Figure 2(a).)

(b) If 74 > d: delete row d and columns d through w4 of 7. (See Figure 2(b).)

(c) If @/, > d: delete rows d through 7/, and column d of 7. (See Figure 2(c).)

Note that in all cases, ¢ has Durfee square of size d — 1. Further, in case (a), since 7
is basic, either 74—y = d or 7/,_; = d, so that the resulting o is basic. Similarly, in (b) and
(c), either mq_y = 7g or 7/_; = 7}, so that 04—y =d—1or o/, ; =d—1, so o will be basic.
Let ¢ = [eq, ..., ¢q] be the co-rank vector of 7. We show now how to count the partitions 7
which fall into each of the three cases.

For case (a), O(n) =0 € B(n —2d+ 1,d—1) and ¢(7) = [ey,...,¢4-1,0] and ¢(o) =
[c1,...,¢q-1]. Note that 7 € H(n,d,t,s) if and only if 7 satisfies conditions (8) and (9) for

s and t and this occurs if and only if o satisfies

k
dAei=1-1)>0, k=1,....d-1
=1
and
d—1
Z(Ci—l—t)Zs—cd—l—l—l—t25+1—|—t,
=1

that is, if and only if 0 € H(n —2d + 1,d — 1,¢,max{0,s+ ¢t + 1}).

For case (b), let j = 74 —d. Then O(7) =0 € B(n —d(2+j)+1,d—1) and ¢(7) =
[c1,¢2,...,¢4-1,—F] and ¢(0) = [e1+],c24 ], .., ca—1+]]. Asin case (a), it can be checked
that 7 € H(n,d,t,s)ifand onlyif 0 € B(n—d(2+j)+1,d—1,t+j,max{0,s+1+7+j)}.



For case (¢), let j = 7, —d. Then O(r) =0 € B(n—d(2+j)+1,d—1) and ¢(7) =
[c1,¢2,...,¢4-1,]] and e(0) = [e1 — F, 2 — J,. .., ¢4—1 — j]. As in case (a), it can be checked

that 7 € H(n,d,t,s)ifand onlyif 0 € B(n—d(2+j)+1,d—1,t—j,max{0,s+ 1+t —j}).

Combining the contributions from cases (a), (b), and (c), respectively, we get

h(n,d,t,s) = h(n—2d+1,d—1,t,max{0,s+1¢+1}) (11)
+ > h(n—d(2+j)+1,d- 1,1+ j.,max{0,s+ L+t +j}) (12)

i>1
+ > h(n—d2+j)+1,d=1,t—jmax{0,s+ 1+t —j}). (13)

i>1

To get an upper bound on j, note that n > d* + dj, so that j < |(n — d?)/d|. Then the
right-hand-side terms, (11), (12), and (13) can be combined as
7=(n—d?)/d]

h(n,d,t,s) = Z hin—d(2+ |j)+1,d—1,t+ j,max{0,s+ 1+t + j}).
j==L(n—d?)/d]

With the recurrence of Theorem 5, the number of graphical basis partitions of n,

Lv/n] Lv/n]
h(n)= > h(n,d)= "> h(n,d,0,0),
d=0 d=0

can be computed using a 4-dimensional table for the values h(n,d,t,s). Each entry can be
computed in O(n) time, thereby giving an algorithm which is polynomial in n, even though
h(n) appears to grow exponentially. Although the amount of storage can be reduced to
O(n>) by keeping entries only for the two most recent values of d, the storage became
prohibitive for us at just over n = 200. The values obtained by implementing the recursion
of Theorem 5, for even n < 200, are shown in Tables 1 and 3 at the end of this paper, along
with the ratios h(n)/b(n), showing the fraction of basis partitions of n which are graphical.
The surprising observation is that this ratio appears to be approaching the same limit as
g(n)/p(n), the fraction of all partitions which are graphical. These values are given for
comparison in Tables 2 and 4. Both ratios appear to be non-increasing for n sufficiently

large and we conjecture that the limits exist and:

h(n) (n)

lim — EASAY

= lam g .

10



4 Generating Basis and Graphical Basis Partitions

In this section we give an efficient algorithm to generate H(n) and prove that the algorithm
works in constant amortized time per graphical basis partition. We first show how to
efficiently generate basis partitions of n, B(n), and then modify the algorithm to generate

Since there is a one-to-one correspondence between basis partitions of n and rank vectors
whose corresponding basis partition has weight n, we can represent a basis partition by its
rank vector. We found it more natural to work with the co-rank vector, which is the

negative of the rank vector. It follows then from Theorem 4 that for a co-rank vector

¢ = [c1,¢,...,¢4], the corresponding basis partition 7 has weight |7| = n(c) where
d-1
n(c) = d2—|—2i|ci—ci+1| + d|eg] (14)
=1

Since ¢(7) = r(7’), we get the following from (14).

Corollary 2 For a co-rank vector ¢ = [c1,¢q, ..., ¢q],
n([c1, ¢, ..., ¢q]) —n([cz, ..., ¢cq]) =2d — 1+ p,

where

p=ler—cal +lea — el + -+ |cam1 — ca| + |ed (15)

The algorithm of this section generates graphical co-rank vectors for a given n, that
is, co-rank vectors whose associated basis partitions have weight n and are graphical. It
works by successively prepending entries to partially constructed co-rank vectors. If ¢ =
(1, P2, .., Pd—1) is a co-rank vector, then the weight of the basis corresponding to ® is
given by (14). For any integer x, let ®* = (2 + ¢1) - ® be the co-rank vector obtained
by prepending ¢1 + = to ®. By (15), the difference in weights, n(®*) — n(®) is given by
2d — 1+ |z[ + p, where p = [¢1 — @2| + [¢2 — ¢3| + ... + |Pa—2 — Pa—1| + |Pa-1]. Let B(®,n)
be the set of co-rank vectors (of any possible length) with weight n(®)+ n, having suffix ®.

In the Ferrers diagram, we refer to the L-shaped figure formed by row 1 and column 1 as

the outermost right angle. Then the intuition for construction of B(®,n) is as follows. The

11



Ferrers diagram corresponding to the partially constructed co-rank vector ® has n(®) dots
and n more dots are to be added as successive outermost right angles. Then B(®,0) = {®}

and for n > 0, B(®,n) can be written as the disjoint union,

B(®,n) = U B(®",n—2d+1—|z| —p) (16)
|z|<n—2d+1-p

= U B0 |

|z|=n—2d41—p
UJ B(®%. n—2d+1—|z| — p). (17)

|z|<n—2d+1-p
In each step, the scheme increases the size of the co-rank vector by one, i.e. adds a new
outermost right angle to the Ferrers diagram, consuming some or all of the n available dots.
The first term considers the case when all the dots are consumed and the second term takes
care of the case when ®* has to be further augmented to consume the remaining dots. Note

that each set in the first term is non-empty if the left hand side is non-empty.

From Corollary 2 it follows that prepending z + ¢ to the co-rank vector consumes
2d—1+4|z|+pdots. Adding a new outermost right angle would require at least 2d+14|z|+p
remaining dots. Therefore each set in the second term on the right side of (17) will be non-

empty if and only if

n—2d4+1—|z|—p > 2d+1+|z|+p

= 2] < n/2-—2d-—p.

Equation (17) can be rewritten as

B(®,n) = U B((z 4+ ¢1) - ®,0) U

|z|=n—2d+1-p

U Blz+¢1)-n—2d+1—[z] - p). (18)
|| <n/2—2d—p

In (18), each set on the right-hand side is non-empty, and therefore in the recursion tree
based on (18), there is a one-to-one correspondence between leaves and basis partitions in

B(®,n). To generate graphical basis partitions, the tree needs to be pruned.

For a vector v = [v1, va, ..., 03], define residual(v) = S°%_, (v; — 1), and need(v) as the

12



minimum non-negative integer £ satisfying,
J
(+> (i—=1)>0, j=1,2,....k
=1

Note that by the Nash-Williams condition, (3), v is a graphical co-rank vector if and
only if need(v) = 0.

Denote need(®) by s, and define H(®,n,s) to be the set of co-rank vectors in B(®,n)
which are graphical. Note that

need((z + ¢1) - ®) = max{0,s4+ 1 — (¢1 + z)},

so that we can directly adapt recurrence (18):
H(®,n,s) = U H{z+61) ®,0,max{0,s+1— (61 +2)}) [
|z|=n—2d+1-p

U H(($+¢1)<I>,n—2d—|—1— |$| —p,maX{O,s—l— 1 - ((b1—|—$)})
jel<n/7—2dp
(19)

for which the base case is given by,
[} ifs=0
H(®,0,5) = { {} otherwise (20)
Clearly, H(n) = H(A,n,0). Thus, the recursion of (19) can be used to generate H(n).

In the remainder of this section, we show how to implement the recursion efficiently, so that

the total time spent is O(|H (n)|) = O(h(n)), disregarding the output.

For the vector ® = (¢1,d2,...,¢4-1), define p = |p1 — ¢o| + |d2 — P3| + ... + [Pg—2 —
®d—1| + |¢4—1|. Then the following hold.

Lemma 3 For all ¥ - & € B(®,n), residual(V) is mazimized when ¥ = (¢1 + x) where
xr=n-—-2d+1—p.

Proof. By Corollary 2, the outermost right angle in the Ferrers diagram corresponding to
¢ has 2(d — 1) — 1 + p dots. To add a new outermost right angle, at least 2d — 1 + p
dots are needed. The residual will be maximized if after adding these dots, the remaining

z=n—2d+1— pdots are added to the first column, in which case ¥ = (¢1 + z). a

13



Lemma 4 H(®,n,s) is non-empty if and only if g1+ —1> s, where x = n—2d+1—p.

Proof. For all ¥ - ® € B(®,n), if the maximum residual(¥) (obtained by setting 2 =
n—2d+1—p (from Lemma 3)) is less than s = need(®), then H(®,n,s) is empty. If
however ¢1 + 2 — 1 > s, then ¥ - ® € H(®,n,s) where ¥ = (¢; 4+ ) and hence H(®,n,s)

is non-empty. a

Lemma 5 On the right side of equation (19), if H((z+¢1)-®,n—2d+1—|z|—p, max(0, s+
1= (¢1 4 ))) is empty for x = m then it is empty for all x < m.

Proof. Let s’ = max(0,5+1—(¢1+z))and n), =n—2d+1—|z|—p. fs+1—(¢14+m) <0
then ¢1 + m > 1 (since s is non-negative). Therefore prepending another element to the
co-rank vector with as large a value as possible (by choosing the appropriate value of x
as indicated in Lemma 4) will yield a graphical vector, contradicting our assumption that

H(®,n,s)is empty. Hence s’ = s+ 1 — (¢1 + m).

If H((m+ ¢1) - ®,nl,,s") is empty, then by 4, (¢1 + m)+ (n,, —2(d+ 1)+ 1—(p+
|m|)) — 1 < s’. Substituting values of s’ and n/ gives 2(m — |m|) + p < s, where p is
independent of m. Since, x — |z| < m — |m| for z < m, 2(z — |z|) + p < s for z < m, which
implies that (¢ + 2) 4+ (n,, —2(d+ 1)+ 1—(p+ |2])) — 1 < s'. Therefore by Lemma 4,
H((z+¢1)-®,n—2d+ 1 - |2| — p,s') is empty for z < m. O

Based on the above results we present an algorithm in Figure 3 which, as we will prove,
generates all elements of H(n) in total time O(h(n)). In each step of the recursion, the
algorithm prepends an element, & 4+ ¢; to the partially constructed co-rank vector ®. It
considers the values of z in descending order, in the range as indicated in recursion (19).

If a particular value of x = m generates an empty set, subsequent values of 2 need not be

checked (by Lemma 5).

Claim 1 In the recursion tree of the above algorithm,

o the total number of leaves is at most twice the number of graphical basis partitions of

n, and

o cvery node with one child has a sibling.

14



1. int generate(®,n,d,p,s)
/* Generates rank vectors of n(®) + n with suffix ® = (¢1,¢2,...,¢4—1) and
p =101 = &2| + |¢2 — ¢3[ + ... + |Ga—2 — Ga—1| + [¢a-1]| ¥/
begin
if (n=0) then output(®)
if ((p1+n—2d+1—-p)—1<s)return 0;
tmpl =n—2d+ 1—p; 2 = tmpl
proceed = generate((¢1 + z)-®,0,d+ 1,p+ |z|,max(0,s4+ 1 — (¢1 + 2)))
if (proceed == 0) return 0;
tmp2 = min(n/2 — 2d — p,tmpl—1)
for (z =tmp2; z > -tmp2; 2 — —)
proceed = generate((¢1 + ) - ®,n—2d+1—|z| —p,d+ 1,p+ |z,
max(0,s4+ 1 — (¢1 + 2)))
11. if (proceed==0) return 1;
12. x = -tmpl
13. if ((p14+2—1>s)and (z#0)

WO 0 =~ O O k= W N

—
jamn)

14. proceed = generate((¢1 + ) - ®,0,d+ 1,p + |z|,max(0,s4+ 1 — (¢1 + 2)))
15. return 1
16. end

Figure 3: Algorithm for generating H(n)

Proof. If a node is not a leaf, its leftmost child generates a valid object (follows from Lemma
4 and Step 4 of Figure 3). Further, at most one of its children can be a leaf which fails
to generate a valid object (follows from Lemma 5 and the use of variable “proceed” in the
algorithm). Thus for every “failure” leaf there is a corresponding “good” leaf. Therefore

the number of leaves < 2 x number of objects.

For the second claim, note that a node u, if it is the only child of its parent v, has to be
the child corresponding to the call in step 6. Since u was called with n = 0, it cannot have
any children. Therefore any node u without a sibling cannot have a child, and so every

node with a child has a sibling. a

From the above claim, we conclude that the number of nodes is bounded by a constant
times the number of leaves which is O(h(n)). Moreover, each node involves a constant
amount of work. Therefore we conclude that the algorithm, if we exclude time to output

the results, averages constant time per item generated.
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5 Directions for Further Research

The open question remains as to whether g(n)/p(n) approaches 0, as well as our new
conjecture that the fraction of basis partitions which are graphical approaches the same
limit as the fraction of all partitions which are graphical. Perhaps generating functions
can be found for these quantities which would give insight into their asymptotic behaviour,
although they do not seem to be easily derivable from the recurrences here in Theorem 5

or in [2].

In order to be able to collect data for larger values of n, we need faster ways to count
(ordinary or basic) graphical partitions, for example, by asymptotically reducing the storage

requirements.
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(o [ h(n) [b(n) | h(n)/b(n) | [n [ s(n) [ p(n) | 9(n)/p(n) |
2 1 2 0.500000 2 1 2 0.500000
4 1 3 0.333333 4 2 5 0.400000
6 3 6 0.500000 6 5 11 0.454545
8 4 10 0.400000 8 9 22 0.409091
10 |6 16 0.375000 10 |17 42 0.404762
12 || 11 26 0.423077 12 || 31 77 0.402597
14 | 16 40 0.400000 14 || 54 135 0.400000
16 || 23 61 0.377049 16 | 90 231 0.389610
18 || 36 90 0.400000 18 || 151 385 0.392208
20 || 52 130 0.400000 20 || 244 627 0.389155
22 |71 186 0.381720 22 || 387 1002 0.386228
24 || 103 264 0.390152 24 || 607 1575 0.385397
26 || 141 370 0.381081 26 || 933 2436 0.383005
28 || 197 512 0.384766 28 || 1420 3718 0.381926
30 || 272 702 0.387464 30 || 2136 5604 0.381156
32 || 366 952 0.384454 32 || 3173 8349 0.380046
34 || 482 1282 0.375975 34 || 4657 12310 0.378310
36 || 657 1715 0.383090 36 || 6799 17977 0.378205
38 || 863 2278 0.378841 38 || 9803 26015 0.376821
40 || 1140 3008 0.378989 40 || 14048 37338 0.376239
42 || 1489 3948 0.377153 42 || 19956 53174 0.375296
44 || 1951 5150 0.378835 44 || 28179 75175 0.374845
46 || 2511 6684 0.375673 46 || 39467 105558 0.373889
48 || 3241 8632 0.375463 48 || 54996 147273 0.373429
50 || 4155 11094 | 0.374527 50 || 76104 204226 0.372646
52 || 5317 14198 | 0.374489 52 || 104802 281589 0.372181
54 || 6782 18096 | 0.374779 54 || 143481 386155 0.371563
56 || 8574 22972 0.373237 56 || 195485 526823 0.371064
58 || 10786 | 29054 | 0.371240 58 || 264941 715220 0.370433
60 || 13645 | 36616 | 0.372651 60 || 357635 966467 0.370044
62 || 17111 | 45984 | 0.372108 62 || 480408 1300156 | 0.369500
64 || 21313 | 57561 0.370268 64 || 642723 1741630 | 0.369035
66 || 26631 | 71828 | 0.370761 66 || 856398 2323520 | 0.368578
68 || 33020 | 89358 | 0.369525 68 || 1136715 | 3087735 | 0.368139
70 || 41005 | 110850 | 0.369914 70 || 1503172 | 4087968 | 0.367706
72 || 50640 | 137134 | 0.369274 72 || 1980785 | 5392783 | 0.367303
74 || 62373 | 169196 | 0.368643 74 || 2601057 | 7089500 | 0.366889
76 || 76510 | 208226 | 0.367437 76 || 3404301 | 9289091 0.366484
78 || 94089 | 255632 | 0.368064 78 || 4441779 | 12132164 | 0.366116
80 || 114991 | 313082 | 0.367287 80 || 5777292 | 15796476 | 0.365733
82 || 140376 | 382568 | 0.366931 82 || 7492373 | 20506255 | 0.365370
84 || 170970 | 466442 | 0.366541 84 || 9688780 | 26543660 | 0.365013
86 || 207837 | 567482 | 0.366244 86 || 12494653 | 34262962 | 0.364669
88 || 251552 | 688982 | 0.365107 88 || 16069159 | 44108109 | 0.364313
90 || 305342 | 834822 | 0.365757 90 || 20614755 | 56634173 | 0.363999
92 || 368474 | 1009562 | 0.364984 92 || 26377657 | 72533807 | 0.363660
94 || 444360 | 1218584 | 0.364653 94 || 33671320 | 92669720 | 0.363348
96 || 534692 | 1468202 | 0.364181 96 || 42878858 | 118114304 | 0.363028
98 || 642593 | 1765812 | 0.363908 98 || 54481054 | 150198136 | 0.362728
100 || 770278 | 2120101 | 0.363321 100 || 69065657 | 190569292 | 0.362418

Table 1: Fraction of basis partitions Table 2: Fraction of all partitions

of n which are graphical (2 < n < 100.) of n which are graphical (2 < n < 100.)
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) [ b(n) [ A(n)/b(n) |
102 923765 2541220 0.363512
104 1103815 3041024 0.362975
106 1317309 3633378 0.362558
108 1570056 4334430 0.362229
110 1868705 5162980 0.361943
112 2220359 6140928 0.361567
114 2636855 7293708 0.361525
116 3123822 8650838 0.361101
118 3695909 10246586 0.360697
120 4370543 12120636 0.360587
122 5157648 14318904 0.360199
124 6078890 16894530 0.359814
126 7162034 19908882 0.359741
128 8423730 23432770 0.359485
130 9892375 27547902 0.359097
132 11611088 32348388 0.358939
134 13604431 37942542 0.358553
136 15930339 44455002 0.358348
138 18632427 52028968 0.358116
140 21773062 60828854 0.357940
142 25403221 71043360 0.357573
144 29631976 82888787 0.357491
146 34503277 96612898 0.357129
148 40148343 112499372 0.356876
150 46677794 130872654 0.356666
152 54226543 152103550 0.356511
154 62912051 176615666 0.356209
156 72959764 204892444 0.356088
158 84487617 237485240 0.355759
160 97792760 275022576 0.355581
162 113085815 318220286 0.355370
164 130664848 367893132 0.355171
166 150806514 424968022 0.354866
168 174031171 490498578 0.354805
170 200555761 565681736 0.354538
172 230974979 651876550 0.354323
174 265814962 750625012 0.354125
176 305698161 863675644 0.353950
178 351221683 993010158 0.353694
180 403374047 1140873028 | 0.353566
182 462791268 1309804878 | 0.353328
184 530686352 1502680138 | 0.353160
186 608114168 1722748828 | 0.352991
188 696298258 1973683620 | 0.352791
190 796684626 2259632792 | 0.352573
192 911155119 2585278998 | 0.352440
194 1041143947 | 2955905348 | 0.352225
196 1188972606 | 3377469559 | 0.352031
198 1357105119 | 3856686288 | 0.351884
200 1547954890 | 4401119512 | 0.351718

Table 3: Fraction of basis partitions

of n which are graphical (102 < n < 200.)

Ln [ e(n) [ p(n) [ 9(n)/p(n) |
102 || 87370195 241265379 0.362133
104 || 110287904 304801365 0.361835
106 || 138937246 384276336 0.361556
108 || 174675309 183502844 0.361272
110 || 219186741 607163746 0.361001
112 || 274512656 761002156 0.360725
114 || 343181663 552050665 0.360466
116 || 428244215 T188008248 0.360200
T18 || 533464959 1482074143 0.359945
120 || 663394137 1844349560 0.359690
122 || 823598382 2201320012 0.359443
124 || 1020807584 2841940500 0.359194
126 || 1263243192 3519222692 0.358955
128 || 1560795436 4351078600 0.358715
130 || 1925513465 5371315400 0.358481
132 || 2371901882 6620830889 0.358248
T34 || 2917523822 8149040695 0.358021
136 || 3583515700 TO0015581680 | 0.357794
138 || 4395408234 12202341831 | 0.357573
T40 || 5383833857 15065878135 | 0.357353
142 || 6585699894 18440203320 | 0.357136
144 || 8045274746 22540654445 | 0.356923
146 || 9815656018 27517052509 | 0.356711
148 || 11960467332 | 33549419497 | 0.356503
150 || 14555902348 | 40853235313 | 0.356207
152 || 17692990183 | 49686288421 | 0.356094
154 || 21480510518 | 60356673280 | 0.355893
156 || 26048320019 | 73232243759 | 0.355695
158 || 31551087790 | 88751778802 | 0.355498
T60 || 38173235010 | 107438159466 | 0.355304
162 || 46134037871 | 129913904637 | 0.355112
164 || 55694314567 | 156919475295 | 0.354923
166 || 67163674478 | 189334822579 | 0.354735
168 || 80909973315 | 228204732751 | 0.354550
170 || 97368672089 | 274768617130 | 0.354366
172 || 117056456152 | 330495499613 | 0.354185
174 || 140584220188 | 397125074750 | 0.354005
176 || 168675124141 | 476715857290 | 0.353827
178 || 202182888436 | 571701605655 | 0.353651
T80 || 242116891036 | 684957390936 | 0.353477
182 || 289666252014 | 819876908323 | 0.353305
184 || 346234896845 | 980462880430 | 0.353134
186 || 413474657328 | 1171432692373 | 0.352065
188 || 493331835384 | 1398341745571 | 0.352700
100 || 588093594457 | 1667727404093 | 0.352632
102 || 700451190712 | 1987276856363 | 0.352468
104 || 833561537987 | 2366022741845 | 0.352305
106 || 991134281267 | 2814570987591 | 0.352144
108 |[ 1177516049387 | 3345365983698 | 0.351934
300 || 1397805210533 | 3972999029388 | 0.351826
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Table 4: Fraction of all partitions

of n which are graphical (102 < n < 200.)



