

qeb=rkfsbopfqv=lc==

kbt=plrqe=t^ibp=

=
p`elli=lc=bib`qof`^i=bkdfkbbofkd==

^ka=qbib`ljjrkf`^qflkp=

=

=

Haze Watch - Data Modelling and
Visualisation using Google Maps

by

Amanda Chow

Thesis submitted as part of the requirements for the
Bachelor of Engineering (Electrical Engineering)

Submitted: 22 October 2010 Student ID: 3210263

Supervisor: Dr. Vijay Sivaraman Topic ID: VR27

Thesis title: Haze Watch – Data Modelling and Topic number: VR27

 Visualisation using Google Maps

Student Name: Jing Ting Amanda Chow Student ID: 3210263

A. Problem statement

In recent years, there has been a growing awareness regarding air pollution and the

need for proper monitoring and forecasting of urban air quality around the world. Air

quality has worsened in many developing countries, with the escalating number of

motor vehicles and movement towards wide-scale industrialization. This leads to

increased health risks, particularly for cardiovascular and respiratory illnesses such as

asthma and lung cancer. Hence there is an increasing need for people to start

monitoring their exposure to air pollution, and we will need a data analysis and

visualisation system to demonstrate our everyday exposure.

B. Objective

Review relevant literature about data interpolation techniques (IDW and kriging).

Build a fast and efficient web application that has a friendly and easy to understand

user interface. Supply accurate and reliable air pollution estimates using selected data

interpolation models. provide dynamically constructed real-time graphical

visualisations based on collected and interpolated air pollution data

C. My solution

Google Maps Javascript API and AJAX requests for user interface

PHP script for inverse distance weighting algorithm

CGI script and R language for ordinary kriging algorithm

CGI script and gnuplot language for image generation

D. Contributions (at most one per line, most important first)

Coherent web application that gathers separate functionalities into one

Creating CGI script and R script for kriging algorithm

Creating CGI script and gnuplot parameters for image generation

Creating PHP script for inverse distance weighting

E. Suggestions for future work

Field tests with actual pollution sensor and compare with estimation

Implement temporal model, checking dispersion models

While I may have benefited from discussion with other people, I certify that this thesis is entirely

my own work, except where appropriately documented acknowledgements are included.

Signature: _________________________________ Date: _21_ / _10_ / _2010

Thesis Pointers

List relevant page numbers in the column on the left. Be precise and selective: Don’t list all

pages of your thesis!

7 Problem Statement

7 Objective

Theory (up to 5 most relevant ideas)

12 Ordinary kriging

11 Inverse distance weighting

16 AJAX requests and responses

28 Cross-validation

Method of solution (up to 5 most relevant points)

16 Google Maps and AJAX

18 User interface

22 Kriging implementation

22 Inverse distance weighting

24 Image generation

Contributions (most important first)

15 Coherent web application that gathers separate functionalities into one

22 Creating CGI script and R script for kriging algorithm

24 Creating CGI script and gnuplot parameters for image generation

22 Creating PHP script for inverse distance weighting

18 Javascript for displaying map and markers

My work

15 System block diagrams/algorithms/equations solved

26 Description of assessment criteria used

15-25 Description of procedure (e.g. for experiments)

Results

26-38 Succinct presentation of results

26-38 Analysis

26-38 Significance of results

Conclusion

39 Statement of whether the outcomes met the objectives

39 Suggestions for future research

Literature: (up to 5 most important references)

12 [23] I. Clarke, 2010

13 [26] Y. Zhukov, 2010

22 [31] E. Pebesma, 2001

24 [34] gnuplot, 2010

16 [27] Google, 2010

2

Acknowledgements

My deepest thanks go to my supervisor, Vijay Sivaraman, whose enthusiasm and vision for the

Haze Watch project helped to encourage and guide me through the entire data modelling and

visualisation system set-up. I am also grateful to my fellow members of the project, James

Carrapetta and Nik Youdale, whose collaborative efforts and ideas acted as inspirations.

I am indebted to the many experts of the Google Maps Javascript API v3 group and the R-sig-

geo (R Special Interest Group on using Geographical data and Mapping), who dedicate their

time online in answering the questions of others. I would like to thank my friends who happily

offered their alternative opinions and viewpoints, and lastly my family, who helped support my

efforts throughout this thesis.

3

Abstract

Air quality has worsened in many urban centres around the world, which leads to increasing

health risks. Haze Watch is the start of closer monitoring and analysis of the air quality in

Sydney by means of mobile wireless pollution sensors and data visualisation system; giving

people the chance to evaluate their personal exposure to air pollution. This thesis documents

the development and analysis of a web-based application to store, model and represent data

using Google Maps and other integrated systems. We cover similar geographic information

systems and relevant background theory in this report and will discuss how to implement

important features and ways to assess the application’s reliability, before suggesting further

improvements that could be made.

4

Abbreviations

AJAX

API

CGI

CO

CSS

GIS

HTML

IDW

NO2

NRMSE

O3

PHP

PM10

PM2.5

SO2

RMSE

UI

URL

XML

Web development techniques that enhance interactivity of web applications

Application interface implemented to enable easy interaction between software

Common Gateway Interface, protocol for calling external programs on a server

Carbon monoxide, poisonous gas

Cascading Style Sheets, describes look and formatting of a web page

Geographical Information System, used to analyse geo-referenced data

Hypertext Markup Language, markup language for web pages

Inverse distance weighting, a data interpolation method

Nitrogen dioxide, poisonous gas and common air pollutant

Normalised RMSE, ratio of standard deviation to RMSE value

Ozone, air pollutant with harmful effects to humans

PHP: Hypertext Preprocessor, a general-purpose scripting language

Particulate matter suspended in air, smaller than 10 micrometers in size

Particulate matter suspended in air, smaller than 2.5 micrometers in size

Sulphur dioxide, common air pollutant and precursor to sulphuric acid

Root mean square error, measures difference between predicted and actual

values

Interface between user and machine

Specifies where identified resource is located and how to retrieve it

Extensible Markup Language; set of rules to encode documents

5

Contents

Introduction .. 7

Background .. 8

2.1 Haze Watch ... 8

2.1.1 Objectives of the project ... 8

2.1.2 Project topology .. 8

2.2 Similar products ..10

2.3 Data interpolation techniques ..11

2.3.1 Inverse distance weighting interpolation ...11

2.3.2 Kriging interpolation ...12

Implementation ...15

3.1 System overview ...15

3.2 Client-side implementation ..17

3.2.1 Google Maps and AJAX ...17

3.2.2 User interface ..18

3.3 Server-side implementation ..21

3.3.1 Database access ...21

3.3.2 Data interpolation models ..22

3.3.3 Image generation ...24

Results and Performance ..26

4.1 Client-side results and performance ..26

4.1.1 Google Maps and AJAX ...26

4.1.2 User Interface ..26

4.2 Server-side results and performance ..28

4.2.1 Database access ...28

4.2.2 Data interpolation models ..28

6

4.2.3 Image generation ...38

4.2.3 Other considerations ..38

Conclusions ..39

5.1 Future work ...39

5.2 Final words ...39

Bibliography ..40

Appendix ...44

Appendix A: Installation Guide ...44

Appendix B: File Checkout ..45

7

Introduction

In recent years, there has been a growing awareness regarding air pollution and the need for

proper monitoring and forecasting of urban air quality around the world. Air quality has

worsened in many developing countries, with the escalating number of motor vehicles and

movement towards wide-scale industrialization [1]. This leads to increased health risks,

particularly for cardiovascular and respiratory illnesses such as asthma and lung cancer. The

World Health Organisation (WHO) estimates that air pollution is the cause of two million deaths

worldwide each year [2]. The air may be relatively cleaner in Australia, but air pollution still

poses a big problem and costs the government of New South Wales about 4.7 billion dollars per

year in medical fees [3].

As such, the Haze Watch project has been initiated to collect data regarding air pollution around

Sydney using mobile wireless sensors, as well as to distribute and display the latest air quality

information on various applications. This thesis, originally titled GIS tools for Web Applications,

will focus on the latter component, aiming to build a web geographic information system (GIS)

which can store, model, and represent geographically referenced air pollution data. Google

Maps acts as a primary viewing platform for a graphical visualisation of Sydney’s air quality.

The objectives of this thesis are:

• To build and test a fast and efficient web application that has a friendly and easy to

understand user interface (UI)

• To supply accurate and reliable air pollution estimates using selected data interpolation

models

• To provide dynamically constructed real-time graphical visualisations based on collected

and interpolated air pollution data

The current trend of GIS technology towards online networks has made such systems even

more powerful than before, as an up-to-date representation of collected data makes analysis

over the entire location range much easier [4]. More people will be able to access information

about air quality (which would have previously been unavailable). This ties in to one of Haze

Watch’s main aims of identifying pollution hotspots in Sydney and informing individuals of their

personal exposure to air pollution.

8

Background

2.1 Haze Watch

2.1.1 Objectives of the project

The Haze Watch [5] project was recently started this year, in response to major public policy

concerns regarding exposure to air pollution within urban city centres. The general goal of the

project is to develop a system which collects air pollution readings for several pollutants at a

high spatial resolution, and also analyse and display air pollution data for anyone with Internet

access. This data may then be used to quantitatively estimate the pollution exposure of

individuals. It is based on the concept of participatory sensing, by linking sensor devices to

widely-available smart phones. There are some projects with similar aims, such as

CamMobSens [6] and MAQUMON [7], but they are currently not ready for full release.

2.1.2 Project topology

There are two main branches of development, which can be approximately divided into a

collection element and an analytic element, as seen in Figure 1. James Carrapetta [8] is

handling the collection element which involves the building and manufacture of portable devices

that measure the concentration of toxic gases, such as nitrogen dioxide (NO2), sulphur dioxide

(SO2) and ozone (O3) near ground level. These measurements are then passed on to a user’s

smart phone through a Bluetooth connection. At the moment of communication, the smart

phone also records the sensor’s position and time. Further transmissions of collected data may

then be made through the mobile phone network to be stored on a remote server.

FIGURE 1: PROJECT TOPOLOGY OF HAZE WATCH

9

For the analytic component, a web application allows user input to access the shared database

of geo-tagged data and display a specific dataset dependent on position, time and type of

pollutant. Map overlays representing the range of estimated pollutant values are dynamically

generated using common data interpolation models such as inverse distance weighting and

Kriging over a selected gridded area of Sydney. A shared internal code interface was created to

facilitate development of other applications that require the same functionality of estimating air

pollution values based on nearby measured samples. Nik Youdale [9] has set up a database

populated by half-hourly updates on the air quality at fifteen fixed sites around NSW from the

Department of Environment and Climate Change (DECC) website [10], and has also developed

an iPhone application to predict an individual’s exposure to air pollution.

It is crucial that both components work in tandem with each other, as a vast collection of data

will require some form of visualisation to assist in understanding, while the analytic component

needs a large and well distributed dataset to ensure reliability and consistency of our estimated

air pollution values.

10

2.2 Similar products

In addition to related projects focused on air pollution like CamMobSens, this thesis also shares

similarities with other web-based geographic information systems (GIS) such as Lifemapper.org

[11], which disseminates graphical visualisations of an extensive collection of biological data. A

broadly accepted definition of a GIS [12] describes it as:

A system of hardware, software and procedures to facilitate the management,

manipulation, analysis, modelling, representation and display of geo-referenced data to

solve complex problems regarding planning and management of resources.

To put it simply, a GIS application deals with the convergence of cartography and a database of

position-based values. Its value lies in easily summarising and communicating data to people

through the use of visual images and maps. GIS software such as Gamma Designs’ GS+ 9 [13]

and Golden Software’s Surfer 9 [14] are highly sought after and cost in the hundreds, though

there are also open source alternatives such as Geographic Resources Analysis Support

System (GRASS) GIS [15] and Quantum GIS [16], which are founding projects of the Open

Source Geospatial Foundation (OSGeo).

Peng and Tsou [17] further elaborate on systems with respect to a web GIS, also known as an

Internet GIS. They describe it as a GIS centred on the use of Internet technology and relies on

real-time data analysis carried out on open distributed networks. Users will be able to directly

access the application through their web browser, and be supplied with the latest information.

Consequently, web GIS is seen as the next progressive step up from traditional desktop-based

proprietary GIS programs.

There are a few GIS web tools available on the Internet, which include the commercially

available ArcGIS Server [18] and the open source MapServer and GeoServer [19]. Google

Maps is known as a web mapping service, not as a web GIS per se, but because we plan to

integrate it with the storage and analysis of Haze Watch’s geo-referenced air pollution data, the

entire system can be considered as one. Hence we have strived to emulate the accuracy of full

GIS application suites, and also to offer online data sharing and distribution capabilities.

2.3 Data interpolation techniques

One of the most important components of this web application is the air quality models neede

to predict the different concentrations of air pollution at a certain space and time. This will

determine the reliability and accuracy of any derived data and therefore the

project. Based on the principle that the data value measured at a

nearby positions and that this relationship can be modelled, we

interpolation to determine the concentration of air pollution a

thereby extending usability beyond the sam

Even so, there are many different forms of interpolation which process data differently.

speed and accuracy of various techniques

dataset [20], must all be taken into account

greater reliability given that sampled data locations are densely and uniformly distributed, but

conversely, if data locations are clustered

will be obtained [21]. This holds true regardless of the method we choose.

aware of the fact that interpolation inherently underestimate

dips due to the nature of averaging.

Inverse distance weighting (IDW)

interpolation techniques, and are examples of the choices to be made between speed,

complexity and accuracy. As they

theory behind the algorithms is discussed

2.3.1 Inverse distance weighting interpolation

Inverse distance weighting involves the allocation of weights based on the distances

positions that have known values

stated [22]:

As a point gets further away from the interpolated position, it becomes less significant in the

calculation, and hence its weight in the total equation is reduced.

echniques

One of the most important components of this web application is the air quality models neede

to predict the different concentrations of air pollution at a certain space and time. This will

accuracy of any derived data and therefore the

ased on the principle that the data value measured at a location will be similar to other

his relationship can be modelled, we use

interpolation to determine the concentration of air pollution at points not within the dataset,

thereby extending usability beyond the sampled sites.

Even so, there are many different forms of interpolation which process data differently.

techniques, as well as the variability and density of the original

, must all be taken into account. In particular, we note that interpolated data has a

greater reliability given that sampled data locations are densely and uniformly distributed, but

conversely, if data locations are clustered with large gaps between sites, inaccurate estimates

. This holds true regardless of the method we choose. We must also be

aware of the fact that interpolation inherently underestimates the peaks and overestimates the

due to the nature of averaging.

nverse distance weighting (IDW) and kriging are two of the most common mathematical

are examples of the choices to be made between speed,

. As they have been chosen for implementation in this thesis, t

theory behind the algorithms is discussed in the following sections.

eighting interpolation

Inverse distance weighting involves the allocation of weights based on the distances

positions that have known values and the positions to be predicted. Shepard’s formula is as

point gets further away from the interpolated position, it becomes less significant in the

, and hence its weight in the total equation is reduced. The power, P, determines the

11

One of the most important components of this web application is the air quality models needed

to predict the different concentrations of air pollution at a certain space and time. This will

accuracy of any derived data and therefore the quality of our

location will be similar to other

se two-dimensional

t points not within the dataset,

Even so, there are many different forms of interpolation which process data differently. The

density of the original

. In particular, we note that interpolated data has a

greater reliability given that sampled data locations are densely and uniformly distributed, but

with large gaps between sites, inaccurate estimates

We must also be

s the peaks and overestimates the

common mathematical

are examples of the choices to be made between speed,

implementation in this thesis, the

Inverse distance weighting involves the allocation of weights based on the distances between

. Shepard’s formula is as

point gets further away from the interpolated position, it becomes less significant in the

The power, P, determines the

12

degree of diminishing significance, with higher powers giving greater emphasis on close

neighbouring points.

IDW can be implemented quite easily, and the final predicted value is also computed quickly.

However, it also has a high error rate, particularly when points are sparsely distributed because

a far-away point may have too high an impact. The contour maps generated from a grid of IDW

values are not very smooth, with a very sharp gradient seen near an actual measuring site (also

known as a bull’s-eye effect). Any point that is outside the range of measured sites is subject to

inaccuracy, due to IDW’s inability to extrapolate information outside of the given data set.

2.3.2 Kriging interpolation

Kriging is a more complex method of interpolation, but also promises more robust results. It is

similar to the IDW method, as weights are assigned according to surrounding measured values.

The difference is that weights are defined using the statistical variance between two points,

which is a measure of their spatial autocorrelation. Semi-variance is calculated using the

formula shown below [23]:

What it means is that for each pair of locations separated by a distance h, we calculate the

difference squared between their values. Since there are typically many pairs with unique

distances, they are grouped into lag bins (eg. all pairs of points that are more than 20m apart

but less than 30m are clustered together). We average the semi-variance values for all pairs

within a lag bin, do the same for the other distances, and then graph them to form an empirical

semivariogram. Thus a semivariogram relies on a stochastic interpretation of the data set, as

compared to the previous deterministic IDW model [24].

We still need to fit a model to the empirical semivariogram in order to cover all possible

distances (as shown in Figure 2), especially if the data for lags close to zero is sparse.

FIGURE 2: EXPERIMENTAL AND MOD

The choice of model (Figure

considering their nugget value, range and sill.

of the model and should technically be zero

variances when it is non-zero. The range is the distance where the graph evens out, while the

sill is the y-value where the range is reached.

variogram does not flatten out. Both the exponential and spherical models level out after a

certain distance, implying that locations further apart than that distance are no longer related.

Otherwise, their main differences lie in

FIGURE

The values can then be predicted using weights in re

ordinary or universal kriging. The different types of kriging place different constraints on the

weights. Simple kriging assumes that there is a known constant trend

universal kriging supposes a general linear trend model. Ordinary kri

mean is unknown, which is a reasonable mathematical conjecture

implementation. All mentions about kriging hereafter refer to ordinary kriging.

EXPERIMENTAL AND MODEL VARIOGRAM FOR KRIGING

Figure 3) relies on the underlying experimental variogram after

considering their nugget value, range and sill. The nugget effect is equal to the y

and should technically be zero, but signifies measurement errors or unaccounted

. The range is the distance where the graph evens out, while the

value where the range is reached. A linear model should be used if the experimental

variogram does not flatten out. Both the exponential and spherical models level out after a

certain distance, implying that locations further apart than that distance are no longer related.

Otherwise, their main differences lie in how sharply the graph changes.

FIGURE 3: MODEL VARIOGRAMS FOR KRIGING [25]

The values can then be predicted using weights in relation to this fitted variogram, using simple

or universal kriging. The different types of kriging place different constraints on the

weights. Simple kriging assumes that there is a known constant trend in the data

universal kriging supposes a general linear trend model. Ordinary kriging assumes the constant

mean is unknown, which is a reasonable mathematical conjecture and so will be used in our

implementation. All mentions about kriging hereafter refer to ordinary kriging.

13

) relies on the underlying experimental variogram after

is equal to the y-axis intercept

measurement errors or unaccounted

. The range is the distance where the graph evens out, while the

used if the experimental

variogram does not flatten out. Both the exponential and spherical models level out after a

certain distance, implying that locations further apart than that distance are no longer related.

lation to this fitted variogram, using simple,

or universal kriging. The different types of kriging place different constraints on the

in the data, whereas

ging assumes the constant

and so will be used in our

implementation. All mentions about kriging hereafter refer to ordinary kriging. The equation

14

below shows the equation for the kriging estimated value, with wi representing the weight given

to each sampled point, Z(xi).

To find the weights, w1 to wn, we must solve the following system of linear equations [26] using

matrix inversion, where γ(dij) is the semi-variance for dij determined from the model variogram,

and λ is the Lagrange multiplier used to minimise error, such that λ(x) = λ (ie. the unknown

trend).

For the final interpolated value and variance [26]:

The great benefit of a stochastic technique is that it provides the ability to assess error or

uncertainty of the estimated point. Therefore, the kriging interpolation is a widely accepted

method to model the quality of air in many studies. It also presents a much smoother and

natural-looking contour plot generated from interpolated data.

15

Implementation

3.1 System overview

The web application could be divided into two main sections, consisting of a client-side

component and a server-side component which are separated by a network, as shown in Figure

4. The server stores geo-referenced data, keeping track of measured pollutant values at

different positions and times. It also interpolates data and generates a contour map for selected

datasets. The client side allows users to enter position and time parameters and pass those to

the server. Another task is to display the Google Maps tile layers and also the generated

contour map as an overlay.

FIGURE 4: DIAGRAM ILLUSTRATING SYSTEM COMPONENTS AND FLOW

16

Furthermore, the server side has a standardised code interface (model.php) to be shared with

the iPhone application that Youdale [9] is making, as shown below.

FIGURE 5: SERVER-SIDE INTERACTION WITH IPHONE APPLICATION

17

3.2 Client-side implementation

As a web application, the frontend will be widely available to everyone, as long as they have an

Internet connection and compliant browser. We want it to be fast, intuitive and user-friendly, but

also to leverage on the power of server-side applications to deliver the maximum data modelling

and visualisation capabilities. The standard web technologies of HTML, CSS and Javascript are

all used to develop the web application, as well as the burgeoning growth of AJAX

(asynchronous JavaScript and XML) in hand with PHP server-side scripting. Separate CSS files

allows for trouble-free change in the appearance of the web tool.

3.2.1 Google Maps and AJAX

Google Maps is a well-known web tool launched in February 2005, which marked a

breakthrough for web cartography when their tile-based implementation of maps proved to be

much quicker and intuitive for users. The company then made their application programming

interface (API) freely available, allowing other web developers to use Google Maps to share

individualized content and combine different datasets on a single map. This ease of use,

internet popularity and clearly documented API were factors in the decision to use Google Maps

for the web application. Another close choice would be Google Earth, which has more advanced

features, however less people use it and an additional plug-in would be required.

The third and newest form of the Google Maps Javascript API [27] was released at the start of

2010. Version 3 maps promise faster load times, especially so for smartphones due to the

removal of bloated code. Google announced the deprecation of Version 2 maps in May 2010,

and moved support over to V3, the current official version of the Google Maps Javascript API.

This indicates that expected lifespan of V3 maps is about three years, and acts as an example

of how quickly web technologies change, and demonstrates that updates to our web application

must be made on a regular long-term basis.

AJAX technologies have grown in popularity in recent years, as web developers make full use of

the interactivity it provides. With the advent of AJAX, a single client action no longer has to

reload the entire page in order to display any new changes, dramatically improving the user

experience [28]. The use of JavaScript and the XMLHttpRequest object allows data to be

exchanged asynchronously between the web browser and server, while the Document Object

18

Model (DOM) is utilised to dynamically handle data. An AJAX interface is harder to implement

compared to a static page, but the greater functionality is worth the time and effort.

Google Maps in particular relies heavily on such AJAX techniques, and our web application

seamlessly integrates these into our system, from the handling of form inputs, dynamic

estimation of pollutant values to loading images. The following figure illustrates some of these

basic Javascript components.

FIGURE 6: DIAGRAM OF JAVASCRIPT COMPONENTS

3.2.2 User interface

At the end of Session 1 2010, the interface was still fairly basic as seen in Figure 7, with more

screen estate given to the map and a small footer containing form elements. The map is sized

proportionately to the dimensions of the user’s browser window, thereby extending across the

entire screen. This placed greater emphasis on the graphical representation of selected data.

19

FIGURE 7: PAST WEB APPLICATION USER INTERFACE

However, the decision to add increased functionality through the form inputs meant that it was

more appropriate to move the form elements to form a separate sidebar (see Figure 8). This

proves to be more intuitive to a user’s eye, as we are naturally conditioned to fill in forms

vertically rather than horizontally. The layout of the form also becomes much cleaner and easier

to navigate.

We allow the user to tailor their query by inputting values for latitude, longitude, search radius,

date and time and pollutant type. A draggable home marker designates the user’s point of

interest, such that one does not have to manually enter in explicit latitudes and longitudes

(which are normally not well known). jQuery UI [29], a well-known Javascript API plug-in, is

used as it simplifies client-side scripting and provides high-level widgets such as a date-picker

and slider bar, both of which provide advanced interactivity for the web application. The date-

picker is important because users can select their wanted date through a calendar, especially

since entering it manually is slightly confusing due to the database formatted date. The same

applies for the slider bar, which lets users adjust the time by sliding the knob rather than typing

in the time in 24-hour format by hand.

20

FIGURE 8: CURRENT WEB APPLICATION USER INTERFACE

The types of pollutants are listed in a drop-down menu as it offers a cleaner user interface. The

number of neighbouring results is a significant value as it can greatly affect the final estimated

results. Hence we give people the option of changing the number by themselves, but still set the

default to finding the maximum possible set of sampled sites which meet their initial query

standards. Two different methods of interpolation (IDW and kriging) are also presented to the

user to choose.

Currently there are two main display variables, one which will only show points where data was

collected, while the other is an option to display a gradient-filled contour map of predicted

pollutant values. Mousing over the marker associated with the sampled site will bring up the

measured pollutant data in an information window, which reduces on-screen clutter yet gives a

convenient way of looking at point data. Both display options offer colour-coded indicators which

immediately inform users of unsafe levels of pollution. If we display sampled sites as points, a

light-blue marker indicates the site with the smallest sampled value, while a red marker denotes

the site with the highest. For the contour map, there is an associated colour bar with blue

signifying lower pollutant values and red indicating higher pollutant values.

21

3.3 Server-side implementation

3.3.1 Database access

PHP is a scripting language built from the ground up for web development and has specialised

functions for interaction with the MySQL database. These attributes make it a superior

candidate for our server-side based programming over others such as Perl. Form inputs are

sent using the get method to a specific PHP file for query processing. The PHP get method is

useful for database querying, especially for testing purposes as we are able to bookmark pages

or alter the query directly in the URL bar. An example URL is “form-contourmap.php?lat=-

33.91793&lng=151.22693&radius=50&datetime=201010081200&results=20&pollutant=pm10&

maxfit=true&modeltype=idw”.

The PHP file parses the terms into a structure suitable for MySQL. It then opens a connection to

the database and retrieves the relevant dataset. These could be sent back to the client-side for

the display of individual markers of measuring sites, or to a data interpolation model to undergo

more processing.

The specific database query which selects the neighbouring data points also particularly

influences the final estimated value, almost as much as the interpolation method itself. In this

case, we pick points on the basis of a nearest neighbour search, such that they are the closest

possible points in terms of distance and time. Preference is given to closest time and then

distance. We do disregard the third dimension characteristic of topographic height, so distance

is assessed purely on their latitude and longitude parameters. Temporal aspects are mostly

ignored other than setting an initial window of two hours before and after the requested time,

because pollutants are highly variant according to dispersion properties and weather factors.

However, these two assumptions could be modified after further research.

Some initial filtering of the retrieved dataset is carried out during the database query, chiefly for

latitude and longitude points. The interpolation algorithms do not work properly when the exact

same points hold different pollutant values. This occurs either when the site is sampled at

different times or the spatial difference between two points is negligible, making them appear to

be only a single point. Hence we filter the results by rounding the latitude and longitude

parameters to two decimal places (corresponding to a precision of roughly 1 kilometre, ie. only

differentiating between points that are more than 1km apart).

22

3.3.2 Data interpolation models

Inverse distance weighting

The algorithm is written using PHP, as it is straightforward enough to implement, and fast

enough that the time difference due to using an interpreted language is negligible. The value to

be estimated is consistently iterated over the number of points within the array of sampled sites

retrieved from the database. Attempting to stop when the percentage change of the predicted

value is deemed insignificant either has no chance to occur due to the variability of data, or

creates a large unexpected deviance in the final estimate, thus it is recommended that the final

estimated value is only outputted when all measured sites have been weighted accordingly.

Kriging interpolation

Firstly, semivariograms were constructed for two different datasets taken with the same

parameters other than number of neighbouring points and type of pollutant (see Figure 9). 35

measured points were obtained from the database for the pollutant PM10, while 68 points were

taken for CO. The numbers above each point on the graph indicate the number of distance pairs

inside the corresponding lag bin. The discrepancies between these two variograms suggest that

it would be necessary to fit the model variogram for each different pollutant. There is no clear sill

or range for either of these variograms, but nugget effect appears to be zero.

FIGURE 9: EMPIRICAL SEMIVARIOGRAM FOR PM10 (LEFT) AND CO (RIGHT)

We use a CGI script (krigingR.cgi) to pipe instructions to R [30] which is a long-standing

statistical computing language and system, and is considered to be the major standard amongst

23

statisticians, engineers and scientists for analysing data. Given R’s longevity, many packages

and plug-ins are available for use, chief amongst them gstat [31] and automap [32]. gstat gives

us the ability to fit models to variograms and graph the result, as well as to predict the kriging

estimate, while automap performs automatic calculations based on the dataset in order to find

the best-fitting variograms.

A linear model was initially fitted for the PM10 variogram (Figure 10 left), before trying the

automatic fit function in automap (Figure 10 left). Note that some lag bins are discarded to get a

better fit. The fitted variogram model for CO is also shown below. After finalising our variogram,

we can then use gstat to predict our desired kriging estimator. The estimated value together

with its variance is written to an external text file, which is read by a PHP script to be displayed

in the web application, thereby achieving an ordinary kriging data interpolation model.

FIGURE 10: LINEAR VARIOGRAM (LEFT) AND EXPONENTIAL VARIOGRAM (RIGHT) FOR PM10

FIGURE 11: LINEAR VARIOGRAM (LEFT) AND EXPONENTIAL VARIOGRAM (RIGHT) FOR CO

24

3.3.3 Image generation

Image generation poses several distinctive challenges. First of all, note that we will need to

apply a mask (Figure 13 left) to any generated image so as to only show the desired area.

Secondly, we have to make a choice between using raster datasets or vector images [33],

which will each have unique ways of creation and display.

With vector images, we need an algorithm which can determine the spatial relationships

between each cell, and then generate lines around similarly-classified cells. These lines would

then be known as isopleths and could possibly form a closed polygon shape. By colouring in

those shapes, we have a clearly defined contour map. For raster datasets, data interpolation is

carried out on a whole rectangular grid, producing a predicted pollutant value for each individual

cell. We then fill in the grid with different colours depending on those predicted values, akin to

painting pixels.

Vector imaging was deemed too complex at present, with raster images easier to be set up and

produced. A Common Gateway Interface (CGI) script, contour.cgi, was employed to call

GNUplot [34] as an external program. GNUplot is an open-source function plotting program and

is used here as an image generation backend by utilising the three-dimensional plotting tool

(Figure 12 left), and flattening the resultant plot (Figure 12 right) thereby creating a satisfactory

gradient-filled image.

FIGURE 12: 3D PLOT OF PM10 POLLUTANT VALUES (LEFT);

IMAGE GENERATED FROM GNUPLOT (RIGHT)

The range and colour palette of the plot, size of the desired image can all be customised. We

set the range to be the latitudes and longitudes of the outskirts of greater Sydney, while the

colour palette is adjusted to signify hazardous levels of pollutant

colour), and safer level to be blue. This is changed accordingly to the type of pollutant being

plotted, since unsafe levels differ from pollutant to pollutant. Current World Health Organisation

(WHO) guidelines [35] to safe pollutant thresholds are shown in

Pollutant

PM10

PM2.5

Ozone (O3)

Nitrogen dioxide (NO

Sulphur dioxide (SO

Carbon Monoxide (CO)

The GD library [36] of PHP was then used to combine both the mask and GNUplot

image into a single image as shown in

takes in datasets through text files, necessitating the creation of a specially formatted temporary

text file for the latitudes, longitudes and pollutant values to be graphed.

FIGURE

The range and colour palette of the plot, size of the desired image can all be customised. We

set the range to be the latitudes and longitudes of the outskirts of greater Sydney, while the

colour palette is adjusted to signify hazardous levels of pollutant exposure as red (typical danger

colour), and safer level to be blue. This is changed accordingly to the type of pollutant being

plotted, since unsafe levels differ from pollutant to pollutant. Current World Health Organisation

to safe pollutant thresholds are shown in Table 1.

TABLE 1: SAFE POLLUTANT LEVELS

Guideline values

50 µg/m3 for a 24-hour mean

25 µg/m3 for a 24-hour mean

0.05 ppm for a 24-hour mean

Nitrogen dioxide (NO2) 0.25 ppm for a 1-hour mean

Sulphur dioxide (SO2) 5 ppm for a 1-hour mean

Carbon Monoxide (CO) 35 ppm for a 8-hour mean

of PHP was then used to combine both the mask and GNUplot

image into a single image as shown in Figure 13. The main problem with GNUplot is that it

datasets through text files, necessitating the creation of a specially formatted temporary

text file for the latitudes, longitudes and pollutant values to be graphed.

FIGURE 13: MASK OF GREATER SYDNEY (LEFT);

MASKED CONTOUR MAP (RIGHT)

25

The range and colour palette of the plot, size of the desired image can all be customised. We

set the range to be the latitudes and longitudes of the outskirts of greater Sydney, while the

exposure as red (typical danger

colour), and safer level to be blue. This is changed accordingly to the type of pollutant being

plotted, since unsafe levels differ from pollutant to pollutant. Current World Health Organisation

of PHP was then used to combine both the mask and GNUplot-created

. The main problem with GNUplot is that it

datasets through text files, necessitating the creation of a specially formatted temporary

26

Results and Performance

4.1 Client-side results and performance

4.1.1 Google Maps and AJAX

The performance of Javascript and thus the overall loading time of the web application differ

from browser to browser. The worst loading times were experienced in Internet Explorer, with

Google Chrome beating out Firefox in terms of speed. In order to further reduce loading times,

algorithms should be made as efficient as possible with minimal computation occurring, while

carrying out most processing on the server. The main Javascript functions were maintained in a

single file, loadmarkers_v2.js, thereby reducing the amount of overhead for the browser to load,

as compared to opening connections for several small scripts.

Since the contour map is requested through AJAX, and does not require a refresh of the page to

load, users are free to navigate through the map features while waiting for the image. This is

essential since there is a feeling of action rather than inaction and keeps the user engaged in

the web application.

4.1.2 User Interface

One of the key challenges of the user interface is to ensure that it is cross-compatible across

different browsers such that the fundamental look of the website is maintained. The main

development work was carried out in Mozilla Firefox 3.6, but other versions and brands of web

browsers were also tested. There is a unified coherent look for Firefox and Google Chrome,

given that they follow web compatibility standards. Unfortunately, Internet Explorer does not

adhere completely, resulting in little quirks of design such as non-support for rounded corners

and a different transparency setting. Some workarounds (like specially adjusting the opacity

values of the generated contour map) had to be specifically implemented in order to make the

web application presentable. This is essential because Internet Explorer still holds roughly 50%

of browser usage share, compared to 30% for Firefox and 11.5% for Chrome [37].

The web application, although much improved from Session 1 2010, is still fairly unintuitive,

especially if the user is unfamiliar with geostatistics. Since the Haze Watch project is primarily

targeted towards consumers, more work must be done to ease the use of the interface, perhaps

27

with increased instructions and advice on how the different parameters affect the final estimated

results. We must balance the need to simplify the web tool and yet provide enough complexity

such that advanced users can fully utilise it.

28

4.2 Server-side results and performance

4.2.1 Database access

The phrasing of mySQL queries is crucial in ensuring fast retrieval times, with simpler requests

returning more quickly. However, it is also much easier to carry out some pre-filtering at the

database rather than filter the database results as-is due to specialised database functions that

enables quicker grouping and sorting. This leads to faster processing later on, especially with

regards to data interpolation. The same query results are shared between different functions, so

there is little need to keep opening database connections and in doing so, reduces the network

traffic that could severely slow down the database.

The database usually caches the most recent or most popular searches, which speeds up the

query retrieval time if two users happen to call for the same dataset. This should not happen

that often, but more thought could be put into how to harness this to our advantage, for

example, making more general and less specific queries even as it requires us to lower the

sensitivity of the search. As the database expands, general searches will probably be more

time-efficient even with a trade-off in later data processing.

4.2.2 Data interpolation models

When evaluating the reliability and accuracy of data interpolation algorithms, it is extremely

important to remember the salient nature of errors in geo-referenced data. Besides modelling

errors, there will also be errors in measurement and errors in positioning, which could result in a

larger than expected data variations [38]. The models are only as good as the data they are built

upon. In the following sections, we assume that there are no measurement or positioning errors

and focus on modelling errors.

The cross-validation method, otherwise known as the leave-one-out method, is generally used

to calculate the accuracy of interpolation. The method is based on taking away one data point at

a time and then estimating the value at the location of the removed point using the left over

samples. This acts as though the removed point does not exist. We then calculate the residual

between the actual measured value and the new value interpolated from the remaining

samples. This is then repeated until every sample has been removed. The root-mean of the

squared residuals (RMSE) signify the overall performance of the data interpolation model. The

equation below is an example of how to calculate RMSE [39].

29

RMSE is an absolute measure of fit, indicating the fit of the model to the data (ie. how close the

sampled data points are to the model’s predicted values). It can be understood as the standard

deviation of the unexplained variance between the actual measurements and estimated

measurements. Low values of RMSE are generally better because it signifies little difference in

the residuals. We also need to consider the variability of the underlying data, wherein if the

standard deviation is greater than the RMSE, then we are overestimating the variability of our

predictions, but if standard deviation is less than the RMSE, the variability of the predictions is

underestimated [40].

Different accuracy versus number of points on the map

Calculations of standard deviation and RMSE were carried out on the dataset of PM10 retrieved

on the 7th of October 2010 at 2pm, and are tabulated below. The results indicate that RMSE

values are innately linked to the standard deviation of the observed values, as shown in Figure

14 and 15. Since the NRMSE is closest to unity when interpolation is carried out on a sample

dataset of 30, it indicates that this is one of the most reliable results.

TABLE 2: TABULATION OF RMSE OF IDW MODEL

No. of measured
points

Standard
deviation (ug/m3)

RMSE(ug/m3) Normalised
RMSE

5 2.91108 3.35341 1.15195

10 3.04867 2.72681 0.89443

15 15.5251 11.9344 0.76872

20 17.6308 14.5721 0.82652

25 16.6731 14.3605 0.86130

30 16.3350 14.6556 0.89719

35 17.5294 15.5876 0.88922

30

FIGURE 14: STANDARD DEVIATION AND RMSE OF DATA POINTS

FIGURE 15: NORMALISED RMSE

Figure 16 illustrates the difference in visualisations when the number of points is varied. For a

dataset of 10, the sampled sites are too sparse and have measured low values of PM10,

resulting in a uniform blue. For a dataset of 35, areas outside of the range have been overly

extrapolated, turning the eastern side of Sydney red and causing additional errors reflected in

the RMSE.

0

2

4

6

8

10

12

14

16

18

20

0 20 40

S
ta

n
d

a
rd

 d
e
v

ia
ti

o
n

 (
u

g
/m

3
)

Number of measured points

Std Dev

RMSE

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 20 40

N
o

rm
a
li
s
e
d

 v
a
lu

e
s

Number of measured points

31

FIGURE 16: CLOCKWISE FROM UPPER LEFT, CONTOUR MAPS

FOR 10 POINTS, 15 POINTS, 25 POINTS AND 35 POINTS

Accuracy difference between different algorithms

In this case, the power of the IDW interpolator was investigated by varying it from 1 to 4, and

carrying out cross-validation to obtain their RMSE values.

TABLE 3: TABULATION OF STANDARD DEVIATION AND RMSE OF IDW WITH DIFFERENT POWERS

Power Standard
Deviation (ug/m3)

RMSE (ug/m3) Normalised
RMSE (ug/m3)

1 20.24313 18.97328 0.93727

2 20.24313 19.36153 0.95645

3 20.24313 19.82997 0.97959

4 20.24313 19.41376 0.95903

32

The default power is adjusted to two, but the power of one appears to be better due to its

smaller RMSE value (albeit quite insignificantly). Figure 18 demonstrates the visual disparity

between choosing different powers. For the power of 1, there is too much emphasis on points

that are far away, while the opposite is true for the power of 4. Using an inverse distance

squared model still seems to achieve the best balance between RMSE value and visual impact.

FIGURE 17: CLOCKWISE FROM UPPER LEFT, CONTOUR MAPS FOR IDW POWER 1, 2, 3 AND 4

33

Different time taken versus size of grid for IDW

By varying the size of the grid, we are changing the total number of points that need to be

interpolated. For a 10x10 grid, one hundred points are interpolated, contrasted with 2500 for a

50x50 grid. Figure 19 shows that it is not an entirely linear relationship. Figure 20 demonstrates

the stark change in grid size causes the gridded interpolation to give less quality information,

such that having a 40x40 grid is a good compromise between time and sensitivity.

TABLE 4: TIME TAKEN FOR DIFFERENT GRID SIZES

Size of grid Time Taken for Data
Interpolation (ms)

10 33.142

20 104.056

30 231.701

40 394.948

50 607.203

FIGURE 18: TIME TAKEN FOR DATA INTERPOLATION AGAINST SIZE OF GRID

FIGURE 19: CONTOUR MAPS FOR GRID SIZE 10 (LEFT) AND 40 (RIGHT)

y = 0.227x2 + 0.749x + 1.647

0

100

200

300

400

500

600

700

0 20 40 60

T
im

e
 T

a
k
e
n

 (
m

s
)

Size of grid

34

Different time taken versus number of points for IDW

These timings were carried out on the dataset of CO pollutant values on the 7th of October 2010

at 2 pm. The time to carry out different components of the IDW model is recorded and tabulated

in Table 5 and graphed in Figure 18. Database query and image generation proves to be

independent of the number of measured sites, while data interpolation scales linearly.

Generating the contour map seems to be the biggest bottleneck of the system, particularly when

the number of samples is so small. However, time taken for data interpolation could quickly

grow into a problem, especially after 300 observed values when it is estimated to take as long

as the image generation itself.

TABLE 5: BREAKDOWN OF TIMINGS FOR DIFFERENT COMPONENTS IN IDW MODEL

No. of
measured

points

Time Taken (ms)

Database query Data interpolation Image generation Total

10 274.54 143.45 2943.47 3361.46

20 275.69 254.94 2938.43 3469.06

30 274.65 365.89 2951.58 3592.12

40 278.84 477.40 2958.25 3714.49

50 274.58 587.43 2984.42 3846.43

60 275.86 709.28 2933.85 3918.99

68 274.54 790.10 2943.08 4007.73

FIGURE 20: TIME TAKEN TO LOAD IDW MODEL

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60

T
im

e
 t

a
k
e
n

 (
m

s
)

Number of measured points

Database Query

Data Interpolation

Image Generation

Total

35

Different time taken versus number of points for kriging

These timings were also carried out on the dataset of CO pollutant values on the 7th of October

2010 at 2 pm. Unlike IDW, kriging does not have a linear relationship between the number of

sampled sites and the time taken for data interpolation. It appears to flatten out after datasets go

beyond 50. However, this sample size is still too small to be able to confirm this correlation. It

should be noted that the recorded time includes the time taken to auto-fit the model variogram,

which could explain why data interpolation is faster when the number of sampled sites is small.

There will be fewer distance pairs to be calculated and fitted, so processing time will be shorter.

TABLE 6: BREAKDOWN OF TIMINGS FOR DIFFERENT COMPONENTS OF KRIGING MODEL

No. of
measured

points

Time Taken (ms)

Database query Data interpolation Image generation Total

10 276.58 1168.31 2935.26 4380.15

20 277.50 1201.00 2956.16 4434.67

30 278.88 1284.91 2934.68 4498.47

40 278.31 1295.46 2970.46 4544.23

50 279.07 1315.07 2936.06 4530.20

60 280.22 1314.06 2948.94 4543.22

68 279.52 1312.25 2984.05 4575.82

FIGURE 21: TIME TAKEN FOR KRIGING DATA INTERPOLATION

1160

1180

1200

1220

1240

1260

1280

1300

1320

1340

0 20 40 60 80

T
im

e
 t

a
k
e
n

 (
m

s
)

Number of measured points

36

FIGURE 22: TIME TAKEN TO LOAD KRIGING MODEL

When we initialise the model parameters for the variogram rather than using the auto-fit

function, the time taken for data interpolation does decrease by roughly 0.2 seconds. With a

better quality dataset and a properly pre-fitted model variogram, those milliseconds could be

removed.

IDW and kriging comparison

Figure 24 indicates that the IDW system is approximately 600 ms faster than kriging, but this

gap closes as the number of measured points increases. Taking purely the data interpolation

time itself, IDW is up to 85% quicker than kriging. Even with consideration of the bottleneck of

contour generation, IDW is at least 12-20% faster than kriging in total.

FIGURE 23: COMPARISON OF LOAD TIMES BETWEEN IDW AND KRIGING

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80

T
im

e
 t

a
k
e
n

 (
m

s
)

Number of measured points

Database
query
Data
interpolation
Image
generation
Total

3200

3400

3600

3800

4000

4200

4400

4600

4800

0 20 40 60

T
im

e
 t

a
k
e
n

 (
m

s
)

Number of measured points

IDW

OrdK

37

It will be interesting to document if there is a certain number of points after which the kriging

algorithm will overtake IDW in terms of speed, since IDW continues to scale linearly, while

kriging may flatten out.

FIGURE 24: CONTOUR MAP FOR PM10 USING IDW (LEFT) AND KRIGING (RIGHT)

FIGURE 25: CONTOUR MAP FOR CO USING IDW (LEFT) AND KRIGING (RIGHT)

The graphics comparison between the IDW contour map and kriging contour map (Figure 24)

show some stark differences. For kriging, the unsafe PM10 pollutant levels are estimated to

occur along the associated markers. IDW predicts that all of eastern Sydney is under threat

from high concentrations of PM10. On the other hand, kriging estimates that the Sydney

harbour is at a high risk of CO pollution (Figure 25), with the rest of the city at safe levels, while

the IDW interpolator gives a middle estimate. Kriging does present a much smoother gradient

and better aesthetics, compared to the bull’s eye effect of inverse distance weighting.

38

4.2.3 Image generation

The main cause of the long time taken for the image generation component is the size of the

image being created. For a 400 x 400 pixel size PNG file, it takes only 0.8 seconds, but takes

about 3.0 seconds for the 800 x 800 pixel size PNG file. While it is possible to reduce the size of

the generated contour map, this results in a poorer file resolution. There is unwanted increased

pixellation when viewing the web application on a high resolution screen. Hence the decision is

to maintain the image size at the expense of speed, even as it goes against our objective of

having a fast and responsive web application.

4.2.4 Other considerations

The data modelling systems have been built on the back of CGI scripts that call external

programs to carry out statistical analysis and plot diagrams. This means that there is a heavy

reliance on text files to transmit information between programs. Care must be taken to provide

either shared locks or exclusive locks to prevent overwriting of data when it is being accessed

by separate applications. This is exceedingly pertinent in the future wherein the likelihood of

concurrent processes increases, which will potentially create file conflicts.

39

Conclusions

5.1 Future work

Reliability of the models is likely to increase when the envisioned network of mobile pollution

sensors are set up all around Sydney. An in-depth analysis of the data retrieved from mobile

pollution sensors regarding their spatial properties would require a sound grasp of statistics, but

would greatly enhance understanding of the underlying assumptions and limits of the data

interpolation system. One of the most important tasks would be to carry out heavy field testing in

conjunction with the pollution exposure iPhone application. Using a reference mobile sensor

device that measures pollutant values without uploading them to the database, we can then

compare the actual difference between the sample point and the estimated point to calculate the

estimation variance, thereby validating the model and confirming its reliability.

Work could be done in setting up a temporal model to take into account the time lags between

the requested time and the time the site was measured. Serious thought must be given to the

necessary dispersion models and wind factors, as well as topographic elements. This is

especially so for Sydney, where strong winds and multiple hilly areas make it hard to generalise

air pollutants over the entire city.

More user interface improvements could be accomplished, such as implementing an overall air

quality index (AQI) which would factor in the various air pollutants to derive a single easy-to-

quantify value that sums up the condition of air in Sydney. Given that many components of the

current system were initially built for desktop applications, they could be further optimised for

speed to decrease the loading time for the web tool.

5.2 Final words

When this thesis was first started, there was no apparent solution for the system design but

there is now a system architecture in place. Thus we have succeeded in our initial aims of

building an effective working web application to estimate and visually demonstrate the air

pollution levels in Sydney. There are many improvements that could be made to enhance the

quality of information analysis, especially with regards to accuracy. Each additional functionality

would increase the worth of the web tool. Even so, this project has helped contribute to a

greater understanding of the current state of air pollution and allows us to make better decisions

about our personal health risks and how to manage them.

40

Bibliography

[1] V. Mishra. (2003, Dec.) Health Effects of Air Pollution. Document. [Online] Available:

http://www.populationenvironmentresearch.org/papers/Mishra.pdf

[2] World Health Organisation. (2008, Aug.) "Air Quality and Health." World Health

Organisation. [Online] Available:

http://www.who.int/mediacentre/factsheets/fs313/en/index.html

[3] New South Wales Health. (2009, Mar. 31) "Air Pollution and Health: Key Facts for the

Media." New South Wales Health. [Online] Available:

http://www.health.nsw.gov.au/PublicHealth/environment/air/media.asp

[4] P. Pulusan. (2004) "Internet GIS -- One Perspective." GIS Development. [Online] Available:

http://www.gisdevelopment.net/technology/gis/techgi0035.htm

[5] Haze Watch. (2010) "Haze Watch." University of New South Wales. [Online] Available:

http://pollution.ee.unsw.edu.au/

[6] Centre for Scientific Computing. (2010) "CamMobSens." University of Cambridge. [Online]

Available: http://www.escience.cam.ac.uk/mobiledata/

[7] Institute for Software Integrated Systems. (2008) "Mobile Air Quality Monitoring Network."

Vanderbilt University. [Online] Available: http://www.isis.vanderbilt.edu/projects/maqumon

[8] J. Carrapetta, "Haze Watch: Design of A Wireless Sensor Board for Measuring Air

Pollution," University of New South Wales BE Thesis, 2010.

[9] N. Youdale, "Haze Watch: Database Server and Mobile Applications for Measuring and

Evaluating Air Pollution Exposure," University of New South Wales BE Thesis, 2010.

[10] Department of Environment, Climate Change and Water NSW. (2010, May) "Air Quality

Index (AQI) Values." DECC NSW. [Online] Available:

http://www.environment.nsw.gov.au/AQMS/aqi.htm

[11] Lifemapper. (2010) "Lifemapper Services." Lifemapper. [Online] Available:

http://www.lifemapper.org/services/

[12] National Center for Geographic Information Analysis. (1990) "NCGIA Core Curriculum in

41

GIS." University of California, Santa Barbara. [Online] Available:

http://www.geog.ubc.ca/courses/klink/gis.notes/ncgia/u01.html

[13] Gamma Design Software. (2010) Gamma Design. [Online] Available:

http://www.gammadesign.com/

[14] Golden Software, Inc. (2010) Surfer Product Information. [Online] Available:

http://www.goldensoftware.com/products/surfer/surfer.shtml

[15] GRASS Development Team. (2010) GRASS GIS. [Online] Available: http://grass.fbk.eu/

[16] Quantum GIS. (2010) About QGIS. [Online] Available: http://www.qgis.org/en/about-

qgis.html

[17] Z. R. Peng and M. H. Tsou, Internet GIS: Distributed Geographic Information Services for

the Internet and Wireless Networks, 1st ed. USA: John Wiley, 2003.

[18] ESRI. (2010) "Web Mapping Application." ESRI. [Online] Available:

http://www.esri.com/software/arcgis/arcgisserver/live-user-sites.html

[19] GeoServer. (2010) "GeoServer." GeoServer. [Online] Available:

http://geoserver.org/display/GEOS/Welcome

[20] M. de Smith, M. Goodchild, and B. Longley. (2009) "Gridding and Interpolation Methods."

Geospatial Analysis. [Online] Available:

http://www.spatialanalysisonline.com/output/html/Griddingandinterpolationmethods.html

[21] G. Bohling, "Kriging," Kansas Geological Survey, 2005.

[22] Yasrebi, "Evaluation and Comparison of Ordinary Kriging and Inverse Distance Weighting

Methods for Prediction of Spatial Variability of some Soil Chemical Parameters," Research

Journal of Biological Sciences, vol. 4, no. 1, pp. 93-102, 2009,

http://medwelljournals.com/fulltext/?doi=rjbsci.2009.93.102.

[23] I. Clarke. (2010) Practical Geostatistics 1979. [Online] Available:

http://www.kriging.com/PG1979/Chapter_1/index.htm

[24] Coastal Services Center. (2009) "Benthic Habita Mapping -- Spatial Analysis." National

Oceanic and Atmospheric Adminstration. [Online] Available:

42

http://www.csc.noaa.gov/benthic/mapping/analyzing/spatial.htm

[25] Golden Software, Inc. (2002) "Variogram Tutorial." Golden Software Surfer 9. [Online]

Available: http://www.goldensoftware.com/variogramTutorial.pdf

[26] Y. Zhukov. (2010, Jan. 16) "Applied Spatial Statistics in R, Section 5." Geostatistics.

[Online] Available: http://www.people.fas.harvard.edu/~zhukov/Spatial5.pdf

[27] Google Maps. (2010, May) "Google Maps Javascript API V3 Reference"." Google. [Online]

Available: http://code.google.com/apis/maps/documentation/javascript/reference.html

[28] W3Schools. (2010) "AJAX Introduction." W3Schools. [Online] Available:

http://www.w3schools.com/ajax/ajax_intro.asp

[29] The jQuery Project. (2010) jQuery UI. [Online] Available: http://jqueryui.com/

[30] The R Project. (2010) The R Project for Statistical Computing. [Online] Available:

http://www.r-project.org/

[31] E. J. Pebesma. (2001, May 29) "gstat User's Manual." gstat. [Online] Available:

http://www.gstat.org/gstat.pdf

[32] P. Hiemstra. (2004, May 4) "Package 'automap'." CRAN - package automap. [Online]

Available: http://cran.r-project.org/web/packages/automap/automap.pdf

[33] GIS Lounge. (2000, Jan.) "Geodatabases Explored -- Vector and Raster Data." GIS

Lounge. [Online] Available: http://gislounge.com/geodatabases-explored-vector-and-raster-

data/

[34] gnuplot. (2010, Sep.) gnuplot homepage. [Online] Available: http://www.gnuplot.info/

[35] World Health Organisation. (2008, Aug.) "Air quality and health." World Health

Organisation. [Online] Available:

http://www.who.int/mediacentre/factsheets/fs313/en/index.html

[36] The PHP Group. (2010) PHP: GD - Manual. [Online] Available:

http://php.net/manual/en/book.image.php

[37] StatCounter Global Stats. (2010, Sep.) Top 5 Browsers from Sep 09 to Sep 10. [Online]

Available: http://gs.statcounter.com/

43

[38] S. Rahmatizadeh, M. Mesgari, and S. Motesaddi. (2006) "Air Pollution Monitoring with

Geostatistical Analysis." GIS Development. [Online] Available:

http://www.gisdevelopment.net/proceedings/mapindia/2006/environment%20and%20forest

ry/mi06envi_148.htm

[39] M. Tomczak, "Spatial Interpolation and its Uncertainty using Automated Anistropic IDW,"

Journal of Geographic Information and Decision Analysis, vol. 2, no. 2, pp. 18-30, 1998.

[40] ArcGIS. (2010) "Performing Cross-validation and Validation." ArcGIS Desktop Help.

[Online] Available:

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Performing_cross_validation

_and_validation/003100000059000000/

44

Appendix

Appendix A: Installation Guide

For a Ubuntu setup -

1. Download jQueryUI (UI Core, Interactions and Widgets) from:

http://jqueryui.com/download

2. Install gnuplot by using the command:

sudo apt-get install gnuplot

3. Install R by using the command:

sudo apt-get install r-base-core r-recommended

sudo apt-get install r-base-dev

4. Within the R environment, update packages before getting sp, gstat and automap. sp

provides classes and methods for spatial data, gstat handles the kriging modelling and

prediction functions, while automap automatically fits models. rgdal may be required to

support the sp package:

update.packages()

install.packages(‘gstat’)

install.packages(‘rgdal’)

install.packages(‘automap’)

install.packages(‘sp’)

45

Appendix B: File Checkout

File Name Function

public_html

form-calculate.php Calculates and prints the estimated point and its variance.

form-contourmap.php Creates a grid of points and generates the contour map for the

entire grid, then masking it with to create a png image.

form-getdb.php Produces an XML file to store database query results. Is read

by the Javascript file to create Google map markers.

form-rmse.php Calculates the standard deviation of the sampled data and the

root-mean-square error of the estimated data. Finds the

normalised RMSE with the ratio of std to RMSE.

form-validate.php Re-validates the form in case of malicious queries. Is used in

all the form PHP files.

map.php Contains the basic HTML code for the layout of the map

canvas and form elements.

public_html/cgi-bin

contour.cgi Opens a pipe to gnuplot and sends relevant instructions

regarding range, colour palette and size. Uses plotdata.txt.

dbdata.csv Is written over each time a query is retrieved; stores the query

results in text form (latitude, longitude and pollutant value).

kriging.R Creates a grid of points and calls the autofit function, then

predicts the kriging estimators. Writes to pollutant_R.txt.

krigingR.cgi Takes in dbdata.csv, adjusts the grid parameters and then

opens a pipe to R, before calling kriging.R. It then reformats the

output into a form suitable for graphing in gnuplot, thereby

changing plotdata.txt.

plotdata.txt Is written to by query_process.php and krigingR.cgi. Contains

the values to be plotted in gnuplot.

46

pollutant_R.txt Is written to by kriging.R. Contains the predicted values and

variances obtained from R.

public_html/css

jquery-ui-1.8.4.custom.css Stylises the jQuery widgets (datepicker and slider bar).

mapstyle.css Configures appearance for map.php.

public_html/models/identity

image_gen.php Contains the image generation and alteration functions.

model.php Acts as a shared interface for both the web application and the

iPhone pollution exposure app. Contains fundamental functions

for system to work.

query_process.php Contains functions to store and process the query results; from

XML and array creation to data interpolation algorithms.

query_todb.php Parses parameters into specific database queries.

