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Abstract

In this paper, we develop an analytical framework for providing statistical delay
guarantees in an Earliest Deadline First (EDF) scheduler which multiplexes traf-
fic from multiple markovian sources with heterogeneous delay requirements. Our
framework permits the computation of steady-state delay bound violation prob-
abilities (i.e., the fraction of traffic that does not meet its delay bounds) at the
EDF scheduler, and can be therefore used to characterize the schedulable region of
EDF in a statistical setting. Our method employs results from the theory of large
deviations and the theory of effective bandwidths, and demonstrates that effective
bandwidths at both infinite and finite time scales have to be considered in the anal-
ysis of delays at the EDF scheduler (this is in contrast to the analysis of packet
losses at a multiplexor, where only the effective bandwidth at infinite time scales
is relevant). Our framework is of general use, and suitable to handle a broad range
of markovian sources. As illustrating examples, we apply our method to two simple
models, poisson and markovian on-off fluid traffic, and compare the analytical re-
sults with simulations, showing that the analysis is quite accurate. The framework
presented in this paper can serve as the basis for the design of a Call Admission
Control (CAC) mechanism which provides statistical guarantees on traffic transfer
delays. Such a statistical CAC approach can offer dramatic advantages in network
utilization over CAC frameworks based on deterministic delay bounds.
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1 Introduction

Emerging broadband packet-switched networks are expected to provide a no-
tion of Quality of Service (QoS) to real-time applications with widely dif-
ferent characteristics. Applications such as voice and video typically require
QoS guarantees in terms of data transfer delays. The heterogeneity in the
delay requirements of these applications, together with the need of having
real-time traffic coexist with best-effort traffic without compromising network
utilization, necessitates the use of packet scheduling mechanisms more so-
phisticated than First-In-First-Out (FIFO) service or simple priority schemes
in the switches. Generalized Processor Sharing (GPS) and Earliest Deadline
First (EDF) constitute the two most popular examples of such scheduling
mechanisms.

In the last few years, an important body of research has focused on develop-
ing Call Admission Control (CAC) frameworks which employ these scheduling
schemes to guarantee deterministic delay bounds to connections with con-
strained traffic (see for example [20] for a framework centered on GPS, and
[13] for a treatment of EDF'). However, these deterministic frameworks to pro-
vide guaranteed delay bounds are intrinsically conservative, since they have to
account for the worst-case scenarios that can be encountered in the schedulers,
even though such worst cases may occur with exceedingly low probabilities.
As a result, the allocation of bandwidth to the connections is over-engineered,
and the achieved network utilization may be far from optimal. Deterministic
bounds are also “excessive”, since real-time applications are typically resilient
to infrequent violations in their delay bounds (i.e., are not unduly hindered if
a small fraction, say 10, of their packets get excessively delayed or dropped
within the network). The known inefficiencies of the deterministic approach,
together with the fact that most real-time applications actually require only
“less than perfect” QoS guarantees, have recently generated a compelling need
for statistical frameworks where the delay bounds are guaranteed probabilis-
tically. Such statistical frameworks are expected to allow the links to operate
at a much higher utilization, and still meet the QoS requirements of real-time
traffic.

Schedulable regions and CAC schemes in the statistical setting have been
studied extensively in literature, but mainly in the context of packet losses
rather than delays. Beginning with the seminal work of Anick, Mitra and
Sondhi in [1], an elegant theory of “effective bandwidths” has emerged in
literature (see for example [3,6,15,16,23] and the references therein), and the
related results allow efficient computation of aggregate packet losses when
multiple connections are multiplexed into a shared buffer. These frameworks
can also produce a distribution of the packet delays, but only under FIFO
scheduling. Buffer occupancy processes have also been more recently studied in



the presence of sophisticated schedulers like GPS [5,27] and priority scheduling
[8,2].

In this paper, we are interested in formulating a statistical framework which
employs a scheduling scheme more sophisticated than FIFO to guarantee het-
erogeneous delays to connections. A framework which provides statistical de-
lays has been developed in [17] for priority scheduling; two frameworks which
use GPS have been developed in [28,9], although the one in [28] assumes a
rather specific source model, while the one in [9] is limited to two classes of
traffic. In our case, we have chosen the EDF scheduling scheme, since it is
known to provide the optimal delay performance [11,18] in the deterministic
environment (as reviewed in greater detail in Section 2). We therefore con-
sider a switch operating at a constant service rate and employing the EDF
scheduling scheme, at which a multiplicity of markovian traffic sources are
multiplexed. Given the markovian description of the sources and their re-
quired delay bounds at the multiplexor, we develop a framework which makes
it possible to compute the steady-state probability of delay violations (i.e.,
fraction of aggregate traffic at the multiplexor which does not meet its delay
requirement), which in turn allows to characterize the schedulable region of
EDF in the statistical setting.

The theoretical basis for our statistical framework, drawing inspiration from
the EDF schedulability constraints corresponding to the deterministic setting,
relates the delay violation probability to the queue length in a hypothetical
system derived from the real one. By making appropriate assumptions and
employing results from the theory of large deviations and effective bandwidths,
this probability is computed with relative ease. The framework is very general,
and can handle arbitrary markovian descriptions of the traffic sources. As
specific examples, we present simple expressions for poisson and fluid on-off
markovian sources, and validate them with simulation results. To arrive at a
framework that is simple and general, we have chosen to focus on computing
the delay violation probability for the aggregate traffic at the switch, rather
than on an individual connection or class basis; in fact, not only would the
individual metrics be harder to evaluate due to the strong traffic interactions
at the EDF scheduler, but they also are, at least to an extent, controllable
by an appropriate choice of the packet discard policy, which is beyond the
scope of this work. In this paper, we consider the case of an EDF scheduler in
isolation (single node); the extension of our method to the multi-node case is
possible, using reshaping at each node (in a way inspired by the corresponding
approach for deterministic end-to-end delay developed in [26,13,4]) and is the
topic of a forthcoming publication.

The rest of the paper is organized as follows. In Section 2, we provide a brief
review of EDF scheduling and its CAC framework in the deterministic setting.
In Section 3, after introducing the system model, we present the mathematical



framework which allows the computation of the delay violation probabilities.
In Section 4, we apply the results to two specific source models (namely poisson
and fluid on-off markovian), and compare the analysis with corresponding
results from simulations. We present concluding remarks and directions for
future work in Section 5.

2 Background on EDF

We briefly review the basic concepts of EDF scheduling and some relevant re-
sults of the related deterministic analysis that has been developed in literature.
The EDF scheduling discipline [19,10,22] works as follows: each connection i
at the switch is associated with a local delay deadline d;; then, an incoming
packet of connection ¢ arriving to the scheduler at time ¢ is stamped with a
deadline t + d;, and packets in the scheduler are served by increasing order of
their deadline.

In the deterministic setting, EDF is known to be the optimal scheduling pol-
icy at a single switch [11]. Optimality is defined in terms of the schedulable
region associated with the scheduling policy. Given N connections with traffic
envelopes A;(t)! (1 = 1,2,...,N) sharing an output link, and given a vec-
tor of delay bounds d = (dy,ds, ...dy), where d; is an upper bound on the
scheduling delay that packets of connection i can tolerate, the schedulable
region of a scheduling discipline 7 is defined as the set of all vectors d that
are schedulable under 7. The authors in [11,18] have shown that EDF has the
largest schedulable region of all scheduling disciplines, and its Non-Preemptive
version (NPEDF) has the largest schedulable region of all the non-preemptive
policies. The schedulable region of the NPEDF policy consists of those vectors
which satisfy the following constraints [11,18]:

L

5<d (1)
al L

L+ At —d;) <Ct, Egtng (2)

=1
N
YAt —d)<Ct,  t>dy (3)
=1

1 The traffic envelope A;(t) is such that the amount of traffic from connection i
entering the network in any interval of length ¢ is bounded by A;(¢). A typical traffic
envelope specification could be in terms of the leaky bucket parameters (p;, o, p;)
which denote the envelope A;(t) = min{p;t, o; + pit}.



where dy < dy < ... <dy, L is the packet size (if the packet size is variable,
L is the maximum packet size), C' the link rate, and A;(¢t) = 0 for ¢ < 0.

Given the traffic envelopes and the delay requirements of each connection,
equations (1)-(3) can directly be used to devise a single-node CAC mechanism.
However, this deterministic framework has to account for the worst-case sce-
narios that can be encountered by the scheduler, regardless of the likelihood of
those scenarios, and is therefore overly conservative in admitting connections
into the network. This motivates us to focus instead on a statistical framework
where the delay bounds are “softer”, i.e., guaranteed with a reasonably high
probability. This allows the network to operate at a higher efficiency, while
ensuring that the resulting degree of QoS can be quantified and managed at
a desirable level.

3 Analytic Framework

We first present the system model and its associated assumptions, and then
proceed to establish the mathematical method which allows the computation
of the delay violation probabilities at the EDF scheduler.

3.1  System Model

Consider a single EDF scheduler which multiplexes connections? onto a trans-
mission link operating at a constant rate C'. The connections are categorized
into J classes, with class j (j =1, ..., .J) comprising of k; stochastically identi-
cal sources, each of which requires a delay bound d; at the scheduler. Without
loss of generality, we assume d; < dy < ... < d;. We use the two-tuple (j,1)
to refer to the i-th source belonging to the j-th class. Further, A;[0,¢] denotes
the amount of work arriving from connection (j,7) in the interval [0,%). We
make the following assumptions:

Assumption 1 Traffic ©s modeled as a fluid; hence packetization issues are
ignored?® .

Assumption 2 The connection (j,i) arrival traffic A;[0,t] has stationary
increments.

2 We use the words connection and source interchangeably throughput the paper
3 However, we loosely use the term “packet” to refer to an infinitesimal quantity
of the traffic.



Assumption 3 Fach connection generates traffic independent of all other
connections.

Assumption 4 The fraction of traffic that does not meet its delay bound at
the scheduler has a steady-state value; equivalently, the probability of delay
bound violations Py, exists and has a stationary value.

The above assumptions are quite similar to the ones routinely adopted in
literature for analyzing buffer occupancies. Our objective is to estimate, under
these assumptions, the probability of delay bound violations at the scheduler.
In our context, delay bound violations arise purely due to the scheduler’s
inability to meet every packet’s deadline; the issue of packet losses due to lack
of buffer space at the switch is orthogonal* and not addressed here. We thus
make the additional assumption:

Assumption 5 Buffer space at the switch is unlimited; hence there are no
packet losses due to buffer overflow.

The infinite buffer assumption not only makes the analysis tractable, but also
provides an upper bound on the probability of delay bound violations in a
finite buffered system; thus, it is a conservative approximation. Finally, we
assume:

Assumption 6 Packets are not discarded at the scheduler, even if their dead-
line has expired.

Thus, packets (if any are present) are transmitted in order of their deadline,
regardless of whether the deadline of the packet chosen for transmission has
expired or not®. This simplifies the analysis and circumvents the issue of
choosing an appropriate discard policy, which could range from something as
simple as eliminating the packet chosen for transmission if its deadline has
already expired, to a highly sophisticated one (and clearly non-trivial to be
implemented in practice) where at each packet arrival instant it is determined
if the deadlines of all packets in the system can be met, and if not, the packet
chosen for discarding is one belonging to a connection with the least (weighted)
number of deadline violations in the past (see [25,24] for an argument that such
a discard policy is optimal). Including a specific discard scheme in the analysis
would make our task more difficult (or in some cases even intractable), and
the resulting framework less general. Again, this assumption of no discards is
a conservative approximation which provides an upper bound on the fraction
of packets violating their delay bounds.

4 Indeed, if buffers are sufficiently large and packet losses are rare enough, the delay
violation probability and the packet loss probability can be analyzed independently.
® Again, this is similar to the infinite buffer assumption commonly employed when
analyzing packet losses.



3.2 Mathematical Model

We now present, the framework which permits the computation of the delay
violation probability, i.e., the fraction of traffic which does not meet its delay
requirement. In order to formulate a framework that is conceptually simple and
of general use, our objective is to compute this quantity for the aggregate traffic
at the switch, not on an individual connection or class basis. The individual
metrics are not only hard to evaluate due to the strong traffic interactions at
the EDF scheduler, but are also controllable to an extent by an appropriate
choice of the packet discard policy, which is beyond the scope of this work.

Under the assumptions stated above, we establish the following theorem which
provides a basis for computing the stationary probability of delay violations:

Theorem 1 The stationary probability P, of delay bound wviolations at a
server employing EDF scheduling equals the probability that, at a random time
t, the queue would be non-empty if, for every source (j,1), all arrivals in [t —
dj, t) were to be discarded.

PROOF. We show that there is a deadline violation at the EDF scheduler at
time ¢ if and only if the queue size Q¥ (t) at time ¢ is non-zero in a hypothetical
system H which discards all traffic arriving from every connection (j,4) in
interval [t — d;, t). The proof of this is as follows.

We partition the traffic queued at the server into two (logical) queues Q' and
(Q? such that all traffic from connection (j, ) arriving in [0,¢—d;) enters queue
Q" while all traffic arriving in [t — d;, t) enters queue Q?. Every packet, upon
arrival, is assigned a timestamp representing the time by which the packet has
to be served in order to satisfy its delay bound. By the definition of timestamp,
all traffic queued in Q' has timestamp less than ¢, while no traffic queued in
@Q)? has timestamp less than ¢. Since the EDF scheduler serves traffic in strict
order of timestamp, traffic queued in Q' is given pure priority in service over
traffic queued in Q2. Thus, the evolution of Q' is as if the server is always
available to serve it, i.e., as if Q? is completely ignored. This means that Q'
behaves in the exact identical way as the queue length Q* in the hypothetical
system H which discards all arrivals from every source (j,4) in the interval
[t — dj, t). Having established that Q" = Q', we also note that if Q' is non-
empty at time ¢, then the traffic being served at time ¢ has an expired deadline
(since all timestamps in Q' are less than t), while if Q! is empty at time ¢,
there is no delay violation at time ¢. This proves the result. A

We make two observations about the above theorem. First, for P,, = 0,
the above theorem is compatible with the deterministic setting constraints of



equations (1)-(3) (which collapse into the single equation V¢ : SN, A;(t —
d;) < Ct for the case of fluid traffic). Second, the above theorem holds only
for EDF scheduling, since it is the only scheduling discipline which guarantees
strict priority of Q' over Q2. For a scheduler other than EDF, even though
Q™ (t) may be zero, the traffic served in the actual scheduler at time ¢ could
have an expired deadline, since Q' may not be zero because packets from Q?
may have been served.

With the assumption that P, has a stationary value, the above theorem can
be used, at least in principle, to compute the exact probability of delay viola-
tions. Let the fluid assumption be relaxed (i.e., have the traffic discretized into
small units of constant size, to enable continuous-time discrete-space analy-
sis). Now, let @) be the random variable denoting the stationary queue length
of the system and 7 its distribution vector. Further, let Q' (¢) be the random
variable denoting the queue length of the hypothetical system H described in
the proof of theorem 1 above, and let P;(j = 1,...,J — 1) be the transition
rate matrix which ignores all connections with a class number higher than j.

From theorem 1 above, the probability of delay violations is given by
P = P[Q"(t) > 0] = P[Q"(t — d1) > Cdy] (4)
(C'is the link capacity), since the system H discards all arriving traffic in the

interval [t — dy,t). Now let 7' denote the distribution vector of Q¥ (¢t — d,).
The stationary probability of delay violations is thus

Pyo = > (i) (5)

1>Cdy
Further, 7 can be computed by
dyj—dj_1 dy_1—dj_» d2—d1
7= 7 exp / Py 1du+ / Py odu ...+ / P.du| (6)
0 0 0

In relation to the proof of theorem 1, the above expression for the distribution
of Q" (t—d,) corresponds to starting with the distribution of Q" (t—d) (given
by the vector 7, since the real system and the hypothetical system H behave
identically in [0,¢ — d)), and for successive j = J —1,...,1 doing a transient
analysis to get the distribution of the queue length Q¥ (u) at uw =t — d; by
ignoring all connections with class number higher than j. This allows 7, and
hence P,;, to be determined.

Clearly, the above method is computationally complex, even for the simplest
source models. For most source models of interest, computing the stationary



queue length distribution vector 7 and the transition rate matrices Pj is a
complex enough task; the need for computing the transients (in interval [t —
dj,t — di]) makes the task even more challenging. Therefore, in what follows,
we develop approximations which are easily computed without much sacrifice
in accuracy. Our first assumption to move in this direction is as follows:

Assumption 7 The delay bounds dy,...,d; are “reasonably large”, and the
spread (dj — dyi) of the delay bounds is “reasonably small”.

We require the delay bounds to be “reasonably” large to allow large deviations
results on queue length distribution tail probabilities to be applicable (this
will become more evident as the discussion unfolds). The rationale behind
requiring the delay bounds to be “reasonably” close together (say of about
the same order of magnitude) is as follows: The queue length Q¥ (¢ — d;) of
the system H is described in terms of the workload process as the maximum
of two terms:

QH(t — dl) :maX{QH(t - dJ) + AH[t - d],t - dl] - C(dj - dl),

H j— j— j— j—
oo fBBX (A%t —dy =T, t—dy) — CT)} (7)
where AX[., ] denotes total arrivals to the system H in the specified interval.

At large values of d; —d;, the “initial” queue length Q" (¢ —d ;) has no impact
on QY (t — d,), and hence the second term in the maximization on the right
hand side dominates. However, as d; — d; gets smaller, the first term within
the maximization above becomes more significant (this is all the more so if the
delay bounds di,...,d; are large, in which case the contribution of the term
Q" (t—d;) is required to be larger for delay bound violations to occur anyway).
Thus, for small values of d;y — dy, it is reasonable to use the approximation
QM (t—dy) ~ Q" (t—dy)+A"[t—dy,t—d,|—C(dy—d,). We point out that this
approximation is in general an optimistic one, i.e., could result in the queue
lengths and hence the probability of delay violations being underestimated.

With assumption 7, therefore, the delay violation probability P[Q" (t —d;) >
Cd,] is approximated by P[QY (¢t —d;) + At — d,t — di] > Cdy]. Noting that
QM (t — dy) has the stationary distribution of the queue length ), and that
the traffic from each connection has stationary increments, we conclude that:

Theorem 2 Under the approximations listed above, the stationary probability
of delay violations is given by

Pyio = P[Q + A > Cdy] (8)

where Q) has the stationary queue length distribution, and A =", ; Aj;[0,d; —
djl.



Computing P, as given by equation (8) above requires knowledge of the
distribution of the queue length (). Determining the exact queue length distri-
bution is in general complex, so we resort to large deviations estimates which
have been developed in the literature for a wide variety of source models. For
this purpose we find the following definition (see Kelly [16]) useful:

Definition 1 The “effective banduwidth” or “logarithmic moment generating
function” a;(s,t) of source (j,1) is given by

1
a;j(s,t) = g log E[e*4i04] 0 < 5,1t < o0 9)

Here s and t denote the “space” and “time” scales respectively. Also, its long-
term effective bandwidth is given by o;(s) = limy o (s, t).

Effective bandwidths have been computed in literature for a wide variety of
source models, and large deviations estimates of the queue length tail proba-
bilities have been studied [21]. For our purposes, we use the following form for
the queue length tail probabilities [7] which is found to work well for markovian
source models :

P{Q>q} e (10)

where ¢ is the queue length decay rate computed as follows:

d = max{s : ;kjaj(s) <C} (11)

where C' is the link capacity. It is important to point out that the queue
length tail probability estimate of the form (10) is but one example of such
an estimate, chosen here simply for computational convenience; our analysis
does not preclude the choice of alternate approximations.

The probability measure in equation (8) can now be bounded in two ways:

e We can rewrite P[QQ + A > Cd;] as Y., P[A = k|P[Q > (Cd; — k) | A =
k], which, since Q and A are independent quantities, equals Y, P[A =
k|P[Q > (Cd; — k)*™]. Using (10) as an estimate of the queue lengths,
this yields ¥, P[A = k]e=0(Cds=R)" = ¢=0Cds s~ P[4 = E]ed min(k:Cds) | Since
min(k,Cd,) < k, we have

Pyo < e "V E[e"] (12)

e Applying Chernoff’s theorem we have P[Q + A > Cd;] < min; E[i%i?)]

10



Again, @ and A are independent quantities. Moreover, from (10), E[e’?] ~
s for 0 < s < 4. Thus

Pyio < min e 50U Eles4] (13)

0<s<d ) — §

The right hand side expression in s is convex on (0,4); the minimum exists
and is unique, and hence can be determined numerically.

Computation of the bounds at various loads leads to the observation that the

first bound is tighter in general at higher loads while the second dominates at
low loads. Lastly, we note that

J
Ble*) = exp(3 ylog(E[e* 04/ ~51))

7=1

J
=exp(d_ kj(dy — dj)oy(s,dy — dy))

=1

which leads to the following estimate of the probability of delay violations:

P, ~ min (exp

J
—50d]+5zkj(dJ _dj)aj((sa ds _dj)] )

i=1

min
0<s<d ) — S

exp

—Scd] + Si:kj(dJ — dj)Oéj(S, d] — d])]) (14)

=1

where § is the queue length decay rate as given by equation (11). It should
be pointed out from the above expression that effective bandwidths at both
infinite and finite time scales become significant in the delay analysis of the
EDF scheduler; this is in contrast to most of the existing analyses on losses at
the multiplexor, in which only the effective bandwidths at infinite time scales
play a role.

The framework developed above is very general and applicable to a broad
range of markovian sources. In the next section, we apply this general model
to two specific source models, the poisson and the fluid on-off markovian, and
validate the analytic results against those obtained from simulations.

4 Analytic and Simulation Results

The poisson and fluid markovian on-off models are chosen purely because of
their simplicity which leads to succinct explanation and simple expressions;

11



type k p(Mbps) | o(Kbits) | p(Mbps)
type-0 (video conference) | varied 10 80 0.5
type-1 (stored video) 15 10 800 3
type-2 (audio) 200 | 0.064 10 0.064

Table 1

Connection parameters

our framework is suitable to handle more complex source models which are
believed to adhere to real-world traffic more accurately (as, for example, the
multistate markov model for video conferencing traffic developed in [7]), al-
though, of course, such more complex models would introduce higher compu-
tational complexity.

The simulation setup is as follows: connections of three types, 0, 1, and 2,
are multiplexed at an EDF server operating at a link of capacity 100Mbps
and with unlimited buffer capacity. For simplicity, packet sizes are chosen to
be fixed at 10Kbits, close to the Ethernet packet size (variable packet sizes
would be treated similarly, since the analysis assumes fluid traffic, and hence
variations in packet sizes are not significant). Table 1 shows the number of
connections of each of the three types and their leaky bucket characterization
in terms of the peak rate p, the bucket size o, and the mean rate p. The
values shown for type-0, type-1 and type-2 traffic in the table are consistent
with the corresponding values for video conferencing, stored video, and audio
connections reported in [12]. For both the poisson and fluid markovian on-off
source models, the parameters are derived from the leaky bucket description
of table 1 (this is described in more detail below). Type-1 and type-2 traffic
are considered background traffic and kept constant. As the number of type-0
connections is varied, we plot the probability of delay violations as obtained
from the analysis, along with the fraction of traffic violating its delay bounds
as observed from the simulation of EDF scheduling. For comparison purposes,
we also plot the fraction of traffic which violates its delay requirements under
FIFO scheduling.

4.1 Poisson Sources

Let \; denote the traffic arrival rate corresponding to source (j, 7). Its effective
bandwidth is given by

0(s,1) = A" — 1) (15)

12
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Fig. 1. Poisson Sources: Load varies from 93.8% to 99.8%

Of course, since a poisson source has independent increments, «;(s,t) does
not depend on ¢. The queue length decay rate § is computed from (11) as

d = max{s : Z]:kj)\j(es —-1)<s} (16)

Equations (15) and (16) can be directly used to compute P, for poisson traffic
from equation (14).

In order to compare the analytic and simulation values, the poisson arrival
rate \; for connection (j,¢) is chosen to be identical to its average rate p; from
Table 1 above (the burstiness of the sources is therefore not captured by the
poisson model). We have set the delay requirement of the video conferencing
traffic at 10ms, of the stored video at 14ms, and of the audio at 6ms (since
poisson traffic has a very low burstiness, we had to choose high utilizations
and rather tight delay bounds to get delay bound violation probabilities high
enough to be observable in the simulations).

Figure 1 plots on logarithmic scale the probability of delay violations as the
number of type-0 connections is varied from 84 down to 72 (thus varying the
utilization from 99.8% to 93.8%), as obtained from the analysis, and from
simulations of both EDF and FIFO scheduling (the simulations were run suf-
ficiently long; the confidence intervals are not plotted). As expected, EDF
scheduling drastically reduces the fraction of traffic not meeting its delay re-
quirement at the scheduler as compared to FIFO (the reduction can be as
much as a couple of orders of magnitude), thus validating once more that
EDF offers dramatic advantages over FIFO for supporting real-time traffic.

13
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Fig. 2. On-Off Sources: Load varies from 67.8% to 97.8%

The plot shows that the analytic model matches the values obtained from
simulations very closely (in fact the two curves are almost indistinguishable),
thus demonstrating that the analytic framework for poisson traffic character-
izes the schedulable region of EDF very accurately.

4.2 On-Off Markovian Fluid Sources

Let each source (7, 1) be described by a two-state Markov chain. The transition
rate from state 2 (the Off state) to state 1 (the On state) is A;, and the
transition rate from state 1 to state 2 is ;. While the Markov chain is in state
1, workload (fluid) is produced at a constant rate h;; while it is in state 2, no
workload is produced. The effective bandwidth of such a source is given by
[14-16]:

1 N . — it + hist pjt 1
a;(s,t) = = log (}\ I X Hi > exp Hi 770 (17)
t it H ATy Mt =)\
and «a;(s) = limy_, a(s,t) is given by
1 2
a;(s) = 5 <hj5 — 115 = A (s — i + A)? + 4)\juj> (18)

The above expressions for o, (s, t) and a;(s) can be used directly in equations
(11) and (14) to determine the probability of delay violations at the EDF

14



scheduler for the given markovian on-off fluid sources.

For comparison of analytic and simulation values, the markov parameters of
source (j,14) are derived from the leaky bucket parameters of table 1 as follows:
the on-rate h; is set equal to the peak rate p;, the mean holding time 1/y; in
the on-state is chosen as 10:); 5pja_jpj (this corresponds to fixing the probability
of getting a burst larger than the maximum burst admissible by the leaky
bucket at 20%), and the mean holding time 1/); in the off-state is chosen
as 10;;5(;—;', thus ensuring that the average rate equals to p;. The parameters
are chosen in an attempt to model as closely as possible the periodic worst-
case on-off behaviour of a source consistent with its leaky bucket description.
Unlike the poisson model, the burstiness of the sources is captured by the
on-off markovian model. In this case, we have set the delay requirement of the
video conferencing traffic at 40ms, of stored video at 60ms, and of audio at

20ms (these are reasonably realistic numbers consistent with [12]).

Figure 2 plots on logarithmic scale the probability of delay violations as the
number of type-0 connections is varied from 80 down to 20 (thus varying
the utilization from 97.8% to 67.8%) as obtained from the analysis, and from
simulations of both EDF and FIFO scheduling. As in the poisson case, the
fraction of traffic traffic violating its delay bounds under EDF is lower by
up to a couple of orders of magnitude as compared to FIFO. Also in this
case, the analysis is found to match the EDF simulation values quite well.
The small discrepancies between the two can be attributed to the rather wide
spread in the delay requirements of the connections (thereby not being in
strict accordance with assumption 7) which results in the probability of delay
violations being underestimated. Nevertheless, the match is quite close, and
the analytical model hence provides a reasonably good characterization of the
schedulable region of EDF.

To give a feeling of the dramatic benefits that a statistical framework can
offer over a deterministic framework in terms of network utilizations, it is
worth noting that the deterministic framework for EDF scheduling could not
accommodate even a single type-0 connection under this traffic scenario.

5 Conclusions and Future Work

In this paper, we have developed an analytical framework for evaluating the
probability of delay bound violations at an EDF scheduler which multiplexes
traffic from markovian sources with reasonably heterogeneous delay bounds.
The delay violation probability is expressed in terms of the effective band-
widths of the sources at both infinite and finite time scales, and is easily com-
puted given that effective bandwidths for a wide variety of markovian sources
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are available in the literature. As illustrative examples, we have shown results
obtained for poisson and markovian on-off fluid sources, which match quite
closely the values obtained from simulations. In this paper, we have focused
on the single node in isolation; the extension to the multi-node case, using
traffic reshaping at each node (again inspired by the corresponding approach
for deterministic end-to-end delays, see [26,13,4]) is the topic of a forthcoming
publication. Such a statistical framework is potentially of great significance
in the design of CAC schemes for networks which provide QoS in the form
of statistical guarantees on data transfer delays, and can offer very substan-
tial advantages in terms of network utilization over CAC schemes based on
deterministic delay guarantees.

One direction for future work involves assumption 7, which limits the spread in
the delay requirements of the various connections; a more general framework
which can handle greater heterogeneity in the delay requirements is highly
desirable.
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