Prof. Vijay Sivaraman

University of New South Wales (UNSW), Sydney, Australia

Software Defined Networking (SDN) in Next Generation Telecom Infrastructure: NSW Some Quick Wins and the Road Ahead

Never Stand Still

School of Electrical Engineering & Telecommunications

Outline

- SDN: what and why?
- Status of SDN
 - Where is it doing well why?
 - What are the pain points?
- Quick-win use-cases of SDN:
 - Home network: new capabilities for consumers
 - Enterprise/carrier network: video telemetry and management
 - Interconnects: IXP and cloud-connect
- What next for SDN?
 - Security as the killer use-case?

SDN: What and Why

- Basics: separate data plane from control/mgmt plane
 - Control and mgmt software decoupled from switch hardware
 - Can customize/adapt software without waiting for switch vendor
- Birth of Openflow:
 - Abstraction of data-plane: match + action
 - Centralize intelligence and do away with distributed state mgmt
 - Standardize interaction between control and data planes: OF proto
- Implications:
 - Control/management software works across any vendor hardware!
 - Can define and build arbitrary algorithms for switching, routing, load balancing, failure recovery, security, …

How is SDN Doing?

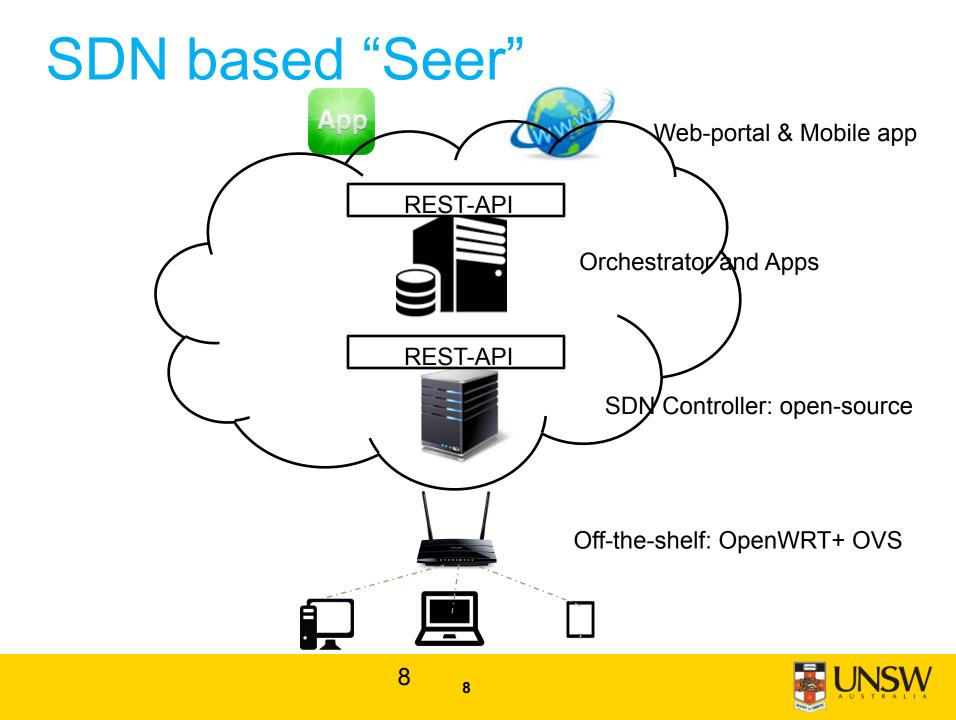
- Successes:
 - Data centers: Nicira / VMware
 - Google (B4), Facebook, Microsoft
 - Carriers: AT&T (CORD), Telstra (Pacnet)
 - Enterprises: ???
- Barriers:
 - Business cases still emerging: automation?
 - Complexity due to fragmented eco-system:
 - Hardware: Pica8, Noviflow, Corsa, Allied Telesys, ...
 - Controllers: Ryu, ONOS, ODL
 - Southbound protocols: Openflow, Netconf, ...
 - Software applications: "App store" ? Support model ?
 - Skills: software life-cycle, support, open-source, ...
 - Fear factor: risks inherent in radical change

We need some Quick Wins!

- Localized solutions that do not require network overhaul
- Home network [Seer]:
 - Increasingly complex but no innovation in past 20 years!
 - SDN can provide device visibility, quota management, parental control, ...
- Enterprise/carrier network [TeleScope]:
 - Poor visibility into video streams
 - SDN can provide low-cost scalable monitoring and control of video
- Inter-connect networks [CaSToR]:
 - Inflexible/dumb interconnects between domains and/or cloud
 - SDN can provide flexible inter-connects with smart telemetry, security, ...
- Security: an important but unmet gap?

Home Networking [Seer]

- No innovation in home networks for long time, but home networks are growing!
- Consumer: Increasingly complex home network with many devices and multiple users
 - No visibility into usage of bandwidth and quota
 - No control on online (child) safety
 - No protections against (smart-home) attacks
- ISP: Stagnating revenue streams
 - Low-margin competitive business
 - No visibility into consumer home network


Current Solutions

- Smart home-routers:
 - Google onhub
 - Luma, Chime, KoalaSafe
 - Coju, Dojo, Almond
 - Disney Circle, Sense
- Drawbacks:
 - Custom hardware (cost?)
 - Embedded software (upgrade?)
 - Direct sale to consumer (scale?)

Seer: SDN Based Home Networking

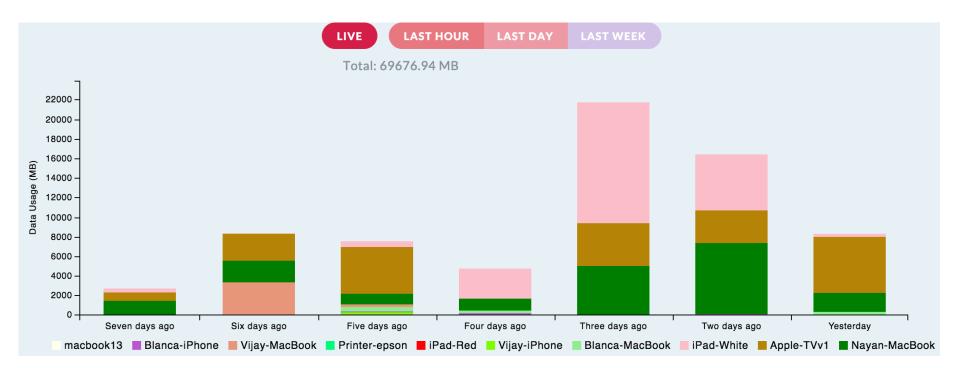
- Architecture:
 - Home gateway: TP-LINK AC1750 (off-the-shelf)
 - Firmware: OpenWRT and OVS (open-source)
 - Controller: FloodLight (open-source)
 - Applications: Ruby-on-rails + postgreSQL
 - Portal: ReactJS + Rubix

http://www.networkseer.com/

	Sign in to NetworkSeer
	Login with your NetworkSeer account
	vijay@networkseer.com
P	•••••
	a NetworkSeer account your password LOGIN

9

Seer: Device Visibility


REFRESH HIDE INAC					
				Search:	
Device Name	 User 	Mac Address	Last Seen	Customised Colour	\$
Apple-TVv1	default	18:ee:69:1f:fa:41	1 minutes ago	darkgoldenrod	
Blanca-iPhone	blanca	60:92:17:66:d9:3e	1 minutes ago	mediumorchid	
iPad-Red	kiran	10:40:f3:dd:87:7a	1 minutes ago	red	
iPad-White	blanca	74:81:14:4a:bc:52	15 minutes ago	pink	
Printer-epson	default	64:eb:8c:77:31:8f	1 minutes ago	springgreen	
Device Name	User	Mac Address	Last Seen	Customised Colour	

Showing 1 to 5 of 5 entries

PREVIOUS 1 NEXT

Seer: Data Usage

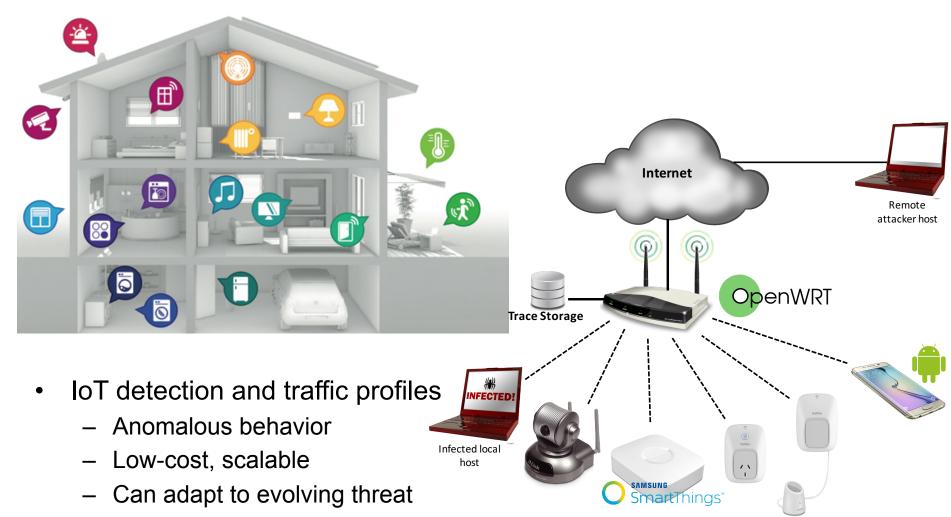
Seer: Quota Per-Device

REFRESH

Billing cycle starts at 2016-11-01

73.34 out of 10000 GB has been consumed

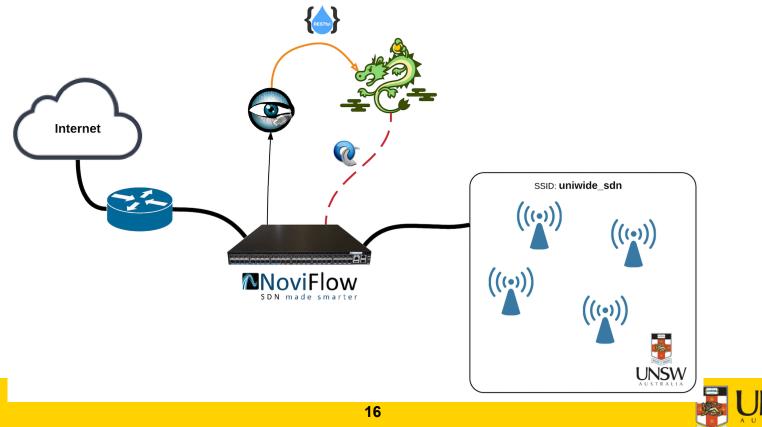
User 🔺	Consumption Limit (GB)	Current Consumption(GB)
blanca	unlimited	23.38
default	unlimited	23.93
kiran	20.00	0.06
nayan	80.00	22.18
vijay	unlimited	3.79
User	Consumption Limit (GB)	Current Consumption(GB)



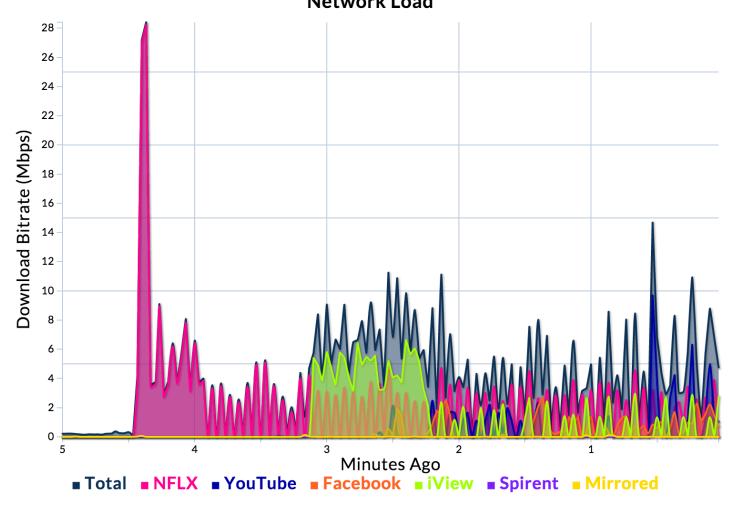
Seer: Parental Controls

Device	
WinstonsIPhone \$	(APPLY CHANGES)
App Filter⊚ Time Filter Content Filter	
Y TWITTER	
f FACEBOOK	\bigcirc
8 ⁺ GOOGLE+	\bigcirc
in LINKEDIN	
C INSTAGRAM	

Seer: IoT Visibility and Security


TeleScope: Video Telemetry

- Video traffic growing exponentially
 - Netflix, Youtube, iView, Stan, etc.: >50% of network traffic
 - Augmented reality / virtual reality likely to grow dramatically
 - Adaptive bit-rate: expands to fill space available!
- Challenge:
 - "Understand" video traffic in the network
 - How many flows? What resolutions?
 - "Manage" video traffic while being aware of user-experience
- Current solutions:
 - Sampling (sFlow): trade-off accuracy / cpu-load on switch
 - Middle-boxes / "appliances": special-purpose, expensive!
- SDN: flexible (flow-level) telemetry under software control


TeleScope Architecture

- Bump-in-the-wire:
 - SDN switch + Bro analyzer + Ryu SDN App
 - Dynamically manipulate flow-table rules:
 - mirror first few pkts of flow; watch flow stats thereafter

Real-time Traffic Visibility

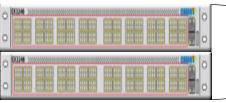
- Video flow properties (src/dst, web/mobile, b/w, quality)
 - Analytics on video profile to identify resolution/quality
 Network Load

TeleScope: Benefits

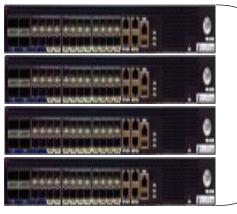
- Works on UNSW campus experimental SDN-WiFi network
- Operational on UNSW dorm wired network
 Serving few hundred students
- Scale-tested to 32k flows in lab
- "Safe" solution:
 - Can work as "bump-in-wire" or with mirror traffic
 - Data-plane resilient to controller failures
 - Fraction of cost of "middlebox" solutions
- Looking for enterprises/operators to do trials!

CaSToR: Inter-Connects

- Internet Exchange Point (IXP) = Route-Servers + L2-data-plane:
 - Hygiene: Ether-types, ARP broadcasts, multicasts, one MAC per-port, …
 - Free-riding: no enforcement of policy
 - Static provisioning (and pricing), poor telemetry
- SDN/OpenFlow presents an opportunity:
 - Leverage IXP's natural separation of control and data plane
 - But enforce tighter coupling between the two!
 - Replace data-plane layer-2 switch with OF switch (similar cost)
 - Augment control-plane with ONOS app (CaSToR)

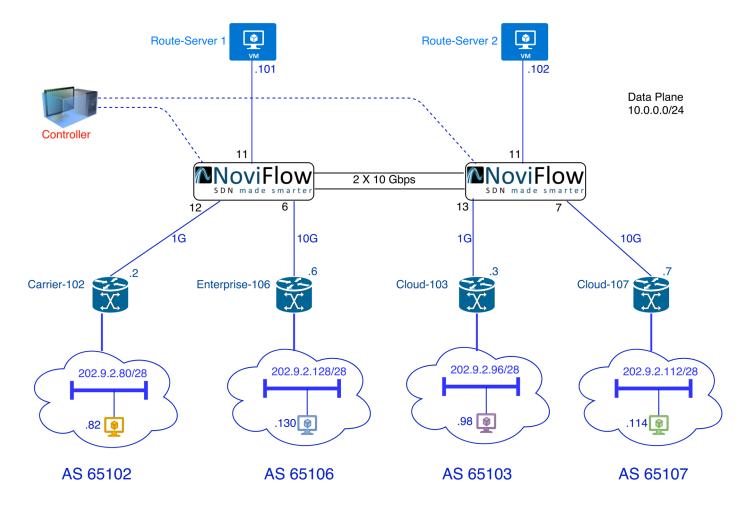

CaSToR: Architecture

Management plane: web-server for GUI provisioning, policy config, telemetry APIs, billing integration


Commodity servers ONOS Controller, CaSToR Application, Web-server

Control plane: runs BGP peering, pushes policies into data-plane, provides features like monitoring

Commodity spine switches


Data plane: OF1.3 leaf switches with customer-facing ports

OF leaf switches (NoviSwitch)

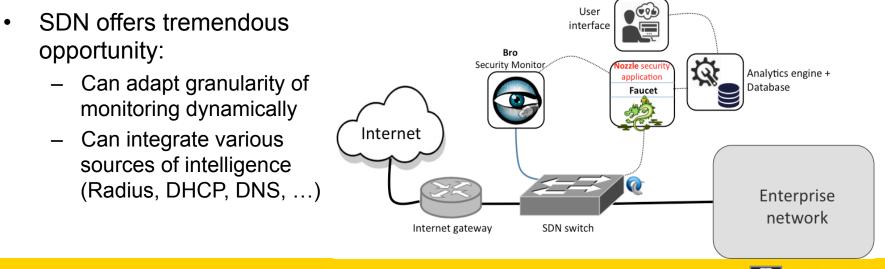
CaSToR Example Setup

CaSToR GUI

🗳 CASToR	≡ ⊥ 8				Q 🥐	4.11
Main Navigation	Summary of Cus	tomers				
⑦ Dashboard	-					
Add a Customer	Synchronize					
↔ Route Servers	Added Peers					
Components	Show 10 💠 ent	ries			Search:	
டீ Elements	Customer Name	↓ IP Address	11 Location	↓ ↑ Status	Action	н
🗹 Forms	studio-2	10.0.0.2	of:000000000000002/12	active	Delete	
~ Charts	studio-3	10.0.0.3	of:000000000000004/13	active	Delete	
🗄 Tables	enterprise-6	10.0.0.6	of:00000000000002/6	active	Delete	
More	cloud-7	10.0.0.7	of:000000000000004/7	active	Delete	
Pages	Showing 1 to 4 of 4 entrie	25			Previous 1	
	© 2016 - Castor					

CaSToR Benefits and Roadmap

- Replicates today's IXP architecture: can use legacy border router
- Enforces fabric hygiene: ARPs unicast not broadcast
- Web-based (ReactJS) portal for easy provisioning (via REST APIs)
- Platform for innovations:


Granular telemetry – instant visualisation of inter-AS traffic (InfluxDB+Grafana)

- Security policy enforcement
- Automated provisioning and elastic scaling (pricing) of cloudconnects
- Status and future plans:
 - Operational at 8 sites across Australia; peering with US/Europe
 - CaSToR is standard in next release of ONOS
- Looking for IXPs / Interconnect providers who are keen for trials!

Security: Killer Use-Case for SDN?

- Escalation in cyber-attacks:
 - Home devices being used for reflection attacks
 - Enterprises lacking skills to configure and manage security
 - Carriers have opportunity to offer managed security services
 - Internet exchanges can offer value-add security services
 - Geo-blocking; source-address filtering
 - Perimeter defense does not suffice
 - Need continuous monitoring of internal network traffic

Conclusions

- SDN has great intellectual appeal
 - Some wins: DC networks, large CP networks
 - But many pains: fragmentation, lack of skills
- "Easy" use-cases localized solutions with clear benefits:
 - [Seer] SDN for the home: device visibility, quota, parental control, security
 - [TeleScope] Enterprise/carrier fine-grained visibility into video flows
 - [CaSToR] Flexible inter-connect with enhanced telemetry, security
- The road ahead:
 - Need more focus on development of skills and building community
 - ANZ-SDN Alliance: <u>www.anzsdn.net</u>
 - Encourage carriers to "get hands dirty" and "experiment"
 - Encourage researchers to develop and demonstrate prototypes

