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A. Problem statement 

In recent years, there has been a growing awareness regarding air pollution and the 

need for proper monitoring and forecasting of urban air quality around the world. Air 

quality has worsened in many developing countries, with the escalating number of 

motor vehicles and movement towards wide-scale industrialization. This leads to 

increased health risks, particularly for cardiovascular and respiratory illnesses such as 

asthma and lung cancer. Hence there is an increasing need for people to start 

monitoring their exposure to air pollution, and we will need a data analysis and 

visualisation system to demonstrate our everyday exposure.  

 

B. Objective 

Review relevant literature about data interpolation techniques (IDW and kriging). 

Build a fast and efficient web application that has a friendly and easy to understand 

user interface. Supply accurate and reliable air pollution estimates using selected data 

interpolation models. provide dynamically constructed real-time graphical 

visualisations based on collected and interpolated air pollution data 

 

C. My solution 

Google Maps Javascript API and AJAX requests for user interface 

PHP script for inverse distance weighting algorithm 

CGI script and R language for ordinary kriging algorithm 

CGI script and gnuplot language for image generation 

 

 

 

D. Contributions (at most one per line, most important first) 

Coherent web application that gathers separate functionalities into one 

Creating CGI script and R script for kriging algorithm 

Creating CGI script and gnuplot parameters for image generation 

Creating PHP script for inverse distance weighting 

 

 

 

 

 

 

E. Suggestions for future work 

Field tests with actual pollution sensor and compare with estimation 

Implement temporal model, checking dispersion models 

 

 

While I may have benefited from discussion with other people, I certify that this thesis is entirely 

my own work, except where appropriately documented acknowledgements are included. 
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Abstract 

 

Air quality has worsened in many urban centres around the world, which leads to increasing 

health risks. Haze Watch is the start of closer monitoring and analysis of the air quality in 

Sydney by means of mobile wireless pollution sensors and data visualisation system; giving 

people the chance to evaluate their personal exposure to air pollution. This thesis documents 

the development and analysis of a web-based application to store, model and represent data 

using Google Maps and other integrated systems. We cover similar geographic information 

systems and relevant background theory in this report and will discuss how to implement 

important features and ways to assess the application’s reliability, before suggesting further 

improvements that could be made. 
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Abbreviations 

 

AJAX 

API 

CGI 

CO 

CSS 

GIS 

HTML 

IDW 

NO2 

NRMSE 

O3 

PHP 

PM10 

PM2.5 

SO2 

RMSE 

 

UI 

URL 

XML 

Web development techniques that enhance interactivity of web applications 

Application interface implemented to enable easy interaction between software 

Common Gateway Interface, protocol for calling external programs on a server 

Carbon monoxide, poisonous gas 

Cascading Style Sheets, describes look and formatting of a web page 

Geographical Information System, used to analyse geo-referenced data 

Hypertext Markup Language, markup language for web pages 

Inverse distance weighting, a data interpolation method 

Nitrogen dioxide, poisonous gas and common air pollutant 

Normalised RMSE, ratio of standard deviation to RMSE value 

Ozone, air pollutant with harmful effects to humans 

PHP: Hypertext Preprocessor, a general-purpose scripting language 

Particulate matter suspended in air, smaller than 10 micrometers in size 

Particulate matter suspended in air, smaller than 2.5 micrometers in size 

Sulphur dioxide, common air pollutant and precursor to sulphuric acid 

Root mean square error, measures difference between predicted and actual 

values 

Interface between user and machine 

Specifies where identified resource is located and how to retrieve it 

Extensible Markup Language; set of rules to encode documents 
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Introduction 

 

In recent years, there has been a growing awareness regarding air pollution and the need for 

proper monitoring and forecasting of urban air quality around the world. Air quality has 

worsened in many developing countries, with the escalating number of motor vehicles and 

movement towards wide-scale industrialization [1]. This leads to increased health risks, 

particularly for cardiovascular and respiratory illnesses such as asthma and lung cancer. The 

World Health Organisation (WHO) estimates that air pollution is the cause of two million deaths 

worldwide each year [2]. The air may be relatively cleaner in Australia, but air pollution still 

poses a big problem and costs the government of New South Wales about 4.7 billion dollars per 

year in medical fees [3]. 

 

As such, the Haze Watch project has been initiated to collect data regarding air pollution around 

Sydney using mobile wireless sensors, as well as to distribute and display the latest air quality 

information on various applications. This thesis, originally titled GIS tools for Web Applications, 

will focus on the latter component, aiming to build a web geographic information system (GIS) 

which can store, model, and represent geographically referenced air pollution data. Google 

Maps acts as a primary viewing platform for a graphical visualisation of Sydney’s air quality.  

 

The objectives of this thesis are: 

• To build and test a fast and efficient web application that has a friendly and easy to 

understand user interface (UI) 

• To supply accurate and reliable air pollution estimates using selected data interpolation 

models 

• To provide dynamically constructed real-time graphical visualisations based on collected 

and interpolated air pollution data 

 

The current trend of GIS technology towards online networks has made such systems even 

more powerful than before, as an up-to-date representation of collected data makes analysis 

over the entire location range much easier [4]. More people will be able to access information 

about air quality (which would have previously been unavailable). This ties in to one of Haze 

Watch’s main aims of identifying pollution hotspots in Sydney and informing individuals of their 

personal exposure to air pollution.  
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Background 

 

2.1 Haze Watch 

2.1.1 Objectives of the project 

The Haze Watch [5] project was recently started this year, in response to major public policy 

concerns regarding exposure to air pollution within urban city centres. The general goal of the 

project is to develop a system which collects air pollution readings for several pollutants at a 

high spatial resolution, and also analyse and display air pollution data for anyone with Internet 

access. This data may then be used to quantitatively estimate the pollution exposure of 

individuals. It is based on the concept of participatory sensing, by linking sensor devices to 

widely-available smart phones. There are some projects with similar aims, such as 

CamMobSens [6] and MAQUMON [7], but they are currently not ready for full release.  

 

2.1.2 Project topology 

There are two main branches of development, which can be approximately divided into a 

collection element and an analytic element, as seen in Figure 1. James Carrapetta [8] is 

handling the collection element which involves the building and manufacture of portable devices 

that measure the concentration of toxic gases, such as nitrogen dioxide (NO2), sulphur dioxide 

(SO2) and ozone (O3) near ground level. These measurements are then passed on to a user’s 

smart phone through a Bluetooth connection. At the moment of communication, the smart 

phone also records the sensor’s position and time. Further transmissions of collected data may 

then be made through the mobile phone network to be stored on a remote server.  

 

FIGURE 1: PROJECT TOPOLOGY OF HAZE WATCH 
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For the analytic component, a web application allows user input to access the shared database 

of geo-tagged data and display a specific dataset dependent on position, time and type of 

pollutant. Map overlays representing the range of estimated pollutant values are dynamically 

generated using common data interpolation models such as inverse distance weighting and 

Kriging over a selected gridded area of Sydney. A shared internal code interface was created to 

facilitate development of other applications that require the same functionality of estimating air 

pollution values based on nearby measured samples. Nik Youdale [9] has set up a database 

populated by half-hourly updates on the air quality at fifteen fixed sites around NSW from the 

Department of Environment and Climate Change (DECC) website [10], and has also developed 

an iPhone application to predict an individual’s exposure to air pollution. 

 

It is crucial that both components work in tandem with each other, as a vast collection of data 

will require some form of visualisation to assist in understanding, while the analytic component 

needs a large and well distributed dataset to ensure reliability and consistency of our estimated 

air pollution values. 
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2.2 Similar products 

In addition to related projects focused on air pollution like CamMobSens, this thesis also shares 

similarities with other web-based geographic information systems (GIS) such as Lifemapper.org 

[11], which disseminates graphical visualisations of an extensive collection of biological data. A 

broadly accepted definition of a GIS [12] describes it as: 

 

A system of hardware, software and procedures to facilitate the management, 

manipulation, analysis, modelling, representation and display of geo-referenced data to 

solve complex problems regarding planning and management of resources. 

 

To put it simply, a GIS application deals with the convergence of cartography and a database of 

position-based values. Its value lies in easily summarising and communicating data to people 

through the use of visual images and maps. GIS software such as Gamma Designs’ GS+ 9 [13] 

and Golden Software’s Surfer 9 [14] are highly sought after and cost in the hundreds, though 

there are also open source alternatives such as Geographic Resources Analysis Support 

System (GRASS) GIS  [15] and Quantum GIS [16], which are founding projects of the Open 

Source Geospatial Foundation (OSGeo).  

 

Peng and Tsou [17] further elaborate on systems with respect to a web GIS, also known as an 

Internet GIS. They describe it as a GIS centred on the use of Internet technology and relies on 

real-time data analysis carried out on open distributed networks. Users will be able to directly 

access the application through their web browser, and be supplied with the latest information. 

Consequently, web GIS is seen as the next progressive step up from traditional desktop-based 

proprietary GIS programs.  

 

There are a few GIS web tools available on the Internet, which include the commercially 

available ArcGIS Server [18] and the open source MapServer and GeoServer [19]. Google 

Maps is known as a web mapping service, not as a web GIS per se, but because we plan to 

integrate it with the storage and analysis of Haze Watch’s geo-referenced air pollution data, the 

entire system can be considered as one. Hence we have strived to emulate the accuracy of full 

GIS application suites, and also to offer online data sharing and distribution capabilities.  

 

  



 

2.3 Data interpolation techniques

One of the most important components of this web application is the air quality models neede

to predict the different concentrations of air pollution at a certain space and time. This will 

determine the reliability and accuracy of any derived data and therefore the 

project. Based on the principle that the data value measured at a 

nearby positions and that this relationship can be modelled, we 

interpolation to determine the concentration of air pollution a

thereby extending usability beyond the sam

 

Even so, there are many different forms of interpolation which process data differently. 

speed and accuracy of various techniques

dataset [20], must all be taken into account

greater reliability given that sampled data locations are densely and uniformly distributed, but 

conversely, if data locations are clustered 

will be obtained [21]. This holds true regardless of the method we choose. 

aware of the fact that interpolation inherently underestimate

dips due to the nature of averaging.

 

Inverse distance weighting (IDW)

interpolation techniques, and are examples of the choices to be made between speed, 

complexity and accuracy. As they 

theory behind the algorithms is discussed

 

2.3.1 Inverse distance weighting interpolation

Inverse distance weighting involves the allocation of weights based on the distances 

positions that have known values 

stated [22]: 

As a point gets further away from the interpolated position, it becomes less significant in the 

calculation, and hence its weight in the total equation is reduced.

echniques 

One of the most important components of this web application is the air quality models neede

to predict the different concentrations of air pollution at a certain space and time. This will 

accuracy of any derived data and therefore the 

ased on the principle that the data value measured at a location will be similar to other 

his relationship can be modelled, we use 

interpolation to determine the concentration of air pollution at points not within the dataset, 

thereby extending usability beyond the sampled sites. 

Even so, there are many different forms of interpolation which process data differently. 

techniques, as well as the variability and density of the original 

, must all be taken into account. In particular, we note that interpolated data has a 

greater reliability given that sampled data locations are densely and uniformly distributed, but 

conversely, if data locations are clustered with large gaps between sites, inaccurate estimates 

. This holds true regardless of the method we choose. We must also be 

aware of the fact that interpolation inherently underestimates the peaks and overestimates the 

due to the nature of averaging.  

nverse distance weighting (IDW) and kriging are two of the most common mathematical 

are examples of the choices to be made between speed, 

. As they have been chosen for implementation in this thesis, t

theory behind the algorithms is discussed in the following sections.  

eighting interpolation 

Inverse distance weighting involves the allocation of weights based on the distances 

positions that have known values and the positions to be predicted. Shepard’s formula is as 

 

point gets further away from the interpolated position, it becomes less significant in the 

, and hence its weight in the total equation is reduced. The power, P, determines the 
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One of the most important components of this web application is the air quality models needed 

to predict the different concentrations of air pollution at a certain space and time. This will 

accuracy of any derived data and therefore the quality of our 

location will be similar to other 

se two-dimensional 

t points not within the dataset, 

Even so, there are many different forms of interpolation which process data differently. The 

density of the original 

. In particular, we note that interpolated data has a 

greater reliability given that sampled data locations are densely and uniformly distributed, but 

with large gaps between sites, inaccurate estimates 

We must also be 

s the peaks and overestimates the 

common mathematical 

are examples of the choices to be made between speed, 

implementation in this thesis, the 

Inverse distance weighting involves the allocation of weights based on the distances between 

. Shepard’s formula is as 

point gets further away from the interpolated position, it becomes less significant in the 

The power, P, determines the 
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degree of diminishing significance, with higher powers giving greater emphasis on close 

neighbouring points.  

 

IDW can be implemented quite easily, and the final predicted value is also computed quickly. 

However, it also has a high error rate, particularly when points are sparsely distributed because 

a far-away point may have too high an impact. The contour maps generated from a grid of IDW 

values are not very smooth, with a very sharp gradient seen near an actual measuring site (also 

known as a bull’s-eye effect). Any point that is outside the range of measured sites is subject to 

inaccuracy, due to IDW’s inability to extrapolate information outside of the given data set. 

 

2.3.2 Kriging interpolation 

Kriging is a more complex method of interpolation, but also promises more robust results. It is 

similar to the IDW method, as weights are assigned according to surrounding measured values. 

The difference is that weights are defined using the statistical variance between two points, 

which is a measure of their spatial autocorrelation. Semi-variance is calculated using the 

formula shown below [23]: 

 

What it means is that for each pair of locations separated by a distance h, we calculate the 

difference squared between their values. Since there are typically many pairs with unique 

distances, they are grouped into lag bins (eg. all pairs of points that are more than 20m apart 

but less than 30m are clustered together). We average the semi-variance values for all pairs 

within a lag bin, do the same for the other distances, and then graph them to form an empirical 

semivariogram. Thus a semivariogram relies on a stochastic interpretation of the data set, as 

compared to the previous deterministic IDW model [24].  

 

We still need to fit a model to the empirical semivariogram in order to cover all possible 

distances (as shown in Figure 2), especially if the data for lags close to zero is sparse.  



 

FIGURE 2: EXPERIMENTAL AND MOD

 

The choice of model (Figure 

considering their nugget value, range and sill. 

of the model and should technically be zero

variances when it is non-zero. The range is the distance where the graph evens out, while the 

sill is the y-value where the range is reached. 

variogram does not flatten out. Both the exponential and spherical models level out after a 

certain distance, implying that locations further apart than that distance are no longer related. 

Otherwise, their main differences lie in

FIGURE 

 

The values can then be predicted using weights in re

ordinary or universal kriging. The different types of kriging place different constraints on the 

weights. Simple kriging assumes that there is a known constant trend

universal kriging supposes a general linear trend model. Ordinary kri

mean is unknown, which is a reasonable mathematical conjecture

implementation. All mentions about kriging hereafter refer to ordinary kriging.

 

EXPERIMENTAL AND MODEL VARIOGRAM FOR KRIGING 

Figure 3) relies on the underlying experimental variogram after 

considering their nugget value, range and sill. The nugget effect is equal to the y

and should technically be zero, but signifies measurement errors or unaccounted 

. The range is the distance where the graph evens out, while the 

value where the range is reached. A linear model should be used if the experimental 

variogram does not flatten out. Both the exponential and spherical models level out after a 

certain distance, implying that locations further apart than that distance are no longer related. 

Otherwise, their main differences lie in how sharply the graph changes. 

FIGURE 3: MODEL VARIOGRAMS FOR KRIGING [25] 

The values can then be predicted using weights in relation to this fitted variogram, using simple

or universal kriging. The different types of kriging place different constraints on the 

weights. Simple kriging assumes that there is a known constant trend in the data

universal kriging supposes a general linear trend model. Ordinary kriging assumes the constant 

mean is unknown, which is a reasonable mathematical conjecture and so will be used in our 

implementation. All mentions about kriging hereafter refer to ordinary kriging.
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is equal to the y-axis intercept 

measurement errors or unaccounted 

. The range is the distance where the graph evens out, while the 

used if the experimental 

variogram does not flatten out. Both the exponential and spherical models level out after a 

certain distance, implying that locations further apart than that distance are no longer related. 

 

lation to this fitted variogram, using simple, 

or universal kriging. The different types of kriging place different constraints on the 

in the data, whereas 

ging assumes the constant 

and so will be used in our 

implementation. All mentions about kriging hereafter refer to ordinary kriging. The equation 
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below shows the equation for the kriging estimated value, with wi representing the weight given 

to each sampled point, Z(xi). 

 

 

To find the weights, w1 to wn, we must solve the following system of linear equations [26] using 

matrix inversion, where γ(dij) is the semi-variance for dij determined from the model variogram, 

and λ is the Lagrange multiplier used to minimise error, such that λ(x) = λ (ie. the unknown 

trend). 

 

For the final interpolated value and variance [26]: 

 

The great benefit of a stochastic technique is that it provides the ability to assess error or 

uncertainty of the estimated point. Therefore, the kriging interpolation is a widely accepted 

method to model the quality of air in many studies. It also presents a much smoother and 

natural-looking contour plot generated from interpolated data.   
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Implementation 

 

3.1 System overview 

The web application could be divided into two main sections, consisting of a client-side 

component and a server-side component which are separated by a network, as shown in Figure 

4. The server stores geo-referenced data, keeping track of measured pollutant values at 

different positions and times. It also interpolates data and generates a contour map for selected 

datasets. The client side allows users to enter position and time parameters and pass those to 

the server. Another task is to display the Google Maps tile layers and also the generated 

contour map as an overlay.  

 

FIGURE 4: DIAGRAM ILLUSTRATING SYSTEM COMPONENTS AND FLOW 
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Furthermore, the server side has a standardised code interface (model.php) to be shared with 

the iPhone application that Youdale [9] is making, as shown below. 

 

 

FIGURE 5: SERVER-SIDE INTERACTION WITH IPHONE APPLICATION 
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3.2 Client-side implementation 

As a web application, the frontend will be widely available to everyone, as long as they have an 

Internet connection and compliant browser. We want it to be fast, intuitive and user-friendly, but 

also to leverage on the power of server-side applications to deliver the maximum data modelling 

and visualisation capabilities. The standard web technologies of HTML, CSS and Javascript are 

all used to develop the web application, as well as the burgeoning growth of AJAX 

(asynchronous JavaScript and XML) in hand with PHP server-side scripting. Separate CSS files 

allows for trouble-free change in the appearance of the web tool. 

 

3.2.1 Google Maps and AJAX 

Google Maps is a well-known web tool launched in February 2005, which marked a 

breakthrough for web cartography when their tile-based implementation of maps proved to be 

much quicker and intuitive for users. The company then made their application programming 

interface (API) freely available, allowing other web developers to use Google Maps to share 

individualized content and combine different datasets on a single map. This ease of use, 

internet popularity and clearly documented API were factors in the decision to use Google Maps 

for the web application. Another close choice would be Google Earth, which has more advanced 

features, however less people use it and an additional plug-in would be required. 

 

The third and newest form of the Google Maps Javascript API [27] was released at the start of 

2010. Version 3 maps promise faster load times, especially so for smartphones due to the 

removal of bloated code. Google announced the deprecation of Version 2 maps in May 2010, 

and moved support over to V3, the current official version of the Google Maps Javascript API. 

This indicates that expected lifespan of V3 maps is about three years, and acts as an example 

of how quickly web technologies change, and demonstrates that updates to our web application 

must be made on a regular long-term basis. 

 

AJAX technologies have grown in popularity in recent years, as web developers make full use of 

the interactivity it provides. With the advent of AJAX, a single client action no longer has to 

reload the entire page in order to display any new changes, dramatically improving the user 

experience [28]. The use of JavaScript and the XMLHttpRequest object allows data to be 

exchanged asynchronously between the web browser and server, while the Document Object 
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Model (DOM) is utilised to dynamically handle data. An AJAX interface is harder to implement 

compared to a static page, but the greater functionality is worth the time and effort.  

 

Google Maps in particular relies heavily on such AJAX techniques, and our web application 

seamlessly integrates these into our system, from the handling of form inputs, dynamic 

estimation of pollutant values to loading images. The following figure illustrates some of these 

basic Javascript components. 

 

FIGURE 6: DIAGRAM OF JAVASCRIPT COMPONENTS 

 

3.2.2 User interface 

At the end of Session 1 2010, the interface was still fairly basic as seen in Figure 7, with more 

screen estate given to the map and a small footer containing form elements. The map is sized 

proportionately to the dimensions of the user’s browser window, thereby extending across the 

entire screen. This placed greater emphasis on the graphical representation of selected data. 
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FIGURE 7: PAST WEB APPLICATION USER INTERFACE 

 

However, the decision to add increased functionality through the form inputs meant that it was 

more appropriate to move the form elements to form a separate sidebar (see Figure 8). This 

proves to be more intuitive to a user’s eye, as we are naturally conditioned to fill in forms 

vertically rather than horizontally. The layout of the form also becomes much cleaner and easier 

to navigate. 

 

We allow the user to tailor their query by inputting values for latitude, longitude, search radius, 

date and time and pollutant type. A draggable home marker designates the user’s point of 

interest, such that one does not have to manually enter in explicit latitudes and longitudes 

(which are normally not well known). jQuery UI [29], a well-known Javascript API plug-in, is 

used as it simplifies client-side scripting and provides high-level widgets such as a date-picker 

and slider bar, both of which provide advanced interactivity for the web application. The date-

picker is important because users can select their wanted date through a calendar, especially 

since entering it manually is slightly confusing due to the database formatted date. The same 

applies for the slider bar, which lets users adjust the time by sliding the knob rather than typing 

in the time in 24-hour format by hand.  
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FIGURE 8: CURRENT WEB APPLICATION USER INTERFACE 

 

The types of pollutants are listed in a drop-down menu as it offers a cleaner user interface. The 

number of neighbouring results is a significant value as it can greatly affect the final estimated 

results. Hence we give people the option of changing the number by themselves, but still set the 

default to finding the maximum possible set of sampled sites which meet their initial query 

standards. Two different methods of interpolation (IDW and kriging) are also presented to the 

user to choose. 

 

Currently there are two main display variables, one which will only show points where data was 

collected, while the other is an option to display a gradient-filled contour map of predicted 

pollutant values. Mousing over the marker associated with the sampled site will bring up the 

measured pollutant data in an information window, which reduces on-screen clutter yet gives a 

convenient way of looking at point data. Both display options offer colour-coded indicators which 

immediately inform users of unsafe levels of pollution. If we display sampled sites as points, a 

light-blue marker indicates the site with the smallest sampled value, while a red marker denotes 

the site with the highest. For the contour map, there is an associated colour bar with blue 

signifying lower pollutant values and red indicating higher pollutant values. 
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3.3 Server-side implementation 

3.3.1 Database access 

PHP is a scripting language built from the ground up for web development and has specialised 

functions for interaction with the MySQL database. These attributes make it a superior 

candidate for our server-side based programming over others such as Perl. Form inputs are 

sent using the get method to a specific PHP file for query processing. The PHP get method is 

useful for database querying, especially for testing purposes as we are able to bookmark pages 

or alter the query directly in the URL bar. An example URL is “form-contourmap.php?lat=-

33.91793&lng=151.22693&radius=50&datetime=201010081200&results=20&pollutant=pm10&

maxfit=true&modeltype=idw”. 

 

The PHP file parses the terms into a structure suitable for MySQL. It then opens a connection to 

the database and retrieves the relevant dataset. These could be sent back to the client-side for 

the display of individual markers of measuring sites, or to a data interpolation model to undergo 

more processing.  

 

The specific database query which selects the neighbouring data points also particularly 

influences the final estimated value, almost as much as the interpolation method itself. In this 

case, we pick points on the basis of a nearest neighbour search, such that they are the closest 

possible points in terms of distance and time. Preference is given to closest time and then 

distance. We do disregard the third dimension characteristic of topographic height, so distance 

is assessed purely on their latitude and longitude parameters. Temporal aspects are mostly 

ignored other than setting an initial window of two hours before and after the requested time, 

because pollutants are highly variant according to dispersion properties and weather factors. 

However, these two assumptions could be modified after further research. 

 

Some initial filtering of the retrieved dataset is carried out during the database query, chiefly for 

latitude and longitude points. The interpolation algorithms do not work properly when the exact 

same points hold different pollutant values. This occurs either when the site is sampled at 

different times or the spatial difference between two points is negligible, making them appear to 

be only a single point. Hence we filter the results by rounding the latitude and longitude 

parameters to two decimal places (corresponding to a precision of roughly 1 kilometre, ie. only 

differentiating between points that are more than 1km apart).  
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3.3.2 Data interpolation models 

Inverse distance weighting 

The algorithm is written using PHP, as it is straightforward enough to implement, and fast 

enough that the time difference due to using an interpreted language is negligible. The value to 

be estimated is consistently iterated over the number of points within the array of sampled sites 

retrieved from the database. Attempting to stop when the percentage change of the predicted 

value is deemed insignificant either has no chance to occur due to the variability of data, or 

creates a large unexpected deviance in the final estimate, thus it is recommended that the final 

estimated value is only outputted when all measured sites have been weighted accordingly. 

  

Kriging interpolation 

Firstly, semivariograms were constructed for two different datasets taken with the same 

parameters other than number of neighbouring points and type of pollutant (see Figure 9). 35 

measured points were obtained from the database for the pollutant PM10, while 68 points were 

taken for CO. The numbers above each point on the graph indicate the number of distance pairs 

inside the corresponding lag bin. The discrepancies between these two variograms suggest that 

it would be necessary to fit the model variogram for each different pollutant. There is no clear sill 

or range for either of these variograms, but nugget effect appears to be zero. 

         

FIGURE 9: EMPIRICAL SEMIVARIOGRAM FOR PM10 (LEFT) AND CO (RIGHT) 

 

We use a CGI script (krigingR.cgi) to pipe instructions to R [30] which is a long-standing 

statistical computing language and system, and is considered to be the major standard amongst 
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statisticians, engineers and scientists for analysing data. Given R’s longevity, many packages 

and plug-ins are available for use, chief amongst them gstat [31] and automap [32]. gstat gives 

us the ability to fit models to variograms and graph the result, as well as to predict the kriging 

estimate, while automap performs automatic calculations based on the dataset in order to find 

the best-fitting variograms.  

 

A linear model was initially fitted for the PM10 variogram (Figure 10 left), before trying the 

automatic fit function in automap (Figure 10 left). Note that some lag bins are discarded to get a 

better fit. The fitted variogram model for CO is also shown below. After finalising our variogram, 

we can then use gstat to predict our desired kriging estimator. The estimated value together 

with its variance is written to an external text file, which is read by a PHP script to be displayed 

in the web application, thereby achieving an ordinary kriging data interpolation model. 

 

FIGURE 10: LINEAR VARIOGRAM (LEFT) AND EXPONENTIAL VARIOGRAM (RIGHT) FOR PM10 

   

FIGURE 11: LINEAR VARIOGRAM (LEFT) AND EXPONENTIAL VARIOGRAM (RIGHT) FOR CO 
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3.3.3 Image generation 

Image generation poses several distinctive challenges. First of all, note that we will need to 

apply a mask (Figure 13 left) to any generated image so as to only show the desired area. 

Secondly, we have to make a choice between using raster datasets or vector images [33], 

which will each have unique ways of creation and display.  

 

With vector images, we need an algorithm which can determine the spatial relationships 

between each cell, and then generate lines around similarly-classified cells. These lines would 

then be known as isopleths and could possibly form a closed polygon shape. By colouring in 

those shapes, we have a clearly defined contour map. For raster datasets, data interpolation is 

carried out on a whole rectangular grid, producing a predicted pollutant value for each individual 

cell. We then fill in the grid with different colours depending on those predicted values, akin to 

painting pixels.  

 

Vector imaging was deemed too complex at present, with raster images easier to be set up and 

produced. A Common Gateway Interface (CGI) script, contour.cgi, was employed to call 

GNUplot [34] as an external program. GNUplot is an open-source function plotting program and 

is used here as an image generation backend by utilising the three-dimensional plotting tool 

(Figure 12 left), and flattening the resultant plot (Figure 12 right) thereby creating a satisfactory 

gradient-filled image.  

 

  

FIGURE 12: 3D PLOT OF PM10 POLLUTANT VALUES (LEFT);  

IMAGE GENERATED FROM GNUPLOT (RIGHT) 

 



 

The range and colour palette of the plot, size of the desired image can all be customised. We 

set the range to be the latitudes and longitudes of the outskirts of greater Sydney, while the 

colour palette is adjusted to signify hazardous levels of pollutant

colour), and safer level to be blue.  This is changed accordingly to the type of pollutant being 

plotted, since unsafe levels differ from pollutant to pollutant. Current World Health Organisation 

(WHO) guidelines [35] to safe pollutant thresholds are shown in 

Pollutant 

PM10 

PM2.5 

Ozone (O3) 

Nitrogen dioxide (NO

Sulphur dioxide (SO

Carbon Monoxide (CO)

 

The GD library [36] of PHP was then used to combine both the mask and GNUplot

image into a single image as shown in 

takes in datasets through text files, necessitating the creation of a specially formatted temporary 

text file for the latitudes, longitudes and pollutant values to be graphed.

FIGURE 

The range and colour palette of the plot, size of the desired image can all be customised. We 

set the range to be the latitudes and longitudes of the outskirts of greater Sydney, while the 

colour palette is adjusted to signify hazardous levels of pollutant exposure as red (typical danger 

colour), and safer level to be blue.  This is changed accordingly to the type of pollutant being 

plotted, since unsafe levels differ from pollutant to pollutant. Current World Health Organisation 

to safe pollutant thresholds are shown in Table 1. 

TABLE 1: SAFE POLLUTANT LEVELS 

Guideline values 

50 µg/m3 for a 24-hour mean 

25 µg/m3 for a 24-hour mean 

0.05 ppm for a 24-hour mean 

Nitrogen dioxide (NO2) 0.25 ppm for a 1-hour mean 

Sulphur dioxide (SO2) 5 ppm for a 1-hour mean 

Carbon Monoxide (CO) 35 ppm for a 8-hour mean 

of PHP was then used to combine both the mask and GNUplot

image into a single image as shown in Figure 13. The main problem with GNUplot is that it 

datasets through text files, necessitating the creation of a specially formatted temporary 

text file for the latitudes, longitudes and pollutant values to be graphed. 

   

FIGURE 13: MASK OF GREATER SYDNEY (LEFT); 

MASKED CONTOUR MAP (RIGHT) 

25 

The range and colour palette of the plot, size of the desired image can all be customised. We 

set the range to be the latitudes and longitudes of the outskirts of greater Sydney, while the 

exposure as red (typical danger 

colour), and safer level to be blue.  This is changed accordingly to the type of pollutant being 

plotted, since unsafe levels differ from pollutant to pollutant. Current World Health Organisation 

of PHP was then used to combine both the mask and GNUplot-created 

. The main problem with GNUplot is that it 

datasets through text files, necessitating the creation of a specially formatted temporary 
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Results and Performance 

 

4.1 Client-side results and performance 

4.1.1 Google Maps and AJAX 

The performance of Javascript and thus the overall loading time of the web application differ 

from browser to browser. The worst loading times were experienced in Internet Explorer, with 

Google Chrome beating out Firefox in terms of speed. In order to further reduce loading times, 

algorithms should be made as efficient as possible with minimal computation occurring, while 

carrying out most processing on the server. The main Javascript functions were maintained in a 

single file, loadmarkers_v2.js, thereby reducing the amount of overhead for the browser to load, 

as compared to opening connections for several small scripts. 

 

Since the contour map is requested through AJAX, and does not require a refresh of the page to 

load, users are free to navigate through the map features while waiting for the image. This is 

essential since there is a feeling of action rather than inaction and keeps the user engaged in 

the web application.  

 

4.1.2 User Interface 

One of the key challenges of the user interface is to ensure that it is cross-compatible across 

different browsers such that the fundamental look of the website is maintained. The main 

development work was carried out in Mozilla Firefox 3.6, but other versions and brands of web 

browsers were also tested. There is a unified coherent look for Firefox and Google Chrome, 

given that they follow web compatibility standards. Unfortunately, Internet Explorer does not 

adhere completely, resulting in little quirks of design such as non-support for rounded corners 

and a different transparency setting. Some workarounds (like specially adjusting the opacity 

values of the generated contour map) had to be specifically implemented in order to make the 

web application presentable. This is essential because Internet Explorer still holds roughly 50% 

of browser usage share, compared to 30% for Firefox and 11.5% for Chrome [37].   

 

The web application, although much improved from Session 1 2010, is still fairly unintuitive, 

especially if the user is unfamiliar with geostatistics. Since the Haze Watch project is primarily 

targeted towards consumers, more work must be done to ease the use of the interface, perhaps 
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with increased instructions and advice on how the different parameters affect the final estimated 

results. We must balance the need to simplify the web tool and yet provide enough complexity 

such that advanced users can fully utilise it. 
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4.2 Server-side results and performance 

4.2.1 Database access 

The phrasing of mySQL queries is crucial in ensuring fast retrieval times, with simpler requests 

returning more quickly. However, it is also much easier to carry out some pre-filtering at the 

database rather than filter the database results as-is due to specialised database functions that 

enables quicker grouping and sorting. This leads to faster processing later on, especially with 

regards to data interpolation. The same query results are shared between different functions, so 

there is little need to keep opening database connections and in doing so, reduces the network 

traffic that could severely slow down the database.  

 

The database usually caches the most recent or most popular searches, which speeds up the 

query retrieval time if two users happen to call for the same dataset. This should not happen 

that often, but more thought could be put into how to harness this to our advantage, for 

example, making more general and less specific queries even as it requires us to lower the 

sensitivity of the search. As the database expands, general searches will probably be more 

time-efficient even with a trade-off in later data processing. 

 

4.2.2 Data interpolation models 

When evaluating the reliability and accuracy of data interpolation algorithms, it is extremely 

important to remember the salient nature of errors in geo-referenced data. Besides modelling 

errors, there will also be errors in measurement and errors in positioning, which could result in a 

larger than expected data variations [38]. The models are only as good as the data they are built 

upon.  In the following sections, we assume that there are no measurement or positioning errors 

and focus on modelling errors.  

 

The cross-validation method, otherwise known as the leave-one-out method, is generally used 

to calculate the accuracy of interpolation. The method is based on taking away one data point at 

a time and then estimating the value at the location of the removed point using the left over 

samples. This acts as though the removed point does not exist. We then calculate the residual 

between the actual measured value and the new value interpolated from the remaining 

samples. This is then repeated until every sample has been removed. The root-mean of the 

squared residuals (RMSE) signify the overall performance of the data interpolation model. The 

equation below is an example of how to calculate RMSE [39]. 
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RMSE is an absolute measure of fit, indicating the fit of the model to the data (ie. how close the 

sampled data points are to the model’s predicted values). It can be understood as the standard 

deviation of the unexplained variance between the actual measurements and estimated 

measurements. Low values of RMSE are generally better because it signifies little difference in 

the residuals. We also need to consider the variability of the underlying data, wherein if the 

standard deviation is greater than the RMSE, then we are overestimating the variability of our 

predictions, but if standard deviation is less than the RMSE, the variability of the predictions is 

underestimated [40]. 

 

Different accuracy versus number of points on the map  

Calculations of standard deviation and RMSE were carried out on the dataset of PM10 retrieved 

on the 7th of October 2010 at 2pm, and are tabulated below. The results indicate that RMSE 

values are innately linked to the standard deviation of the observed values, as shown in Figure 

14 and 15. Since the NRMSE is closest to unity when interpolation is carried out on a sample 

dataset of 30, it indicates that this is one of the most reliable results. 

 

TABLE 2: TABULATION OF RMSE OF IDW MODEL 

No. of measured 
points 

Standard 
deviation (ug/m3) 

RMSE(ug/m3) Normalised  
RMSE 

5 2.91108 3.35341 1.15195 

10 3.04867 2.72681 0.89443 

15 15.5251 11.9344 0.76872 

20 17.6308 14.5721 0.82652 

25 16.6731 14.3605 0.86130 

30 16.3350 14.6556 0.89719 

35 17.5294 15.5876 0.88922 
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FIGURE 14: STANDARD DEVIATION AND RMSE OF DATA POINTS 

 

 

FIGURE 15: NORMALISED RMSE 

 

Figure 16 illustrates the difference in visualisations when the number of points is varied. For a 

dataset of 10, the sampled sites are too sparse and have measured low values of PM10, 

resulting in a uniform blue. For a dataset of 35, areas outside of the range have been overly 

extrapolated, turning the eastern side of Sydney red and causing additional errors reflected in 

the RMSE. 
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FIGURE 16: CLOCKWISE FROM UPPER LEFT, CONTOUR MAPS  

FOR 10 POINTS, 15 POINTS, 25 POINTS AND 35 POINTS 

 

Accuracy difference between different algorithms 

In this case, the power of the IDW interpolator was investigated by varying it from 1 to 4, and 

carrying out cross-validation to obtain their RMSE values.  

 

TABLE 3: TABULATION OF STANDARD DEVIATION AND RMSE OF IDW WITH DIFFERENT POWERS 

Power Standard 
Deviation (ug/m3) 

RMSE (ug/m3) Normalised 
RMSE (ug/m3) 

1 20.24313 18.97328 0.93727 

2 20.24313 19.36153 0.95645 

3 20.24313 19.82997 0.97959 

4 20.24313 19.41376 0.95903 
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The default power is adjusted to two, but the power of one appears to be better due to its 

smaller RMSE value (albeit quite insignificantly). Figure 18 demonstrates the visual disparity 

between choosing different powers. For the power of 1, there is too much emphasis on points 

that are far away, while the opposite is true for the power of 4. Using an inverse distance 

squared model still seems to achieve the best balance between RMSE value and visual impact. 

 

 

 

FIGURE 17: CLOCKWISE FROM UPPER LEFT, CONTOUR MAPS FOR IDW POWER 1, 2, 3 AND 4 
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Different time taken versus size of grid for IDW 

By varying the size of the grid, we are changing the total number of points that need to be 

interpolated. For a 10x10 grid, one hundred points are interpolated, contrasted with 2500 for a 

50x50 grid. Figure 19 shows that it is not an entirely linear relationship. Figure 20 demonstrates 

the stark change in grid size causes the gridded interpolation to give less quality information, 

such that having a 40x40 grid is a good compromise between time and sensitivity. 

TABLE 4: TIME TAKEN FOR DIFFERENT GRID SIZES 

Size of grid Time Taken for Data 
Interpolation (ms) 

10 33.142 

20 104.056 

30 231.701 

40 394.948 

50 607.203 

 

 

FIGURE 18: TIME TAKEN FOR DATA INTERPOLATION AGAINST SIZE OF GRID 

 

FIGURE 19: CONTOUR MAPS FOR GRID SIZE 10 (LEFT) AND 40 (RIGHT) 
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Different time taken versus number of points for IDW 

These timings were carried out on the dataset of CO pollutant values on the 7th of October 2010 

at 2 pm. The time to carry out different components of the IDW model is recorded and tabulated 

in Table 5 and graphed in Figure 18. Database query and image generation proves to be 

independent of the number of measured sites, while data interpolation scales linearly. 

Generating the contour map seems to be the biggest bottleneck of the system, particularly when 

the number of samples is so small. However, time taken for data interpolation could quickly 

grow into a problem, especially after 300 observed values when it is estimated to take as long 

as the image generation itself. 

 

TABLE 5: BREAKDOWN OF TIMINGS FOR DIFFERENT COMPONENTS IN IDW MODEL 

No. of 
measured 

points 

Time Taken (ms) 

Database query Data interpolation Image generation Total 

10 274.54 143.45 2943.47 3361.46 

20 275.69 254.94 2938.43 3469.06 

30 274.65 365.89 2951.58 3592.12 

40 278.84 477.40 2958.25 3714.49 

50 274.58 587.43 2984.42 3846.43 

60 275.86 709.28 2933.85 3918.99 

68 274.54 790.10 2943.08 4007.73 

 

 

FIGURE 20: TIME TAKEN TO LOAD IDW MODEL  
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Different time taken versus number of points for kriging 

These timings were also carried out on the dataset of CO pollutant values on the 7th of October 

2010 at 2 pm. Unlike IDW, kriging does not have a linear relationship between the number of 

sampled sites and the time taken for data interpolation. It appears to flatten out after datasets go 

beyond 50. However, this sample size is still too small to be able to confirm this correlation. It 

should be noted that the recorded time includes the time taken to auto-fit the model variogram, 

which could explain why data interpolation is faster when the number of sampled sites is small. 

There will be fewer distance pairs to be calculated and fitted, so processing time will be shorter. 

 

TABLE 6: BREAKDOWN OF TIMINGS FOR DIFFERENT COMPONENTS OF KRIGING MODEL 

No. of 
measured 

points 

Time Taken (ms) 

Database query Data interpolation Image generation Total 

10 276.58 1168.31 2935.26 4380.15 

20 277.50 1201.00 2956.16 4434.67 

30 278.88 1284.91 2934.68 4498.47 

40 278.31 1295.46 2970.46 4544.23 

50 279.07 1315.07 2936.06 4530.20 

60 280.22 1314.06 2948.94 4543.22 

68 279.52 1312.25 2984.05 4575.82 

 

 

FIGURE 21: TIME TAKEN FOR KRIGING DATA INTERPOLATION 
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FIGURE 22: TIME TAKEN TO LOAD KRIGING MODEL 

 

When we initialise the model parameters for the variogram rather than using the auto-fit 

function, the time taken for data interpolation does decrease by roughly 0.2 seconds. With a 

better quality dataset and a properly pre-fitted model variogram, those milliseconds could be 

removed. 

 

IDW and kriging comparison 

Figure 24 indicates that the IDW system is approximately 600 ms faster than kriging, but this 

gap closes as the number of measured points increases. Taking purely the data interpolation 

time itself, IDW is up to 85% quicker than kriging. Even with consideration of the bottleneck of 

contour generation, IDW is at least 12-20% faster than kriging in total.  

 

FIGURE 23: COMPARISON OF LOAD TIMES BETWEEN IDW AND KRIGING 
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It will be interesting to document if there is a certain number of points after which the kriging 

algorithm will overtake IDW in terms of speed, since IDW continues to scale linearly, while 

kriging may flatten out. 

  

FIGURE 24: CONTOUR MAP FOR PM10 USING IDW (LEFT) AND KRIGING (RIGHT) 

  

FIGURE 25: CONTOUR MAP FOR CO USING IDW (LEFT) AND KRIGING (RIGHT) 

 

The graphics comparison between the IDW contour map and kriging contour map (Figure 24) 

show some stark differences. For kriging, the unsafe PM10 pollutant levels are estimated to 

occur along the associated markers. IDW predicts that all of eastern Sydney is under threat 

from high concentrations of PM10. On the other hand, kriging estimates that the Sydney 

harbour is at a high risk of CO pollution (Figure 25), with the rest of the city at safe levels, while 

the IDW interpolator gives a middle estimate. Kriging does present a much smoother gradient 

and better aesthetics, compared to the bull’s eye effect of inverse distance weighting. 
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4.2.3 Image generation 

The main cause of the long time taken for the image generation component is the size of the 

image being created. For a 400 x 400 pixel size PNG file, it takes only 0.8 seconds, but takes 

about 3.0 seconds for the 800 x 800 pixel size PNG file. While it is possible to reduce the size of 

the generated contour map, this results in a poorer file resolution. There is unwanted increased 

pixellation when viewing the web application on a high resolution screen. Hence the decision is 

to maintain the image size at the expense of speed, even as it goes against our objective of 

having a fast and responsive web application. 

 

4.2.4 Other considerations 

The data modelling systems have been built on the back of CGI scripts that call external 

programs to carry out statistical analysis and plot diagrams. This means that there is a heavy 

reliance on text files to transmit information between programs. Care must be taken to provide 

either shared locks or exclusive locks to prevent overwriting of data when it is being accessed 

by separate applications. This is exceedingly pertinent in the future wherein the likelihood of 

concurrent processes increases, which will potentially create file conflicts. 
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Conclusions 

5.1 Future work 

Reliability of the models is likely to increase when the envisioned network of mobile pollution 

sensors are set up all around Sydney. An in-depth analysis of the data retrieved from mobile 

pollution sensors regarding their spatial properties would require a sound grasp of statistics, but 

would greatly enhance understanding of the underlying assumptions and limits of the data 

interpolation system. One of the most important tasks would be to carry out heavy field testing in 

conjunction with the pollution exposure iPhone application. Using a reference mobile sensor 

device that measures pollutant values without uploading them to the database, we can then 

compare the actual difference between the sample point and the estimated point to calculate the 

estimation variance, thereby validating the model and confirming its reliability. 

 

Work could be done in setting up a temporal model to take into account the time lags between 

the requested time and the time the site was measured. Serious thought must be given to the 

necessary dispersion models and wind factors, as well as topographic elements. This is 

especially so for Sydney, where strong winds and multiple hilly areas make it hard to generalise 

air pollutants over the entire city.  

 

More user interface improvements could be accomplished, such as implementing an overall air 

quality index (AQI) which would factor in the various air pollutants to derive a single easy-to-

quantify value that sums up the condition of air in Sydney. Given that many components of the 

current system were initially built for desktop applications, they could be further optimised for 

speed to decrease the loading time for the web tool. 

 

5.2 Final words 

When this thesis was first started, there was no apparent solution for the system design but 

there is now a system architecture in place. Thus we have succeeded in our initial aims of 

building an effective working web application to estimate and visually demonstrate the air 

pollution levels in Sydney. There are many improvements that could be made to enhance the 

quality of information analysis, especially with regards to accuracy. Each additional functionality 

would increase the worth of the web tool. Even so, this project has helped contribute to a 

greater understanding of the current state of air pollution and allows us to make better decisions 

about our personal health risks and how to manage them. 
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Appendix 

 

Appendix A: Installation Guide 

 

For a Ubuntu setup - 

 

1. Download jQueryUI (UI Core, Interactions and Widgets) from: 

http://jqueryui.com/download 

 

2. Install gnuplot by using the command: 

sudo apt-get install gnuplot 

 

3. Install R by using the command: 

sudo apt-get install r-base-core r-recommended 

sudo apt-get install r-base-dev  

 

4. Within the R environment, update packages before getting sp, gstat and automap. sp 

provides classes and methods for spatial data, gstat handles the kriging modelling and 

prediction functions, while automap automatically fits models. rgdal may be required to 

support the sp package: 

update.packages() 

install.packages(‘gstat’) 

install.packages(‘rgdal’) 

install.packages(‘automap’) 

install.packages(‘sp’) 
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Appendix B: File Checkout 

File Name Function 

public_html  

form-calculate.php Calculates and prints the estimated point and its variance. 

form-contourmap.php Creates a grid of points and generates the contour map for the 

entire grid, then masking it with to create a png image. 

form-getdb.php Produces an XML file to store database query results. Is read 

by the Javascript file to create Google map markers. 

form-rmse.php Calculates the standard deviation of the sampled data and the 

root-mean-square error of the estimated data. Finds the 

normalised RMSE with the ratio of std to RMSE. 

form-validate.php Re-validates the form in case of malicious queries. Is used in 

all the form PHP files. 

map.php Contains the basic HTML code for the layout of the map 

canvas and form elements. 

public_html/cgi-bin  

contour.cgi Opens a pipe to gnuplot and sends relevant instructions 

regarding range, colour palette and size. Uses plotdata.txt. 

dbdata.csv Is written over each time a query is retrieved; stores the query 

results in text form (latitude, longitude and pollutant value). 

kriging.R Creates a grid of points and calls the autofit function, then 

predicts the kriging estimators. Writes to pollutant_R.txt. 

krigingR.cgi Takes in dbdata.csv, adjusts the grid parameters and then 

opens a pipe to R, before calling kriging.R. It then reformats the 

output into a form suitable for graphing in gnuplot, thereby 

changing plotdata.txt. 

plotdata.txt Is written to by query_process.php and krigingR.cgi. Contains 

the values to be plotted in gnuplot. 
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pollutant_R.txt Is written to by kriging.R. Contains the predicted values and 

variances obtained from R. 

public_html/css  

jquery-ui-1.8.4.custom.css Stylises the jQuery widgets (datepicker and slider bar). 

mapstyle.css Configures appearance for map.php. 

public_html/models/identity  

image_gen.php Contains the image generation and alteration functions. 

model.php Acts as a shared interface for both the web application and the 

iPhone pollution exposure app. Contains fundamental functions 

for system to work. 

query_process.php Contains functions to store and process the query results; from 

XML and array creation to data interpolation algorithms. 

query_todb.php Parses parameters into specific database queries. 

 


