

The University of New South Wales

School of Electrical &

Telecommunications Engineering

TELE4121

Thesis B Report

“Haze Watch project:

Communication between sensors

and mobile phone”

Zhang Hailian

3313360

Supervisor: A/Prof. Vijay Sivaraman

20th October 2011

1

Thesis title: Communication between sensors and mobile phone

Topic number: VR36

Student Name: Hailian Zhang Student ID: z3313360

A. Problem statement

A new type of air monitoring system, Haze Watch, can monitor air pollutions in

mobile way. This system is only in its initial stage In this year, the project has been

divided into several parts for further improvement. This thesis concentrates on the

problems in communication between sensor device and mobile phone. Sensor device

is used to measure air pollution and send collected data to mobile phone. Mobile

phone will stamp each data group with a time and location and upload to server. The

major problems exist in communication are GPS lost in tunnel, unsuitable

transmission protocol, and one-way transmission.

B. Objective

Our objective is to estimate device location when positioning signal lost in tunnel and

to improve communication method between device and mobile phone, as well as

improve upload process.

C. My solution

Design linear interpolation function to solve GPS lost problem

Design non-linear interpolation function to solve GPS lost problem

Design a new version transmission protocol

Implement two-way communication to improve communication method

Add buffer and timeout function for upload process

D. Contributions (at most one per line, most important first)

Realized two-way communication in both hardware and software

Implemented non-linear interpolation

Implemented new transmission protocol

Implemented Displacement-based sampling mode

Implemented linear interpolation

Test work

Improved upload buffer size added timeout function

E. Suggestions for future work

Construct more digital map for non-linear interpolation

Design receiving message format

Realize more function based on two-way communication

While I may have benefited from discussion with other people, I certify that this

thesis is entirely my own work, except where appropriately documented

acknowledgements are included.

Signature: _________________________________ Date: 20/ 10/ 2011

2

Thesis Pointers

List relevant page numbers in the column on the left. Be precise and selective:

Don‟t list all pages of your thesis!

14, 30, 33 Problem Statement

7 Objective

Theory (up to 5 most relevant ideas)

33 Two-way communication

18 Map-matching

33 EUASRT module

29 Protocol

Method of solution (up to 5 most relevant points)

33-34 Two-way communication circuit and programming

31-32 Protocol version 2

23-26 Non-linear interpolation

20-21 Linear-interpolation

39 Upload Buffer

Contributions (most important first)

33-35 Realized two-way communication in both hardware and software

23-26 Implemented non-linear interpolation

32-32 Implemented new transmission protocol

35-36 Implemented Displacement-based sampling mode

20 Implemented linear interpolation

29 Improved upload buffer size added timeout function

My work

11,16,18, 24-27,32,39 System block diagrams/algorithms/equations solved

21-22,27-28,34-35,37-38 Description of procedure (e.g. for experiments)

Results

21-22,27-28,34-35,37-38 Succinct presentation of results

21-22,27-28,34-35,37-38 Analysis

22,27, 35-36 Significance of results

Conclusion

42 Statement of whether the outcomes met the objectives

40 Suggestions for future research

Literature: (up to 5 most important references)

12 [9] Microchip

12, 31 [10] Adeunis R.F.

19 [14] LUKIANTO .C & STERNBERG H

18,19 [13] Dimitris s. & Nathan W. et al.

7,10,30 [5] N. Youdale

3

Abstract

Haze watch system is a system that is able to monitoring air pollution. It consists of a

mobile sensor unit, a database server and a client application. Sensor unit is used to

measure air pollution and upload to server. Database server provides an interface for

client application to access measured data. Currently, the project has been divided into

several parts. This report will focus on communication within mobile sensor unit.

4

Acknowledgement

I would like to acknowledge my supervisor, A/prof. Vijay Sivaraman who has

provided me strong inspiration, excellent guidance and support for my thesis. I would

also like to thank my group partner, Junjie Jiang, with whom I have cooperated to

complete all the work involved in this thesis. He has made great contribution to our

work. I would like to further thank other project members and former fellows, Dawei

Lu, Kunxuan Bi, James Carrapetta, and Nikolaus Youdale for their help, support, and

valuable hints.

5

Table of Contents

1. Introduction... 7

2. Background ... 9

2.1 Reasons for mobile air pollution monitor .. 9

2.2 Similar project ... 10

3. Overview of the system .. 11

3.1 Sensor unit.. 12

3.2 Database server .. 13

3.3 Client application ... 13

4. Analysis and solutions .. 14

4.1 Positioning signal lost .. 14

4.1.1 Location request method .. 14

4.1.2 Location signal lost in tunnel ... 14

4.2 Solutions for Positioning signal lost .. 15

4.2.1 Filtering method ... 16

4.2.2 Related solutions for indoor positioning .. 18

4.2.3 Linear interpolation.. 20

4.2.4 Linear interpolation test result ... 21

4.2.5 Non-linear interpolation ... 23

4.2.6 Non-linear interpolation test result .. 27

4.2.7 Integrated interpolation .. 29

4.3 Transmission protocol.. 29

4.3.1 Overview of protocol version 1 ... 29

4.3.2 Transmission drawbacks .. 30

4.3.3 Version 2 protocol.. 31

4.4 Two-way communication .. 33

4.4.1 Circuit build for two-way communication... 33

4.4.2 New functions .. 35

4.4.3 Test results ... 37

4.5 Upload Method .. 39

6

4.5.1 Buffer size .. 39

4.5.2 Timeout method ... 39

5. Future work... 40

5.1 Interpolation ... 40

5.2 Two-way communication .. 41

5.2.1 Reception protocol ... 41

5.2.2 New functions .. 41

6. Conclusion .. 42

References .. 43

Appendix .. 45

7

1. Introduction

Air pollution has become a worldwide issue that has been frequently discussed in

recent years. Pollutants in the air may severely affect the environment and raise the

risk of getting disease for humans. However, most of the current air pollution

monitoring systems fixed stations hosting by government. As a result, individuals

have less chance to monitoring the pollutants level around them.

A new type of air monitoring system, Haze Watch, can monitor air pollutions in

mobile way. It consists of three parts, including a mobile sensor unit, database server

and client applications. Mobile sensor unit need to be carried by users to collect

pollution data, stamp data with time and location, and then upload to server. Server

will record the data and provide an interface to client application. Client application

can access data via the interface and visualize pollutants level on a map. The

infrastructure of this system has already been build up by James Carrapetta [4],

Nikolaus Youdale [5], and Amanda Chow who had worked on this project last year.

They indeed make a great contribution to the foundation of this project, and their aim

was to set up a basic version of Haze watch system implemented for further

experimentation and improvement.

In this year, the project has been divided into several parts for further refinement. This

report is focused on the communication within the mobile sensor unit, which is

actually between sensor device and Android mobile phone. All the works included in

this report is completed together with my partner Junjie, Jiang. The mainly objectives

of our thesis are:

 To estimate device location when positioning signal lost in tunnel

 To improve communication method between device and mobile phone.

 Improve transmission protocol

 Realization of two-way communication

8

 To improve upload process

Two programming languages used in our thesis are c for microcontroller

programming and Java for Android application on the phone. In the following

chapters, overview of the whole project will be introduced. Some problems existed in

basic version will be proposed based on analysis of previous system performance.

Corresponding solutions of the problems will also be explained in detail, and related

test result of these solutions will be demonstrated in this thesis. Lastly, future works

need to be done for further development will be suggested.

9

2. Background

 Reasons for mobile air pollution monitor 2.1

Breath is the most common action that humans have to take every second. A scientific

research indicates that adults will breathe about 20000 times per day on average,

which approximately 20000 liters air [1]. Therefore, air quality has a close relation

with human health. However, air pollution becomes more and more serious in recent

decades as a result of society industrialization and explosion of using vehicles. There

are two main sources of air pollution in urban area, which is automobiles emission

and fuel combustion [2]. These two kinds of pollution source produce a plenty of

harmful chemicals in the air, which mainly includes Sulfur dioxide (SO2), Carbon

monoxide (CO), Nitrogen dioxide (NO2), and Ozone (O3). Long-time inhaling those

air pollutants will cause some fatal diseases, such as asthma, lung cancer, and heart

disease. Every year, 3 million people deaths are attributes to air pollution [3]. These

diseases are preventable if people be aware of actual air quality around them and

change their personal routines.

Moreover, a lot of medical researches have been conducted by professionals to figure

out detailed influence of harmful chemicals in the air on human health, which is a

critical part for curing those diseases. However, instruments used to monitoring air

pollution are usually quite expensive and not convenient for volunteers to carry. Thus,

a portable and accurate monitoring system that is capable of monitoring pollution

level of particular people will be a valuable data source for their study.

In addition, the air pollution monitoring systems are always hosted by government.

Normally, these systems are fixed monitoring stations located around city. The

Department of Environment, Climate Change and Water (DECCW) is in charge of

monitoring the air pollution in NSW. DECCW is currently running only 14 static

10

monitoring stations in Sydney as shown in Figure.1. The major pollutants source in

Sydney is the extensive use of automobile to make transportation requirements [6].

However, some of these monitoring stations are not located near the highway or main

traffic road. Thus, data collected at those stations may lead to an unreliable prediction

of the actual pollutants concentration. Furthermore, these 14 static monitoring stations

can only monitoring pollutants level in a limited region, and they are situated apart

away from each other. Measuring the pollutants level in the region between stations

will be a challenged work for them.

Figure .1 Location of monitoring sites in Sydney

taken from DECCW website

 Similar project 2.2

Mobile air pollution monitoring system will be a great progress. Many projects all

over the world work on this. For example, Mobile Air Quality Monitoring Network

(MAQUMON), which is undertaken by Networked Embedded Systems Lab at ISIS,

has assembled many hardware modules, such as

several air pollutants sensors, microcontroller, GPS

module, USB port, and Bluetooth module, into a single

wireless sensor device. Prototype of the device is

shown in Figure.2. The on-board GPS module labels

collected data with time and location. Then data is
Figure.2 Device prototype of MAQUMON[7]

11

periodically uploaded to server via Internet by connecting to a laptop or PDA and

displayed on Microsoft SensorMap[7].

3. Overview of the system

Haze Watch system is a similar system to MAQUMON that is able to monitor air

pollution by collecting data in mobile way, which is open to utilize by various group

of people, such as individuals, medical research center, and environment department.

It includes a portable sensor device that can measure pollutants wherever the user is,

and users may view the pollution results either from an android phone interface or

some client applications via internet. Figure.2 shows the infrastructure of the system,

which had been built up by James Carrapetta [4], Nikolaus Youdale [5], and Amanda

Chow who had worked on this project last year.

Figure.3 General overview of Haze Watch system

 taken from Nikolaus Youdale thesis[5]

As shown in Figure.3, the Haze Watch System mainly consists of mobile sensor unit,

database server, and client application.

12

 Sensor unit 3.1

Sensor unit includes a wireless sensor device and an Android phone, as shown in

below figures.

The sensor device is lower costly than that of MAQUMON because it was not

assembled all the required hardware on the sensor board but relied on existing

functions of an Android phone. There are three sensors on the device, which can

measure carbon monoxide CO, Nitrogen dioxide NO, ozone O3, respectively. The

microcontroller in the middle is the heart of the board, which is responsible for

controlling all the operation manners of hardware components on the device.

Specifically, the microcontroller PIC16f690 has 12 Analogue to Digital converts [9]

that is able to communicate with sensors. Actually, the data collected from these

sensors need to converts to digital values first and assembled in a message. Send it to

Bluetooth by writing into the transmitting register of Enhanced Universal

Synchronous Asynchronous Receiver and Transmitter (EUSART) module in

PIC16f690 [9]. Bluetooth then forward the message to Android phone by following

the Radio Frequency Communication (RFCOMM) protocol [10].

Android phone operates a pollution monitoring application installed in it. The

application is able to display the collect data on a figure that indicates the current

Figure.4 Wirless sensor device [4]
Figure.5 Android application user

interface[8]

13

pollutants level versus time, which is a new user interface that was being developed

by Dawei, Lu and Kunxuan Bi who undertaken Android interface of this project in

this year. Then Android phone labels data with time and location and upload to server.

Android application is written in Java Android ADK.

 Database server 3.2

Server records all the data in its database and provides an interface for client

application accessing recorded data.

 Client application 3.3

In current stage, the client applications contain a pollution map and personal exposure

monitor as seen in Figure.6.

 Figure.6 Personal exposure

The pollution map application shows all the data collected points on a map and

represent different pollutants levels in terms of different colors, which will gives

people a directly visualized view of air pollution levels.The personal exposure

monitor is an Iphone application. It can track user‟s location and get pollutants level

from server. Based on the obtained information, it is able to calculate level of user

exposure to various pollutants verse time and display in a graph.

14

4. Analysis and solutions

 Positioning signal lost 4.1

As mentioned before, Haze watch system is just built in its basic version in last year,

so many areas still remained to be improved. The first major problem suffered by

Haze watch system regarding communication area is that the mobile phone fails to get

accurate locations if the user carries sensor unit driving through tunnels.

4.1.1 Location request method

In Haze Watch system, Android application running on the mobile phone utilizes two

different ways to required locations, which is from GPS and Android‟s Network

Location Provider. The former method depends on GPS satellites, and it provides

more accurate location but more likely fail to work indoors because of signal

interference result from walls. Satellites signals are too weak to go through thick walls

of tunnels. Also, this method will consume more power and return location slowly.

Network Location Provider specifies user‟s location via a cell tower and Wi-Fi signal,

which is more quickly and less power expense to determine users‟ locations [12]. By

combining these two request method, Android application will take use of better

estimated location according to time and accuracy.

 4.1.2 Location signal lost in tunnel

The last year thesis group has conducted an experiment to check the working

performance of the whole Haze watch system. This experiment involved driving with

the sensor unit to collect air pollutants samples along a loop in Sydney. Experiment

route is shown in Figure.7. Every label in the map indicates a recorded point. As

described in Figure.7, there are gaps appeared in Sydney Harbour Tunnel, Eastern

Distributor, and M5 east, which is because the two location request approaches fail to

15

work in the tunnel. GPS signal is too weak in tunnels, and Android‟s Network

Location Provider is unable to give an accurate location in tunnels so that the

inaccurate locations are filtered by accuracy detection function in Android application.

As a result, location value was not updating during this period. The entire readings

collect in the tunnel will be assigned to a same location which is the last known point

before positioning signal lost.

Figure.7 Experiment route taken from James Carrapetta thesisB[4]

 Solutions for Positioning signal lost 4.2

The general procedures of solving this problem are concluded in the flow chart shown

in Figure.8. First, Android application must be capable of knowing when the

positioning signal lost so that it can stop using this location to avoid mismatching

collected data with an inaccurate location. Then pollution data sampled during this

period should be saved until recovering positioning signal. Once find new accurate

location, mobile phone are expected to estimate previous sampling locations and

16

match them with corresponding sampled data. Finally, the application is supposed to

upload these bind data group to server as same as commonly dose.

Figure.8 Flow chart of interpolation

4.2.1 Filtering method

An accurate location filter is very important to find out the lost sampling points in

tunnels because it determines start point for employing location estimation and time to

stops using imprecise locations. In the old version application, a location filter

published on Android developer website [12] for maintaining the current best

locations is used, which functions as below.

Figure.9 Location filter

Detect
Positioning
signal lost

Stop using old
location

Save raw data
into memory

Find new
positioning

signal

Estimated
location

Upload to
server

17

When mobile phone obtains a new location, it will first check the time interval

between last location and new location whether it is greater than 2 minutes. If it is, the

application will adopt the new location since the user is very likely to move. If it is

not, the application will check its accuracy difference between new location and

previous location. Accuracy is useful value returned together with location to indicate

the reliability of returned location. If it is less than 0 meters or less than 200 meters

but provide by same location provider, the application will use new location.

Otherwise, the new location will be discarded.

Our designed location filter is based on the idea of this one but some modifications.

An efficient location filter must be capable of fulfilling two functions: detect the time

positioning signal lost and stop using inaccurate location immediately. Android

application detects when positioning signal lost by checking content of last known

location. If it is null, the application will consider positioning signal lost. Two

situations may cause that happening. First, when mobile phone obtains a new location,

Android application will check its accuracy. If it is smaller than 100m, new location

will be employed. Otherwise, new location will be discarded. The reason for setting

accuracy threshold to 100m is that it will not exceed 100 meters inside tunnel. Air

quality will not change so much within 100m, and no distance standard indicates that

air pollution will distinctly change after how many meters. At the same time, we need

make sure located sampling points on map are not too far away from actual points.

Normally, the location accuracy can within 12m at outdoor circumstance.

In second situation, when last know location is being requested to use, it will check

the time interval between last known location recorded time and current requested

time. If it is smaller than 10s, it will be assigned to incoming data. Otherwise, it will

be dropped. The normal speed in tunnel is above 40km/h, which means user may

move 120m or more after 10s. Any positioning error exceed that is believed

unacceptable. The small time threshold is more sensitive to positioning signal lost

which can realize that type error faster. Algorithm of new filter is shown in Figure.11.

18

Figure.10 New location filter

Compare to the old version, new filter has more strict limitation in update time

interval and accuracy. In addition, it will stop using last known location immediately

when positioning signal has lost to avoid assigning entire data sampled inside tunnel

to a same incorrect location.

4.2.2 Related solutions for indoor positioning

Indoor positioning is not a new idea, and there are many researches all over the world

concentrated on studying this topic. Almost all the GPS based products suffer from

this kind of problem when there is insufficient satellite signal coverage. The current

available indoor positioning techniques involve inertial navigation, sound-based

navigation, electromagnetic wave-based techniques, and map matching technique.

Inertial navigation is a technique that estimates the devices current location in terms

of acceleration, velocity, direction and last known location. This kind of techniques

normally requires an accelerometer to measure motion, a gyroscope to measure

direction. Thus, velocity can be calculated by integrating acceleration over time. [13]

However, this method suffers from accumulated error caused in each measurement of

acceleration and direction, which will contribute to unacceptable inaccuracy over time.

Therefore, inertial navigation needs high quality sensors to give a more reliable

acceleration and direction. Moreover, it has to be assisted by other positioning method,

such as Wi-Fi, to do a long term calibration.

19

Sound-based navigation and electromagnetic wave-based techniques both need extra

receivers to position one‟s location. Sound-based navigation measure the distance

between transmitter and receiver using ultrasound and determine the position by

trilateration [14]. The accuracy of electromagnetic wave-based techniques highly

depends on the number of receivers. The more receivers install the more resolution it

has.

Map matching technique is initially used to eliminate the errors occurred in the

location acquired from positioning system. Map matching is very useful when the

future locations are expected on a certain path. Figure.12 describes the block diagram

of map matching process. The inputs include positioning data and a digital map. The

digital map is not a traditional visualized map but a list of polylines. Map matching

algorithm can correct a position to it expected path. [13]

Figure.11 Block diagram of map matching process [13]

Map matching process consists of three phase, including nomination, selection and

calculation. In nomination phase, algorithm will find out all the possible polylines

depending on the distance from the input positioning point to polylines. In selection

phase, algorithm should specify the best polyline based on further information, such

as future positioning point. Lastly, an estimated point on the polyline is given instead

of input one. [13]

Considering specific problem in Haze watch system, it not actually required to direct

one‟s location but estimate locations where data sampled. Inertial navigation seems

not suitable because of its error accumulation nature. Acceleration sensor and

20

direction sensor in Android mobile phone varies from user to user, so sensor quality

cannot be guaranteed. Sound-based navigation and electromagnetic wave-based

techniques are also unable to be implemented in tunnel. Map matching technique is

the only feasible way in tunnel because it is independent with any extra infrastructure.

However, the purpose of map matching is to correct inaccuracy point back to actual

path, which is not exactly same as what is expected to be solved in our case.

Therefore, non-linear interpolation that will be introduced in section 4.2.4 is inspired

by this technique but some modification.

4.2.3 Linear interpolation

Linear interpolation is a very simple method that we designed, which can partially

solve positioning signal lost problem. The reason for using linear interpolation is

because of its simple nature. Linear interpolation considers the route of user moving

during the period of positioning signal lost as a straight line. The algorithm will

calculate estimated points and insert them between last known location and current

location. Suppose the device is moving at constant speed in the tunnel, and pollutants

sampling frequency is fixed at 5s in tunnel. As a result, estimated location will equal

space distributed for grouping with a data sample. This type of interpolation may

works in the short tunnels which can be regarded as a straight line.

When the location filter has detected positioning signal lost, the application will stop

using stored old location and save all the incoming data into memory together with a

time. Until the next time finding a positioning signal, the program will make a

subtraction on the location coordinates of those two points, namely LD. Since the

estimated location are apart from each other at equal distance, the application can

divided DL with total number of data sampled during this period and then get ΔLD.

Estimated location can be calculated by multiplyingΔLD with data index of which

data will be integrated with that location. Finally, the entire estimated locations can be

obtained for each group of samples. The calculation formula is shown below Related

21

code refers to Appendix.

𝐿𝐷(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

𝑑𝑎𝑡𝑎 𝑁𝑂.

= ∆𝐿𝐷(∆𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, ∆𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

Estimated location

= Last known point (longitude, latitude) + ∆LD × data index

4.2.4 Linear interpolation test result

In order to test the performance of linear interpolation function, we have conducted an

experiment in General Holmes Drive Tunnel and M5 East. These two tunnels are

chosen as their length is significantly different, and they are close to each other. The

objective of this experiment is to test how the linear interpolation function works in

both short and long tunnels. Figuire.12 shows one of test result obtained from

pollution website when passing through tunnels.

Figure.12 Linear interpolation test result in General Holmes Drive Tunnel

Estimated points

22

We can see from the above figure, linear interpolation performs well in this short

tunnel. The estimated points are distributed along the expected path. Perhaps they are

not very exactly consistent with the location where data actual sampled due to

assumption of constant moving velocity, but small errors are acceptable because air

quality inside such a short tunnel will not vary significantly.

Figure.13 Linear interpolation test result in M5 East

Figure.13 shows another test result of linear interpolation in M5 East. The dash line

on the map indicates the tunnel. Currently, M5 East is the longest tunnel in Sydney

which is approximately 4000m [15]. We can see that linear interpolation fail to

function inside M5 East Tunnel because this tunnel is too long to consider it as a

linear path. Therefore, linear interpolation works only when the being interpolated

route is sufficient short.

23

4.2.5 Non-linear interpolation

To solve the problem that is subjected by linear interpolation, non-linear interpolation

is designed based on the map matching techniques introduced in section 4.2.2. A

critical character of map matching is that it is very suitable for estimated point being

expected on a certain path, which quite satisfies of what interpolation is required.

Digital map

Actually, non- linear interpolation is a transformation of map matching technique.

Since the nonlinear interpolation processes after new location founded, the inputs of

non- linear interpolation algorithm are last known location, current location, and

digital map. The digital map consists of five long tunnels in Sydney, including M5

East, Cross City Tunnel, Eastern Distributor, Sydney Harbour Tunnel, and Lane Cove

Tunnel. Let‟s take M5 East as an example to see how the digital map is constructed.

Figure.14 M5 East

E

B

C

D

A

F

G

M5WTE1
M5ETW3

24

We first find out all the entrance locations of M5, namely E, B, and C, which is

labeled in Figure.14 together direction arrows. Next, all the potential exit locations

should be found for each entrance. Every possible path is divided into small parts. The

criteria for dividing is wherever there is a branch(es). For example, the black path in

Figure.14 is divided into 4 parts, including M5WTE1, M5WTE2, M5WTE3, and

M5WTE4. The table below shows the entrances and possible exit of M5 East. The last

column shows the user need to go through which parts from an entrance to an exit.

Therefore, the possible routes can be obtained by application according to

combination of any route sections shown in Table.1. For example, driving from

entrance E to exit A will go through section M5WTE1, M5WTE2, andM5WTE4.

Entrance

Number

Entrances Exit Exit

Number

Routes

0 E G 0 M5WTE1

D 1 M5WTE1+M5WTE2+M5WTE3

A 2 M5WTE1+M5WTE2+M5WTE4

1 B F M5ETW1+M5ETW3

2 C F M5ETW1+M5ETW3

Table.1 M5 East digital map part 1

After that, the mobile phone should be able to know the shape and driving direction of

each part so that it can assign location to data along with an expected route. We

describe each section by marking location points every 40 meters in terms of their

location coordinates in each section. Table.2 below shows sample of route section

description.

Section name M5WTE2

1 -33.934953,151.142411

2 -33.935006,151.142837

3 -33.935064,151.143264

4 -33.935138,151.14369

5 -33.935189,151.144122

6 -33.935251,151.144554

7 -33.935318,151.14498

25

8 -33.935382,151.145407

9 -33.935449,151.145841

10 -33.935512,151.146273

11 -33.935567,151.1467

12 -33.935629,151.147126

13 -33.935698,151.147553

14 -33.935765,151.147982

15 -33.93587,151.148398

16 -33.93597,151.148821

17 -33.93603,151.149248

18 -33.936063,151.149648

Table.2 Sample of route section description

According to the procedures described above, the digital map of five main tunnels can

be obtained as summarized in Table.3. Summary of marking points inside each

section can be referred to Java code in Appendix.

Entrance

Number

Entrances Exit Exit

Number

Routes Tunnel

name

0 E G 0 M5WTE1 M5

D 1 M5WTE1+M5WTE2+M5WTE3

A 2 M5WTE1+M5WTE2+M5WTE4

1 B F M5ETW1+M5ETW3

2 C F M5ETW1+M5ETW3

3 H Q H to Q =HQ1 +Q2 Cross City

& Eastern

Distributor

4 I Q I to Q =IQ1 + Q2

5 J R 0 J to R = JX1 +JX2+NR0+NR2+NR3

X 1 J to X =JX1+JX2+JX3

6 K R 0 K to R=KX1+JX2+NR0+NR2+NR3

X 1 K to R=KX1++JX2+JX3

7 L U 0 L to U=L1+LU2

O 1 L to O=L1+LU2+UO1+UO2

P 2 L to P=L1+LU2+UO1+UO2+OP

W 3 L to W=L1+LW2+LW3

8 M W M to W=MW1+LW3

9 N R N to R=NR1+NR2+NR3

10 Y O 0 Y to O=Y1+YO2+UO2

P 1 Y to P=Y1+YO2+UO2+OP

V 2 Y to V=Y1+YV2

11 Z R 0 Z to R=Z1+Z3+NR3

S 1 Z to S=Z1+Z2+ZS3

T 2 Z to T= Z1+Z2+ZT3

26

12 AA DD AADD

13 BB CC BBCC

14 EE II EEII Sydney

Harbour 15 FF HH FFHH1+FFHH2

16 GG HH GG1+FFHH2

17 JJ OO 0 JJNN1+OO2 Lane Cove

NN 1 JJNN1+JJNN2

18 KK M

M

 KKMM1+KKMM2

19 LL M

M

 LL1+KKMM2

Table.3 Summary of digital map of five tunnels

The digital maps will be stored in Android mobile phone as a database to find out

correct location when positioning signal had lost.

Non-linear interpolation algorithm

After completing digital map, non-linear interpolation process can be implemented,

which also includes three phrases, involving nomination, selection and calculation. In

nomination phase, the Android application compares the last known location to all the

entrances of five tunnels and finds the closest two entrances depending on the

distance. Some entrances are close to each other, so choosing two closest entrances is

to in case incorrect detection. Since the last know location and entrance locations are

both represented in Longitude and latitude, so it must be convert to distance for

comparison. Haversine formula is applied to do the conversion, which is a important

equation for calculating the distance between two pints on the sphere but represented

in longitude and latitude.

In selection phase, the application will first compare distance between their possible

exit locations with current known location and choose a best suitable path based on

the minimum sum distance of entrance offset and exit offset. Once the application

chooses the optimal route, it will move to calculation phase in which each data

collected in tunnel will be assigned a pre-stored location on that path. Suppose that

the tunnel length is 1, n is the number of collected data. K is the number of pre-stored

27

marking points of sections involved in the optimal path, and m is the data sequence

number. Pre-stored point number p that should be assigned to data m is calculated by

following equation.

𝑝 ≈

1
𝑛 + 1 × 𝑚

1
𝐾 + 1

,

4.2.6 Non-linear interpolation test result

Non-linear interpolation have been tested at Eastern Distributor Tunnel as it crosses

with Cross City Tunnel and many entrances and exits will be involved during testing,

which forms the most complex digital map among the five tunnels. The first purpose

of this experiment is to test whether this algorithm can select the actual moving route

among a plenty of paths. The second purpose is to test whether the pre-stored marking

points can assign to collected data in tunnel and display on pollution map. In this

experiment, we carried sensor unit entering the tunnel from entrance L and going out

at exit O (Table.3), and we also use a laptop to monitoring operating process. We have

seen from the monitoring screen that non-linear interpolation selected correct entrance

L but exit P. As these two exits are very close to each other (Figure.15), and

positioning signal cannot be found immediately out from the tunnel, so the program

my make mistake in selecting optimal path. Fortunately, most of the points are located

exactly at the actual route but the exit point, which may be acceptable in current stage.

Every the data collected in tunnel is allocated a location as the total number of

sampled data matched the number of points inside tunnel.

Another test result of non-linear interpolation is shown in Figure.16. This experiment

route has three tunnels involved, including Eastern Distributor Tunnel, Harbour

Tunnel, and Lane Cove Tunnel. In this experiment, all the expected paths are correctly

selected.

28

Figure.15 Non-linear interpolation test result

Figure.16 Non-linear interpolation test result

O

P

29

4.2.7 Integrated interpolation

The two types of interpolation both have advantages and disadvantages, but they are

just complementary to each other. Therefore, we decided to combine these two

functions together. Linear-interpolation is suitable for short tunnels, while non-linear

interpolation must depend on digital maps. Linear interpolation is very limited, which

can only apply when the tunnel is short and straight. Otherwise, the estimated points

cannot be located exactly on expected path. Although non-linear interpolation can

guarantee the output location assigned to each data exactly on the actual route, we

only construct digital maps for five long tunnels, which means other short tunnels

have to employ liner interpolation.

 Transmission protocol 4.3

A consistent protocol is a significant prerequisite to guarantee a successful

communication between device and Android phone. Therefore, the structure of the

protocol format is necessary to careful considered.

4.3.1 Overview of protocol version 1

Figure .17 Transmission protocol between device and Android phone

taken from James Carrapetta thesisB[4]

30

Figure.17 describes an agreed protocol that designed by last group people. This

message format includes all the necessary information that is needed to send from

device to Android phone.

Header field and footer field each contains a 4 bytes constant that is used to inform

Android phone beginning and end of the message. Version number field is a 1byte

filed that used to distinguish different version of the format, which means Android

phone can understand what format that device used as the format may be developed in

someday. The version number is 1 for this format. Device ID field describe which

device the phone talks to. Sensor count indicates the number of sensors on the board,

which is 3 in current stage. Sensor coefficients is coefficients of a function that used

to convert a voltage level to a ppm (part per million) value which is a standard unit to

express pollutants level. Sensor coefficients vary from sensor to sensor, so every

sensor need to be calibrated independently. Reference voltage is a base number that is

used by Android phone to calculate the actual voltage values. Since sensor readings

send by device are non-understandable numbers that lie in 0 to 255 which is 8 bits

number read from ADC, so these numbers have to be converted to a reasonable

voltage in terms of reference voltage (3.3V). The Sensor values contain 30 groups of

reading including a sensor ID and sensor value, as shown in Figure.18, which means

10 readings from each sensor.

Figure.18 Sensor values format taken from Nikolaus Youdale thesisB[5]

4.3.2 Transmission drawbacks

After collecting readings from each sensor, device assembles all the fields by

following the order of message format and sends them out byte by byte, because the

transmitting register of the microcontroller is only 8 bits. Microcontroller sends data

31

to Bluetooth in Asynchronous mode, which means transmitter and receiver are

unnecessary to synchronize their clock. Bluetooth will start to send data when it

received bytes stream from microcontroller.

However, whenever the sensor readings send out, device have to send other control

fields too by following version 1 protocol. Apart from sensor values, the rest of fields

will be constant as long as Android phone talks to same device. Repeatedly

transmitting those redundant fields lead to a waste of both power and time. It will

takes microcontroller roughly 15s to transmit the entire message out. The Bluetooth

module used on device is ARF32 who required at least 40mA current when

transmitting data [10]. Obviously, a plenty of power consumed on transmitting control

fields.

On the receiver, Android phone update some information first according to those

control fields and extract 30 sensor readings. These 30 readings consist of 10 readings

from each sensor. Android phone will take an average on those 10 readings,

respectively. Then the group of three average values is tagged with time and location.

However, both time and location are not accurate for most of points because they are

actually collected at different locations if device is moving as well as different time.

Message sending period which is the time between two consecutive messages sending

out is approximately 30s for version 1 protocol. The maximum location error, which

indicates the distance between the first sampled point and tagged location, will be

500m if device were carried by a car moving at 50km/h. Moreover, it is unreasonable

to take average on those ten readings that are actually collected at different locations.

A valuable average is supposed to be taken on the readings that collected at same

location. Different location average value is meaningless in practice.

4.3.3 Version 2 protocol

Version 2 protocol is the new protocol we have changed to avoid repeatedly sending

32

control fields. The structure of transmitting message in version 1 protocol has been

separated into two messages, and we call them control message and data message,

which are shown in Figure.19. and Figure.20.

Control message

Header

4 bytes

Version

1 bytes

Type

1byte

Device

ID

2 bytes

Sensor

Count

1 byte

Last

calibration

date

3 bytes

Next

calibration

date

3 bytes

Reference

voltage

2 bytes

Figure.19 Version 2 protocol control message format

Data message

Header

4 bytes

Version

1 byte

Type

1 byte

Battery

level

2 bytes

Sensor

values

9 bytes

Checksum

1 byte

Footer

4 byte

Figure.20 Version 2 protocol data message format

Control message contains all the information that will not alter when Android phone

connects to same device, while data message including all valuable data that is

constantly changing in every message.

Besides separating the message, some new fields (blue bold) are also added. Type

field in both two messages informs Android phone which message it receives. Last

calibration date and next calibration date contained in control message will display on

Android phone to remind users doing sensor calibration since sensors have to be

calibrated periodically, normally every 6 months. In the data message, battery level

fields used to notice user battery status of device.

Sensor ID

3 bytes

Sensor coefficients

18 bytes

Checksum

1 byte

Footer

4 bytes

33

An important change in sensor values field is that it contains one group of readings

from each sensor rather than ten groups. This change consideration is to reduce the

message sending period; thereby diminishing location error. As a result, every group

of samples will be labeled with time and location instead of doing average. Another

correction in this field is to improve the precision of readings from ADC in

microcontroller. In old version protocol, the microcontroller only read higher 8 bit of

ADC, but the actual length of ADC is 10 bits. As a result, the precision is limited to 8

bits, which is not a wise decision. Currently, total 10 bits are applied, and thus output

digital levels vary from 0-1024 rather than 0-255, which means the reference voltage

is divided into 1024 precise.

 4.4 Two-way communication

Only separating the transmitting message in two independent parts cannot completely

avoid repeatedly sending control message, while it still has to be sent periodically

rather than being sent once at the beginning of the connection in that case. The reason

is that communication between device and Android phone is one way, so device is

impossible to confirm whether the connection sets up successfully or not. To

completely avoid redundant transmission, two-way communication between device

and Android phone has to be realized. Apart from previous purpose, two-way

communication can also increase connection guarantee between device and mobile

phone, and moreover mobile phone can control device to fulfill some functions, such

as sampling data based on moved distance.

 4.4.1 Circuit build for two-way communication

Since the old version sensor board can only support one-way communication, the

circuit must be modified. Circuit schematics refer to Appendix, which is not modified

too much but added a receiver channel between Bluetooth and Microcontroller.

PIC16F690 chip receives data also through its EUSART module, which is same as

transmitting process. The receiving channel is built up by connecting Bluetooth‟s

34

transmitter pin Uart_tx, to microcontroller receiver pin RX/DT.

After completing physical connection, microcontroller is required to be programmed

by c language (Refer to Appendix) to complete the reception process. As EUSART

receiver is set to operate in asynchronous mode, so there is no need to synchronize the

transmitter and receiver. Bluetooth will automatically send received data from

wireless interface to microcontroller‟s RX/DT pin through its transmitter pin. RX/DT

pin is actually connected to a Receive Shift Register (RSR). When the 8 bits character

has been shifted in, RSR will automatically save it to a two-character capacity FIFO

buffer for receiver register to serve. Once there is a character inside the buffer, a flag

bit of one of the status register will set to 1, and thus we programed the

microcontroller to read receiver register by detecting that flag bit. Figure.21 shows the

real circuit we have built on breadboard for experimental purpose.

Figure.21 Real circuit for two way communication [17]

After many times experiments, we have successfully received data from Bluetooth

transmitting pin. Figure.22 shows the first time received data from receiving pin of

microcontroller. It is a test word represented 11001011, which is observed on

35

oscilloscope. We can see that receiver pin receive least significant bit (LSB) first.

Time scale of oscilloscope is 500us, while received 10 bits data (including a start bit

and a stop bit) account for about 2 grids, which is 1ms. Consequently, received data is

consistent with the pre-set baud rate 9600 bps.

Figure.22 Received data sequence from receiving pin

 4.4.2 New functions

The success of two-way communication is a great improvement of communication

between device and mobile phone as it makes device smarter. In other words, sensor

board can follow the mobile phone‟s instruction to work rather than doing all the

things blindly and mechanically. Two new functions have been achieved based on

two-way communication.

 Connection oriented communication

As mentioned in section 4.3.2, sensor device will blindly send sampled data out when

it turns on regardless of connection, which is very power consuming. We have

improved communication method between device and mobile phone to

connection-oriented, which means device send message out based on request from

36

mobile phone. There are five modes defined for device in the two-way

communication process.

 Standby mode: Bluetooth has connection to mobile phone, but mobile phone

has not sent any request message. Therefore, there is no information exchange

in this mode. This mode is indicates by red light of triple LED on breadboard.

 Sleep mode: Special type of standby mode but without Bluetooth connection

with mobile phone.

 Control message mode: Sending control message out, which indicates by

green light.

 Data message mode: Sending data message out, this indicates by blue light.

 Cool down mode: 3 second cools down time after every data message, which

indicates by an off light.

The new designed communication procedures will be implemented as follows.

 Device will stay at sleep mode first when it turns on.

 Once it has set up connection with mobile phone, sensor board will move to

standby mode.

 Mobile phone will automatically send control request to device by sending a

control word 1.

 After receiving control message, mobile phone will only request data message

by sending data request. Data request message describe by control words 4.

The reason for choosing number 4 is that connection between two Bluetooth

will follows its own protocol in which header and footer is 2 and 3. To avoid

misleading device, we use 4 to request data message.

 Three seconds cool down time after every data message is to prevent device

from frequently sampling air pollution. As we have already significantly

reduced device „s transmitting delay by modifying protocol and decrease

operating delay time, device only need 200ms from sampling air pollution to

send message out, whereas it takes old version device about 15s to fulfill the

same thing. This can be proved by observing blue light lasting time on two

different version devices since blue light indicates data message sending.

37

Displacement-based sampling mode

Displacement-based sampling mode is another realized new function which

benefits from two-way communication. Under this mode, mobile phone can

request location every equal distance and thereby sending data message request to

device whenever there is a location change. Therefore, device will collect air

pollution data at equally spaced points. The major benefit of this mode is that it

can avoid that so many points concentrated in one location or small area when

user moves at low speed or static, like waiting traffic lights.

 4.4.3 Test results

 Connection oriented communication

Figure.23 Monitoring result of connection-oriented communication [17]

38

For testing two-way communication procedure, we connected Android phone with our

laptop and ran application in the phone, using eclipse to monitor message exchange

process. Monitoring result is shown in Figure.23, which is consistent with the same

procedures described in section 4.4.2. Mobile phone request control message first as

shown in the first red line of Figure.23. After that control message received, it only

request data message. Bluetooth sleeping line represents 3 second “cool down” time.

 Displacement-based sampling mode

The test result regarding displacement-based sampling mode is shown in Figure.24.

Figure.24 Comparison between normal sampling mode and Distance-based sampling mode

The distance between two location requests can be chosen as any value, and we

choose 200m in this experiment just for test purpose. The left graph in Figure.24

shows distribution of sampling locations under normal mode, while the right o ne

shows that in displacement-based mode. We have waited a traffic light at intersection

shown in both maps. Device keep sampling air pollution data when we waited at

intersection in left graph, which results in those highly concentrated points.

39

Displacement-based sampling mode can completely avoid that situation happened

because it samples data according to location change.

 Upload Method 4.5

4.5.1 Buffer size

Figure.25 Message process procedure

Message process procedure designed by Nikolaus Y. is shown in Figure.25. As we

have modified the transmission protocol, the average function was removed. From the

flow chart, Android application will upload a record containing time, location, and

three readings immediately to server whenever it writes into buffer. Since the new

protocol is applied, samples sending period increased to 5s/message, which means

Android phone has to upload one XML file every 5s. Such a frequent uploading is

unnecessary and power consuming. Therefore, we have increased the buffer size to

contain 20 records, and then the phone will upload to server once after 20 records

saved. Each record occupies approximately 120 bytes, including pollutants name (18

bytes), sensor values (24 bytes), date (24 byte), and location (more than 44 bytes).

 4.5.2 Timeout method

All data processing procedures involved in Android application were written in one

thread, so the whole program will be blocked if the phone cannot connect to server,

Extract sensor
readings

Stamp with
time and
location

Save into a
buffer

Convert to
XML file

HTTP post to
server

40

which will affect receiving data from device. For that consideration, we have set a

timeout value (5s) for HTTP post connection. Moreover, the buffer size will increase

5 record capacities for 5 more data message to receive if Android phone fail to

connect to server once, and then try to upload again. This loop will repeat up to 15

times. After that saved data during this period will be deleted, and buffer size will

reduce to 20 records again. This design consideration is to guarantee stability of the

whole system because 3G network signal is very easily to lose for multiple reasons,

such as moving at high speed on freeway. Commonly, it will recover within several

minutes. Fortunately, short-term period of network lose will not affect function of the

whole system benefited from the above consideration.

5. Future work

Haze watch system is still in its developing stage, so there are a lot of things need to

be researched, improved, modified, and even corrected. In particular, I will

summarize future works expected to be done focusing on our topic in this section.

 Interpolation 5.1

Currently, linear interpolation function has been combined with non-linear

interpolation. Tunnels below 500m will be applied linear interpolation, and non-linear

interpolation is only responsible for five long tunnels mentioned in section 4.2.5.

Tunnels above 500m are not made into consideration. Since tunnels applied linear

interpolation must be very straight, so tunnels below 500m but not straight may also

fail to apply linear-interpolation. Non-linear interpolation performs much better than

linear one, but it has to depend on pre-stored digital map. Therefore, tunnels which

are not sufficiently straight are recommended to apply non-linear interpolation, which

means digital map of those tunnels need to be constructed.

41

 Two-way communication 5.2

 5.2.1 Reception protocol

In current stage, request messages only consist of a single number to distinguish the

control request and data request. In the future, types of request message may not only

constrain in these two types, and also the device needs to receive instructions from

mobile phone. The most basic requirement is that the message should be added a

header and footer or at least a start bit and stop bit, which helps to prevent errors.

However, the message format cannot be designed too complicated because

microcontroller cannot operate as fast as mobile phone.

 5.2.2 New functions

In our thesis, we only realized two new function of two-way communication. Actually,

two-way communication has large potential capability remaining developing. For

example, disable a particular sensor, which is used to save more power on the device

if a particular sensor is not much concerned in some area. Since microcontroller has

14 I/O ports, and most of them currently idle, so we can connect one of them to a

certain sensor‟s power pin. When the I/O port outputs 0, sensor connected to that pin

will be grounded.

42

6. Conclusion

Haze watch system is aim to design a mobile air pollution monitoring system with

high resolution and low-cost for individuals as well as environment department.

Mobile pollution monitoring will be a great achievement as it popularizes air pollution

monitoring to normal people, and also supplement the weak point of fixed monitoring

station.

The work we have done in this thesis helps improving the sensor unit part of the

system. Specifically, we have successfully estimated locations in tunnel when

positioning signal lost by interpolation. Also, we have improved the transmission

protocol to avoid repeatedly sending control field, reduce transmission delay and

location error, as well as save more power. What‟s more, we have realized two-way

communication between device and Android phone, which enhanced the connection

guarantee. Based on two-way communication, displacement-based sampling mode is

developed that can avoid keeping sampling data within a very small area. Lastly, we

also improve some parts regarding upload process. The achievements have been

carefully tested in the related experiment.

43

References

[1] Air pollution.(n.d.) [Online]. Retrieved May 10,2010, from

http://library.thinkquest.org/26026/Environmental_Problems/air_pollution.html

[2] Tom Socha.(2007,Jan.) Air Pollution Causes and Effects. [Online]. Retrieved

May 10, 2010 http://healthandenergy.com/air_pollution_causes.htm

[3] Cornell University (2007, August 14). Pollution Causes 40 Percent Of Deaths

Worldwide, Study Finds. ScienceDaily. [Online]. Retrieved May 10, 2011, from

http://www.sciencedaily.com/releases/2007/08/070813162438.htm

[4] J. Carrapetta (2010, Oct), "Haze Watch: Design of a wireless sensor board for

measuring air pollution". School of Electrical and Telecommunications

Engineering, University of New South Wales, Sydney.

[5] N. Youdale (2010, Oct), "Haze Watch: Database Server and Mobile Applications

for Measuring and Evaluating

[6] Air Pollution Exposure, University of New South Wales Undergraduate Thesis,

2010.

[7] Vanderbilt University. MAQUMON. [Online]. Retrieved May 10, 2011, from

http://www.isis.vanderbilt.edu/projects/maqumon

[8] Lu D. (2011). “Android interface for pollution monitoring system”. Thesis B

Report. School of Electrical and Telecommunications Engineering, University of

New South Wales, Sydney.

[9] Microchip (2008). PIC16F631/677/685/687/689/690 Datasheet. [Datasheet].

[10] Adeunis R.F. (2007, Aug). ARF32 Bluetooth Modules User Guide. [Online].

Retrieved May 11,2011, from http://www.adeunis-rf.com

[11] National Environment Protection Measure for Ambient Air Quality: Air

Monitoring Plan for NSW (2001, Jun). [Online]. Retrieved May 10, 2011, from

http://www.environment.nsw.gov.au/air/nepm/index.htm

[12] Obtaining User Location (n.d.). [Online]. Retrieved May 10, 2011, from

http://developer.android.com/guide/topics/location/obtaining-user- location.html

[13] Dimitris s. & Nathan W. et al. (2009, Oct). “Indoor Navigation System for

http://library.thinkquest.org/26026/Environmental_Problems/air_pollution.html
http://healthandenergy.com/air_pollution_causes.htm
http://www.sciencedaily.com/releases/2007/08/070813162438.htm
http://www.isis.vanderbilt.edu/projects/maqumon
http://www.adeunis-rf.com/
http://www.environment.nsw.gov.au/air/nepm/index.htm
http://developer.android.com/guide/topics/location/obtaining-user-location.html

44

Handheld Devices”. faculty of the Worcester Polytechnic Institute, Worcester,

Massachusetts, USA. [Online] Retrieved from

http://www.wpi.edu/Pubs/E-project/Available/E-project-102209-164024/unrestric

ted/Indoor_Navigation_System_for_Handheld_Devices.pdf

[14] LUKIANTO .C & STERNBERG H. (2011, May). “Overview and Evaluation of

Current Indoor Navigation Techniques and Implementation Studies”. Marrakech,

Morocco. [Online]. Retrieved from

http://www.fig.net/pub/fig2011/papers/ts09a/ts09a_lukianto_sternberg_5102.pdf

[15] Australia Tunneling Society (n.d.). “M5 East Tunnel”, Sdyney. [Online].

Retrieved May 15, 2011, from

http://www.ats.org.au/index.php?option=com_content&task=view&id=156&Item

id=4

[16] Wikipedia (ed. 2011). “Haversine formula”. [Online]. Retrieved from

http://en.wikipedia.org/wiki/Haversine_formula

[17] Jiang J. (2011). “Communication Between Sensors and Mobile Phone”. Thesis B

Report. School of Electrical and Telecommunications Engineering, University of

New South Wales, Sydney.

http://www.wpi.edu/Pubs/E-project/Available/E-project-102209-164024/unrestricted/Indoor_Navigation_System_for_Handheld_Devices.pdf
http://www.wpi.edu/Pubs/E-project/Available/E-project-102209-164024/unrestricted/Indoor_Navigation_System_for_Handheld_Devices.pdf
http://www.fig.net/pub/fig2011/papers/ts09a/ts09a_lukianto_sternberg_5102.pdf
http://www.ats.org.au/index.php?option=com_content&task=view&id=156&Itemid=4
http://www.ats.org.au/index.php?option=com_content&task=view&id=156&Itemid=4
http://en.wikipedia.org/wiki/Haversine_formula

45

Appendix

PollutionSensor.java

package com.unsw.pollutionsensor;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.content.Context;

import android.content.Intent;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Bundle;

import android.provider.Settings;

import android.util.Log;

import android.widget.RadioButton;

import android.widget.RadioGroup;

import android.widget.TextView;

public class PollutionSensor extends Activity {

 private PollutionLocationListener locationListener = null;

 private LocationManager locationManager = null;

 BluetoothThread bluetoothThread = null;

 private static final int CHOOSE_DEVICE_REQUEST = 10;

 private String deviceMACAddress = null;

 TextView logView = null;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.pollution_sensor);

 Log.v("debug","Pollution Sensor onCreate");

 logView = (TextView)findViewById(R.id.logTextView);

 UILog.setLogView(logView);

 UILog.println(UILog.LOG_TYPE_INFO, "App startup");

 // RadioButton config

 RadioGroup myRG =

(RadioGroup)this.findViewById(R.id.radioGroup1);

 final RadioButton push =

(RadioButton)this.findViewById(R.id.radio0);

 final RadioButton aquire =

(RadioButton)this.findViewById(R.id.radio1);

46

 myRG.setOnCheckedChangeListener(new

RadioGroup.OnCheckedChangeListener(){

 @Override

 public void onCheckedChanged(RadioGroup group, int checkedId)

{

 if (bluetoothThread!=null) {

 // TODO Auto-generated method stub

 if (checkedId == push.getId()) {

 bluetoothThread.settingPush(true);

 } else if (checkedId == aquire.getId()) {

 bluetoothThread.settingPush(false);

 }

 }

 }

 });

 if (deviceMACAddress == null) {

 // First spawn the device chooser

 Intent intent = new Intent (this, DeviceChooser.class);

 startActivityForResult(intent, CHOOSE_DEVICE_REQUEST);

 } else {

 startBluetoothConnection(deviceMACAddress);

 }

 }

 protected void onActivityResult(int requestCode, int resultCode,

Intent data) {

 if (requestCode == CHOOSE_DEVICE_REQUEST) {

 if (resultCode == RESULT_OK) {

 // A contact was picked. Here we will just display it

 // to the user.

 deviceMACAddress = data.getStringExtra("MACAddress");

 Log.v("debug","Try Start BT connection to " +

deviceMACAddress);

 startBluetoothConnection(deviceMACAddress);

 }

 }

 }

 private void startBluetoothConnection (String address) {

 if (address == null || address.length() == 0) {

 Log.e("debug","Failed to get MAC address from intent, using

47

defualt instead");

 address = "00:18:B2:01:1E:D2";

 }

 UILog.clear();

 UILog.println(UILog.LOG_TYPE_INFO, "Connecting to "+address);

 Log.v("debug","will connect to "+address);

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 if (!bluetoothAdapter.isEnabled()) {

 Intent enableBtIntent = new Intent

(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(enableBtIntent, 500); // 500 is an

arbitrary number (could be anything)

 }

 // setup location updates

 locationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

 locationListener = new PollutionLocationListener();

if(!locationManager.isProviderEnabled(android.location.LocationManage

r.GPS_PROVIDER)) {

 Intent myIntent = new

Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS);

 startActivity(myIntent);

 }

 //locationManager.requestLocationUpdates(LocationManager.GPS_PROV

IDER, 0,200, locationListener);

 //locationManager.requestLocationUpdates(LocationManager.NETWORK_

PROVIDER, 0, 200, locationListener);

 locationManager.requestLocationUpdates(LocationManager.GPS_PROVID

ER, 5000,0, locationListener);

 locationManager.requestLocationUpdates(LocationManager.NETWORK_PR

OVIDER, 5000, 0, locationListener);

48

 bluetoothThread = new BluetoothThread();

 bluetoothThread.setDeviceMACAddress(address);

 bluetoothThread.setLocationListener(locationListener);

 bluetoothThread.start();

 }

 protected void onStop () {

 super.onStop();

 Log.v("debug","Pollution sensor onStop");

 if (bluetoothThread != null) {

 bluetoothThread.cancel();

 }

 //off GPS update

 if (locationManager != null && locationListener != null){

 locationManager.removeUpdates(locationListener);

 }

 }

 protected void onDestroy(){

 super.onDestroy();

 Log.v("debug","Pollution sensor on destroy");

 System.exit(0);

 }

 public class PollutionLocationListener implements LocationListener

{

 private Location lastLocation = null;

 private Location initialLocation = null;

 public boolean newLocation = false;

 //testing

 private int counter = 0;

 @Override

 public void onLocationChanged(Location location) {

 Log.i("location", "in Location changed:

"+location.toString()+" counter = "+counter);

 if(initialLocation == null && location.getAccuracy()<200){

 Log.d("location", "iniLocation:

"+location.getAccuracy()+" "+location.getLongitude()

 +" "+location.getLatitude());

 initialLocation = location;

49

 }

 /**

 * Two Way -- Location based data collect */

 if(location!=null){

 if (lastLocation == null){

 if(location.getAccuracy()<100){

 Log.d("location", "newLocation:

"+location.getAccuracy()+" "+location.getLongitude()

 +" "+location.getLatitude());

 lastLocation = location;

 newLocation = true;

 }

 }else{

 long timeDelta = location.getTime() -

lastLocation.getTime();

 if(timeDelta>0 && location.getAccuracy()<100){

 Log.d("location", "newLocation:

"+location.getAccuracy()+" "+location.getLongitude()

 +" "+location.getLatitude());

 lastLocation = location;

 newLocation = true;

 }else if(timeDelta>0 && location.getAccuracy()>=100){

 Log.d("location", "inAccLocation:

"+location.getAccuracy()+" "+location.getLongitude()

 +" "+location.getLatitude());

 lastLocation = null;

 newLocation = false;

 }else{

 newLocation = false;

 }

 }

 }

 /**

 * Two Way -- Location based data collect finish */

 /**

 * Old filter */

50

 /*if (isBetterLocation(location, lastLocation)) {

 lastLocation = location;

 }*/

 /**

 * Old filter end*/

 }

 public Location getInitialLocation (){

 return initialLocation;

 }

 public Location getLastLocation () {

 if(lastLocation!=null){

 long dt = System.currentTimeMillis() -

lastLocation.getTime();

 if(dt>10000l){

 lastLocation = null;

 Log.e("location","Location timeout.");

 }else{

 Log.i("location",lastLocation.toString());

 }

 }

 return lastLocation;

 }

 @Override

 public void onProviderDisabled(String provider) {

 // TODO Auto-generated method stub

 Log.v("location","Location provider disable.");

 }

 @Override

 public void onProviderEnabled(String provider) {

 // TODO Auto-generated method stub

 Log.v("debug","Location provider enable.");

 }

 @Override

 public void onStatusChanged(String provider, int status, Bundle

extras) {

 // TODO Auto-generated method stub

 }

51

 // Some example code from Android docs

 private static final int TWO_MINUTES = 1000 * 60 * 2;

 /** Determines whether one Location reading is better than the

current Location fix

 * @param location The new Location that you want to evaluate

 * @param currentBestLocation The current Location fix, to which

you want to compare the new one

 */

 protected boolean isBetterLocation(Location location, Location

currentBestLocation) {

 if (currentBestLocation == null) {

 // A new location is always better than no location

 return true;

 }

 // Check whether the new location fix is newer or older

 long timeDelta = location.getTime() -

currentBestLocation.getTime();

 boolean isSignificantlyNewer = timeDelta > TWO_MINUTES;

 boolean isSignificantlyOlder = timeDelta < -TWO_MINUTES;

 boolean isNewer = timeDelta > 0;

 // If it's been more than two minutes since the current location,

use the new location

 // because the user has likely moved

 if (isSignificantlyNewer) {

 return true;

 // If the new location is more than two minutes older, it must

be worse

 } else if (isSignificantlyOlder) {

 return false;

 }

 // Check whether the new location fix is more or less accurate

 int accuracyDelta = (int) (location.getAccuracy() -

currentBestLocation.getAccuracy());

 boolean isLessAccurate = accuracyDelta > 0;

 boolean isMoreAccurate = accuracyDelta < 0;

 boolean isSignificantlyLessAccurate = accuracyDelta > 200;

 // Check if the old and new location are from the same provider

 boolean isFromSameProvider =

isSameProvider(location.getProvider(),

52

 currentBestLocation.getProvider());

 // Determine location quality using a combination of timeliness

and accuracy

 if (isMoreAccurate) {

 return true;

 } else if (isNewer && !isLessAccurate) {

 return true;

 } else if (isNewer && !isSignificantlyLessAccurate &&

isFromSameProvider) {

 return true;

 }

 return false;

 }

 /** Checks whether two providers are the same */

 private boolean isSameProvider(String provider1, String provider2)

{

 if (provider1 == null) {

 return provider2 == null;

 }

 return provider1.equals(provider2);

 }

 }

}

BluetoothStreamReader.java

package com.unsw.pollutionsensor;

import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;

import android.util.Log;

public class BluetoothStreamReader {

 private boolean cancelled = false;

 private static enum State {

 RECEIVE_HEADER,

 RECEIVE_PROTOCOL_VERSION,

 RECEIVE_DEVICE_ID,

 RECEIVE_COEFFICIENT_SENSOR_ID,

53

 RECEIVE_COEFFICIENT_VALUES,

 RECEIVE_REFERENCE_VOLTAGE,

 RECEIVE_BATTERY_LEVEL,

 RECEIVE_SENSOR_VALUE_PAIR_COUNT,

 RECEIVE_SENSOR_INDEX,

 RECEIVE_SENSOR_VALUE,

 RECEIVE_CHECKSUM,

 RECERIVE_MSG_TYPE,

 RECERIVE_LAST_CALIBRATION,

 RECERIVE_NEXT_CALIBRATION,

 RECERIVE_FOOTER;

 };

 private static final int MSG_HEADER[] = {0xFF, 0xFF, 0xFF, 0xFF};

 private static final int MSG_FOOTER[] = {0xEE, 0xEE, 0xEE, 0xEE};

 private static final int CURRENT_PROTOCOL_VERSION = 2;

 private static final int CONTROL_MSG = 1;

 private static final int DATA_MSG = 2;

 private boolean messageComplete = false;

 public void cancel() {

 cancelled = true;

 }

 public DeviceMessage receiveSensorMessage (InputStream inStream,

DeviceMessage dMessage, int MsgType) {

 messageComplete = false;

 State state = State.RECEIVE_HEADER;

 int d, data_index = 0;

 ArrayList<Short> msgBytes = new ArrayList<Short>();

 try {

 while (!cancelled && !messageComplete) {

 d = inStream.read(); // read byte from stream

 Log.d("in", Integer.toString(d));

 //msgBytes.add((short)d);

 //debugBytesPrint(msgBytes);

 switch (state) {

 case RECEIVE_HEADER:

 if (d == MSG_HEADER[data_index]) {

 data_index++;

 if (data_index == 4) {

 state = State.RECEIVE_PROTOCOL_VERSION;

54

 data_index = 0;

 }

 } else {

 data_index = 0;

 }

 break;

 case RECEIVE_PROTOCOL_VERSION:

 if (d == CURRENT_PROTOCOL_VERSION) {

 msgBytes.add((short)d);

 readRestOfMessage_v2(dMessage, inStream, state,

msgBytes, MsgType);

 return dMessage;

 } else if (d > CURRENT_PROTOCOL_VERSION) {

 System.out.println("WARNING: received message of

newer unknown protocol version ("+d+"). Results are undefined");

 return dMessage;

 } else if (d == 1){

 System.out.println("WARNING: received message

protocol version ("+d+") cannot process");

 return dMessage;

 }

 break;

 }

 }

 inStream.close();

 } catch (IOException e) {

 Log.e("debug", "Protocol version reading error:

"+e.toString());

 }

 return dMessage;

 }

 private DeviceMessage readRestOfMessage_v2 (DeviceMessage dMessage,

InputStream inStream, State state, ArrayList<Short> msgBytes, int MsgType)

{

 int d;

 /**

 * Check massage type 1 for control massage, 2 for data massage

 * */

 state = State.RECERIVE_MSG_TYPE;

 try{

 while (!cancelled && !messageComplete){

55

 d = inStream.read(); // read byte from stream

 Log.d("in", Integer.toString(d));

 msgBytes.add((short)d);

 //debugBytesPrint(msgBytes);

 Log.w("in", "read msg type.");

 if (d==CONTROL_MSG && d==MsgType){

 readControlMsg_v2(dMessage, inStream, state,

msgBytes);

 return dMessage;

 }else if(d==DATA_MSG && d==MsgType){

 readDataMsg_v2(dMessage, inStream, state, msgBytes);

 return dMessage;

 }else{

 dMessage.dataReceived = false;

 return dMessage;

 }

 }

 }catch (IOException e) {

 Log.e("debug", "Msg type reading error: "+e.toString());

 }

 return dMessage;

 }

 private DeviceMessage readControlMsg_v2 (DeviceMessage dMessage,

InputStream inStream, State state, ArrayList<Short> msgBytes) {

 Log.i("in","read control msg.");

 int d, data_index = 0,i = 0;

 short byteBuf[] = new short[16];

 // initial state

 state = State.RECEIVE_DEVICE_ID;

 try {

 while (!cancelled && !messageComplete) {

 d = inStream.read(); // read byte from stream

 Log.d("in", Integer.toString(d));

 //msgBytes.add((short)d);

 //debugBytesPrint(msgBytes);

 switch (state) {

 case RECEIVE_DEVICE_ID:

 msgBytes.add((short)d);

 byteBuf[data_index++] = (short)d;

56

 if (data_index >= 2) {

 dMessage.deviceIdentifier =

(byteBuf[0]<<8)|byteBuf[1];

 data_index = 0;

 state = State.RECERIVE_LAST_CALIBRATION;

 }

 break;

 case RECERIVE_LAST_CALIBRATION:

 msgBytes.add((short)d);

 byteBuf[data_index++] = (short)d;

 if (data_index >= 3){

 dMessage.LastClibDate[0] = byteBuf[0];

 dMessage.LastClibDate[1] = byteBuf[1];

 dMessage.LastClibDate[2] = byteBuf[2];

 data_index = 0;

 state = State.RECERIVE_NEXT_CALIBRATION;

 }

 break;

 case RECERIVE_NEXT_CALIBRATION:

 msgBytes.add((short)d);

 byteBuf[data_index++] = (short)d;

 if (data_index >= 3){

 dMessage.NextCLIbDate[0] = byteBuf[0];

 dMessage.NextCLIbDate[1] = byteBuf[1];

 dMessage.NextCLIbDate[2] = byteBuf[2];

 data_index = 0;

 state = State.RECEIVE_REFERENCE_VOLTAGE;

 }

 break;

 case RECEIVE_REFERENCE_VOLTAGE:

 msgBytes.add((short)d);

 byteBuf[data_index++] = (short)d;

 if (data_index >= 2) {

 dMessage.rawReferenceVoltage =

(byteBuf[0]<<8)|byteBuf[1];

 data_index = 0;

 state = State.RECEIVE_COEFFICIENT_SENSOR_ID;

 }

 break;

 case RECEIVE_COEFFICIENT_SENSOR_ID:

 msgBytes.add((short)d);

 dMessage.sensorIdentifier[data_index]=(int) d;

 state = State.RECEIVE_COEFFICIENT_VALUES;

57

 break;

 case RECEIVE_COEFFICIENT_VALUES:

 msgBytes.add((short)d);

 byteBuf[i++] = (short)d;

 if (i >= 6) {

 dMessage.rawCoefficents[0] =

(byteBuf[0]<<8)|byteBuf[1];

 dMessage.rawCoefficents[1] =

(byteBuf[2]<<8)|byteBuf[3];

 dMessage.rawCoefficents[2] =

(byteBuf[4]<<8)|byteBuf[5];

 dMessage.coefficentMap.put(dMessage.sensorIdentifier[data_index],

dMessage.getSensorCoes());

 data_index ++;

 i = 0;

 if (data_index < 3) {

 state = State.RECEIVE_COEFFICIENT_SENSOR_ID;

 } else {

 state = State.RECEIVE_CHECKSUM;

 data_index = 0;

 }

 }

 break;

 case RECEIVE_CHECKSUM:

 int sum = 0;

 for(short temp : msgBytes){

 sum += temp;

 }

 Log.i("in", Integer.toBinaryString(sum));

 Log.i("in", Integer.toBinaryString(d));

 int L = Integer.toBinaryString(d).split("").length-1;

 String[] checkSum =

Integer.toBinaryString(sum^d).split("");

 Log.i("in", Integer.toBinaryString(sum^d)+"

"+checkSum.length);

 boolean check = true;

 for(int

idx=checkSum.length-1;idx>=(checkSum.length-L)&&idx>0;idx--){

 if(Integer.parseInt(checkSum[idx])!=0)check=false;

 }

58

 //if(((double)(sum^d))!=Math.pow(2,

(checkSum.length-2))){

 if(!check){

 msgBytes.clear();

 messageComplete = true;

 Log.i("debug", "check sum wrong!");

 }else{

 dMessage.receivedChecksum = (short)d;

 state = State.RECERIVE_FOOTER;

 }

 break;

 case RECERIVE_FOOTER:

 if (d == MSG_FOOTER[data_index]) {

 data_index++;

 if (data_index == 4) {

 data_index = 0;

 Log.i("debug", "Control stream received");

 dMessage.controlReceived = true;

 messageComplete = true;

 msgBytes.clear();

 }

 } else {

 msgBytes.clear();

 System.out.println("Error: massage format

error.");

 messageComplete = true;

 }

 break;

 default:

 break;

 }

 }

 }catch (IOException e) {

 Log.e("debug", "Control reading error: "+e.toString());

 }

 return dMessage;

 }

 private DeviceMessage readDataMsg_v2 (DeviceMessage dMessage,

InputStream inStream, State state, ArrayList<Short> msgBytes) {

 Log.i("in", "read data msg.");

 SensorData tempSensor = new SensorData();

 int d, data_index = 0;

59

 int i = 0;

 short byteBuf[] = new short[16];

 short s = 0;

 // initial state

 // state = State.RECEIVE_DEVICE_ID;

 state = State.RECEIVE_BATTERY_LEVEL;

 try {

 while (!cancelled && !messageComplete) {

 d = inStream.read(); // read byte from stream

 Log.d("in", Integer.toString(d));

 //msgBytes.add((short)d);

 //debugBytesPrint(msgBytes);

 switch (state) {

 case RECEIVE_BATTERY_LEVEL:

 msgBytes.add((short)d);

 byteBuf[i++] = (short)d;

 if (i>1) {

 s = (short) (byteBuf[0]*256+byteBuf[1]);

 tempSensor.batteryLevel = s;

 state = State.RECEIVE_SENSOR_INDEX;

 s = 0;

 i = 0;

 }

 break;

 case RECEIVE_SENSOR_INDEX:

 msgBytes.add((short)d);

 tempSensor.sensorIdentifier[data_index] = (int)d;

 state = State.RECEIVE_SENSOR_VALUE;

 break;

 case RECEIVE_SENSOR_VALUE:

 msgBytes.add((short)d);

 byteBuf[i++] = (short)d;

 if(i>1){

 s = (short) (byteBuf[0]*256+byteBuf[1]);

 tempSensor.sensorData[data_index] = s;

 tempSensor.sensorDataMap.put(tempSensor.sensorIdentifier[data_ind

ex], tempSensor.sensorData[data_index]);

 data_index++;

 i = 0;

 if (data_index >= 3){

 state = State.RECEIVE_CHECKSUM;

60

 data_index = 0;

 s = 0;

 i = 0;

 }else{

 state = State.RECEIVE_SENSOR_INDEX;

 }

 }

 break;

 case RECEIVE_CHECKSUM:

 int sum = 0;

 for(short temp : msgBytes){

 sum += temp;

 }

 Log.i("in", Integer.toBinaryString(sum));

 Log.i("in", Integer.toBinaryString(d));

 int L =

Integer.toBinaryString(d).split("").length-1;

 String[] checkSum =

Integer.toBinaryString(sum^d).split("");

 Log.i("in", Integer.toBinaryString(sum^d)+"

"+checkSum.length);

 boolean check = true;

 for(int

idx=checkSum.length-1;idx>=(checkSum.length-L)&&idx>0;idx--){

 if(Integer.parseInt(checkSum[idx])!=0)check=false;

 }

 //if(((double)(sum^d))!=Math.pow(2,

(checkSum.length-2))){

 if(!check){

 msgBytes.clear();

 messageComplete = true;

 Log.i("debug", "check sum wrong!");

 }else{

 dMessage.receivedChecksum = (short)d;

 state = State.RECERIVE_FOOTER;

 }

 break;

 case RECERIVE_FOOTER:

 if (d == MSG_FOOTER[data_index]) {

 data_index++;

 if (data_index == 4) {

61

 data_index = 0;

 messageComplete = true;

 dMessage.sensorData = tempSensor;

 Log.i("debug", "Data stream received");

 msgBytes.clear();

 dMessage.dataReceived = true;

 }

 } else {

 System.out.println("Error: massage format

error.");

 msgBytes.clear();

 messageComplete = true;

 }

 break;

 default:

 break;

 }

 }

 }catch (IOException e) {

 Log.e("debug", "Data reading error: "+e.toString());

 }

 return dMessage;

 }

}

BluetoothThread.java

package com.unsw.pollutionsensor;

import java.io.DataOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.io.StringWriter;

import java.io.UnsupportedEncodingException;

import java.text.DecimalFormat;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

import java.util.HashMap;

62

import java.util.List;

import java.util.Map;

import java.util.UUID;

import org.apache.http.HttpResponse;

import org.apache.http.NameValuePair;

import org.apache.http.ParseException;

import org.apache.http.client.ClientProtocolException;

import org.apache.http.client.HttpClient;

import org.apache.http.client.entity.UrlEncodedFormEntity;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.message.BasicNameValuePair;

import org.apache.http.params.BasicHttpParams;

import org.apache.http.params.HttpConnectionParams;

import org.apache.http.params.HttpParams;

import org.apache.http.util.EntityUtils;

import org.xmlpull.v1.XmlSerializer;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.bluetooth.BluetoothSocket;

import android.location.Location;

import android.util.Log;

import android.util.Xml;

import

com.unsw.pollutionsensor.PollutionSensor.PollutionLocationListener;

public class BluetoothThread extends Thread {

 private String deviceMACAddress = null;

 private static final UUID RFCOMM_UUID =

UUID.fromString("00001101-0000-1000-8000-00805F9B34FB");

 private boolean receiveEnabled = true;

 private PollutionLocationListener locationListener = null;

 private ArrayList<DataWrapper> GPSBuffer = new

ArrayList<DataWrapper>();

 private ArrayList<DataWrapper> dataBuffer = new

ArrayList<DataWrapper>();

 private BluetoothStreamReader streamReader = null;

 private Location initialLocation = null;

 private int count = 0;

 private Date initialDate = null;

63

 private static final int SENSOR_ID_NO2 = 2;

 private static final int SENSOR_ID_O3 = 1;

 private static final int SENSOR_ID_CO = 3;

 //Max No. of data per-bundle

 private int MaxStandbyData = 5;

 /**

 * */

 private boolean dataPush = true;

 public void settingPush(boolean temp){

 dataPush = temp;

 }

 /**

 * */

 public void setDeviceMACAddress (String address) {

 deviceMACAddress = address;

 }

 public void setLocationListener (PollutionLocationListener listener)

{

 locationListener = listener;

 }

 private BluetoothSocket getBluetoothSocket() {

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 BluetoothDevice device =

bluetoothAdapter.getRemoteDevice(deviceMACAddress);

 BluetoothSocket btSocket = null;

 try {

 btSocket =

device.createRfcommSocketToServiceRecord(RFCOMM_UUID);

 } catch (IOException e) {

 Log.e("debug", "Error: failed to create socket");

 }

 // Discovery is quite intensive. Just in case it's running, stop

it

64

 bluetoothAdapter.cancelDiscovery();

 return btSocket;

 }

 public void cancel () {

 if (streamReader != null) {

 streamReader.cancel();

 }

 receiveEnabled = false;

 }

 public void run () {

 BluetoothSocket socket = null;

 InputStream inStream = null;

 OutputStream outStream = null;

 DataOutputStream dataOutStream = null;

 receiveEnabled = true;

 DeviceMessage msg = new DeviceMessage();

 /**

 * Get bluetooth connection */

 socket = getBluetoothSocket();

 try {

 socket.connect();

 } catch (IOException e2) {

 // TODO Auto-generated catch block

 Log.e("debug", "Failed to connect to socket");

 UILog.println(UILog.LOG_TYPE_INFO, "Failed to connect");

 }

 try {

 inStream = socket.getInputStream();

 } catch (Exception e1) {

 // TODO Auto-generated catch block

 Log.e("debug", "Error: failed to connect to inputstream");

 }

 try {

 outStream = socket.getOutputStream();

 } catch (Exception e1) {

 // TODO Auto-generated catch block

 Log.e("debug", "Error: failed to connect to outputstream");

65

 }

 dataOutStream = new DataOutputStream(outStream);

 Log.i("debug", "Connected to socket");

 UILog.println(UILog.LOG_TYPE_INFO, "Connected!");

 /**

 * Receive data*/

 while (receiveEnabled) {

 /**

 * Acquiring control msg

 * */

 while (!msg.controlReceived){

 Log.w("debug", "Don't have control msg. Acquiring

contral msg...");

 try {

 dataOutStream.write(1);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 Log.e("debug", "Error: failed to send data");

 }

 msg = receiveSensorValues(inStream, msg, 1);

 }

 /**wait for the initial known location*/

 while (initialLocation == null) {

 Log.w("debug", "Waiting for Initial Location

information");

 initialLocation =

locationListener.getInitialLocation();

 initialDate = new Date();

 try {

 Thread.sleep(500);

 } catch (InterruptedException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

66

 /**Wait for location changes*/

 if(!dataPush){

 Log.w("debug", "Waiting for Location change");

 while(!locationListener.newLocation);

 locationListener.newLocation = false;

 }

 /**Acquiring Data */

 while (!msg.dataReceived){

 try {

 Thread.sleep(8000);

 } catch (InterruptedException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 }

 Log.w("debug","Acquiring data msg...");

 try {

 dataOutStream.write(4);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 Log.e("debug", "Error: failed to send data");

 }

 msg = receiveSensorValues(inStream, msg, 2);

 }

 /**Data Processing */

 processSensorValues(msg);

 msg.dataReceived = false;

 // Wait a bit

 try {

 Log.v("debug", "Bluetooth Thread is Sleeping...");

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

67

 try {

 inStream.close();

 outStream.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 try {

 if (socket != null) {

 socket.close();

 Log.i("debug", "socket closed");

 }

 } catch (IOException e) {

 Log.e("debug", "Error: failed to close socket");

 }

 Log.v("debug","Bluetooth Thread finish");

 }

 private DeviceMessage receiveSensorValues (InputStream inStream,

DeviceMessage dMessage, int MsgType) {

 streamReader = new BluetoothStreamReader();

 DeviceMessage msg =

streamReader.receiveSensorMessage(inStream,dMessage,MsgType);

 streamReader = null;

 return msg;

 }

 private void processSensorValues (DeviceMessage msg) {

 Log.d("debug", "processing data.");

 // Pollutant values

 DataWrapper wrapper = new DataWrapper();

 wrapper.pollutantValues = convertToPollutantValues(msg);

 wrapper.date = new Date();

 Location location = locationListener.getLastLocation();

 if(location != null){

 Log.i("debug", "accepted location:

"+location.getAccuracy()+" "+location.getLongitude()

68

 +" "+location.getLatitude());

 wrapper.location = location;

 dataupload(wrapper);

 if (count == 0){

 Log.w("debug", "update initallocation.");

 initialLocation = location;

 initialDate = new Date();

 }else{

 Log.w("debug", "counter = "+count+" try

interpolation.");

 //Interpolation(location, wrapper.date);

 linearInterpolation(location, wrapper.date);

 initialLocation = location;

 initialDate = new Date();

 count = 0;

 if(dataBuffer.size()!=0){

 if(postData(dataBuffer)){

 dataBuffer.clear();

 Log.w("debug", "!!!Done interpolation.!!!");

 }

 }else{

 GPSBuffer.clear();

 }

 }

 }

 //if don't have location information

 else if (location == null){

 if(dataBuffer.size() != 0){

 if (postData(dataBuffer)) {

 dataBuffer.clear();

 }

 }

 count += 1;

 GPSBuffer.add(wrapper);

 Log.e("debug", "inacc location. "+count);

 }

 }

69

 private String pollutantStringForSensor (int sensorIdentifier) {

 switch (sensorIdentifier) {

 case SENSOR_ID_NO2:

 return "no2";

 case SENSOR_ID_O3:

 return "o3";

 case SENSOR_ID_CO:

 return "co";

 }

 return "unknown";

 }

 private boolean isSensorEnabled (int sensorIdentifer) {

 switch (sensorIdentifer) {

 case SENSOR_ID_NO2:

 return true;

 case SENSOR_ID_O3:

 return true; // don't have calibration values for this

 case SENSOR_ID_CO:

 return true;

 }

 return false;

 }

 private double pollutantValueForSensor (short data, double refVoltage,

double[] sensorCoefficient) {

 double v = ((double)data)/255.0*refVoltage;

 double c0 = sensorCoefficient[0];

 double c1 = sensorCoefficient[1];

 double c2 = sensorCoefficient[2];

 // Apply quadratic calibration function

 double calibrated_value = c0*v*v + c1*v + c2;

 System.out.println("calibrated value = "+calibrated_value);

 if (calibrated_value < 0) calibrated_value = 0;

 return calibrated_value;

 }

 private Map<String, Double> convertToPollutantValues (DeviceMessage

msg) {

 Map<String, Double> map = new HashMap<String, Double>();

70

 for (int sensorID : msg.coefficentMap.keySet()){

 if (isSensorEnabled(sensorID)) {

 map.put(pollutantStringForSensor(sensorID),

 pollutantValueForSensor(msg.sensorData.sensorDataMap.get(sensorID

), msg.getReferenceVoltage(), msg.coefficentMap.get(sensorID)));

 }

 }

 return map;

 }

 private String xmlForPollutantValues (ArrayList<DataWrapper>

dataList) {

 XmlSerializer serializer = Xml.newSerializer();

 StringWriter writer = new StringWriter();

 String xmlString = null;

 try {

 serializer.setOutput(writer);

 serializer.startDocument("UTF-8", true);

 serializer.startTag("", "data");

 serializer.startTag("", "info");

 serializer.startTag("", "user_name");

 serializer.text("debug");

 serializer.endTag("", "user_name");

 serializer.startTag("", "comment");

 serializer.text("Testing");

 serializer.endTag("", "comment");

 serializer.startTag("", "group");

 serializer.text("3608");

 serializer.endTag("", "group");

 serializer.endTag("", "info");

 serializer.startTag("", "samples");

 SimpleDateFormat dateFormat = new

SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 // print samples

 for (DataWrapper d : dataList) {

 serializer.startTag("", "sample");

 serializer.startTag("", "datetime");

 serializer.text(dateFormat.format(d.date));

 serializer.endTag("", "datetime");

71

 serializer.startTag("", "latitude");

 serializer.text(String.valueOf(d.location.getLatitude()));

 serializer.endTag("", "latitude");

 serializer.startTag("", "longitude");

 serializer.text(String.valueOf(d.location.getLongitude()));

 serializer.endTag("", "longitude");

 for (Map.Entry<String, Double> entry :

d.pollutantValues.entrySet()) {

 serializer.startTag("", entry.getKey());

 serializer.text(String.valueOf(entry.getValue()));

 serializer.endTag("", entry.getKey());

 }

 serializer.endTag("", "sample");

 }

 serializer.endTag("", "samples");

 serializer.endTag("", "data");

 serializer.endDocument();

 xmlString = writer.toString();

 } catch (Exception e) {

 System.out.println("Error with xml");

 }

 Log.e("int",xmlString);

 return xmlString;

 }

 private boolean postData (ArrayList<DataWrapper> dataList) {

 String responseBody = null;

 if (dataList.size() > 0) {

 String xml = xmlForPollutantValues(dataList);

 UILog.clear();

 UILog.printf(UILog.LOG_TYPE_INFO, "Most recent sample\n\n");

 UILog.println(UILog.LOG_TYPE_INFO,

dataList.get(dataList.size()-1).toLogString());

 HttpParams httpParameters = new BasicHttpParams();

 HttpConnectionParams.setConnectionTimeout(httpParameters,

5000);

72

 HttpClient client = new DefaultHttpClient(httpParameters);

 HttpPost httpPost = new

HttpPost("http://www.pollution.ee.unsw.edu.au/post-data.php");

 List<NameValuePair> nameValuePairs = new

ArrayList<NameValuePair>(2);

 nameValuePairs.add(new BasicNameValuePair("content", xml));

 if (client != null) {

 try {

 httpPost.setEntity(new

UrlEncodedFormEntity(nameValuePairs));

 HttpResponse response = client.execute(httpPost);

 if (response != null) {

 responseBody =

EntityUtils.toString(response.getEntity());

 Log.d("debug", "http response: "+response);

 MaxStandbyData = 5;

 }

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 } catch (ClientProtocolException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 MaxStandbyData+=5;

 } catch (ParseException e) {

 e.printStackTrace();

 }

 }

 }

 return (responseBody != null);

 }

 private class DataWrapper {

 public Date date = null;

 public Map<String, Double> pollutantValues = new HashMap<String,

Double>();

 public Location location = null;

 String s = "";

 public String toString() {

73

 return "{'"+date+"', "+pollutantValues+"', "+location+"'}";

 }

 public String toLogString() {

 SimpleDateFormat dateFormat = new

SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 //check whether location is null

 if (location != null){

 s = "Date: "+dateFormat.format(date)+"\nLocation:

"+location.getLatitude()+", "+location.getLongitude()+"\n\n";

 }else{

 s = "Date: "+dateFormat.format(date)+"\nLocation:

"+"null"+", "+"null"+"\n\n";

 }

 DecimalFormat decimalFormat = new DecimalFormat("0.0000");

 for (Map.Entry<String, Double> entry :

pollutantValues.entrySet()) {

 s += entry.getKey()+" =

"+decimalFormat.format(entry.getValue())+" ppm\n";

 }

 return s;

 }

 }

 private void linearInterpolation(Location location, Date time){

 Location tempLocation = null;

 DataWrapper wrapper =null;

 double longitude = initialLocation.getLongitude();

 double latitude = initialLocation.getLatitude();

 double templongitude = 0;

 double templatitude = 0;

 double deltalongitude = (location.getLongitude() -

longitude)/(count+1);

 double deltalatitude = (location.getLatitude() -

latitude)/(count+1);

 for (int i=count;i>=1;i--){

 wrapper = new DataWrapper();

 tempLocation = new Location("gps");

 wrapper = GPSBuffer.get(i-1);

 //Date date = wrapper.date;

 templongitude = longitude + deltalongitude * i;

74

 templatitude = latitude + deltalatitude* i;

 tempLocation.setLatitude(templatitude);

 tempLocation.setLongitude(templongitude);

 wrapper.location = tempLocation;

 dataBuffer.add(wrapper);

 }

 }

 private void Interpolation(Location location, Date time){

 Log.e("debug", "interpolation....");

 Tunnels tunnels = new Tunnels();

 final int dt_ShortTunnel = 4;

 double[][] route = null;

 if(count > dt_ShortTunnel){

 // the longitude and latitude for each entry of the tunnel

 // make sure the index is same

 double[][] entries = tunnels.entries;

 int n_tunnels = entries.length;

 double[] distanceOfEntry = new double[n_tunnels];

 double[] minEntry = {999999d, 999999d};

 int[] idxMinEntry = {0,0};

 for(int i=0;i<n_tunnels;i++){

 distanceOfEntry[i] =

calculateDistance(initialLocation,entries[i]);

 if(distanceOfEntry[i]<=minEntry[0]){

 minEntry[1] = minEntry[0];

 minEntry[0] = distanceOfEntry[i];

 idxMinEntry[1] = idxMinEntry[0];

 idxMinEntry[0] = i;

 }

 }

 Log.i("int","distances: "+minEntry[0]+" "+minEntry[1]);

 boolean firstOutRange = minEntry[0]>600;

 boolean secondOutRange = minEntry[1]>600;

 // find possible exit

75

 if(firstOutRange){

 double[] loc =

{location.getLatitude(),location.getLongitude()};

 double distance =

calculateDistance(initialLocation,loc);

/* long lastTime = initialDate.getTime();

 double deltaT =(double) ((time.getTime() -

lastTime)/1000);// seconds

*/ if(distance<1000){

 linearInterpolation(location,time);

 }

 }else if(secondOutRange){

 double[][] exits1 = tunnels.getExits(idxMinEntry[0]);

 double distanceOfExit = 0;

 int i = 0;

 int idxMinExit = 0;

 double minExit = 999999d;

 for(double[] loc : exits1){

 distanceOfExit = calculateDistance(location,loc);

 if(distanceOfExit<=minExit) {

 minExit = distanceOfExit;

 idxMinExit = i;

 }

 i++;

 }

 if (minExit<400) {

 route = tunnels.getTunnel(idxMinEntry[0],

idxMinExit);

 Log.d("int", "1: EN: "+idxMinEntry[0]+" EX:

"+idxMinExit);

 for(double[]temp1:route){

 Log.d("int", "1: "+temp1[1]+","+temp1[0]);

 }

 }else{

 double[] loc =

{location.getLatitude(),location.getLongitude()};

 double distance =

76

calculateDistance(initialLocation,loc);

/* long lastTime = initialDate.getTime();

 double deltaT =(double) ((time.getTime() -

lastTime)/1000);// seconds

*/ if(distance<1000){

 linearInterpolation(location,time);

 }

 }

 }else{

 double[][] exits1 = tunnels.getExits(idxMinEntry[0]);

 double[][] exits2 = tunnels.getExits(idxMinEntry[1]);

 double distanceOfExit = 0;

 int i = 0;

 int[] idxMinExit = {0,0};

 double[] minExit = {999999d, 999999d};

 for(double[] loc : exits1){

 distanceOfExit = calculateDistance(location,loc);

 if(distanceOfExit<=minExit[0]) {

 minExit[0] = distanceOfExit;

 idxMinExit[0] = i;

 }

 i++;

 }

 i = 0;

 for(double[] loc : exits2){

 distanceOfExit = calculateDistance(location,loc);

 if(distanceOfExit<=minExit[0]) {

 minExit[1] = distanceOfExit;

 idxMinExit[1] = i;

 }

 i++;

 }

 boolean betterRoute =

(minEntry[0]+minExit[0])<(minEntry[1]+minExit[1]);

77

 if(betterRoute){

 if (minExit[0]<400) {

 route =

tunnels.getTunnel(idxMinEntry[0],idxMinExit[0]);

 Log.d("int", "2: EN: "+idxMinEntry[0]+" EX:

"+idxMinExit[0]);

 }else{

 double[] loc =

{location.getLatitude(),location.getLongitude()};

 double distance =

calculateDistance(initialLocation,loc);

 /* long lastTime = initialDate.getTime();

 double deltaT =(double) ((time.getTime() -

lastTime)/1000);// seconds

*/ if(distance<1000){

 linearInterpolation(location,time);

 }

 }

 }else{

 if (minExit[1]<400) {

 route =

tunnels.getTunnel(idxMinEntry[1],idxMinExit[1]);

 Log.d("int", "3: EN: "+idxMinEntry[1]+" EX:

"+idxMinExit[1]);

 }else{

 double[] loc =

{location.getLatitude(),location.getLongitude()};

 double distance =

calculateDistance(initialLocation,loc);

/* long lastTime = initialDate.getTime();

 double deltaT =(double) ((time.getTime() -

lastTime)/1000);// seconds

*/ if(distance<1000){

 linearInterpolation(location,time);

 }

 }

 }

 }

 if(route!=null)asignLocation(route);

78

 }else{

 linearInterpolation(location,time);

 }

 }

 private double calculateDistance(Location location,double[] tunnel){

 double d_Long = location.getLongitude()-tunnel[1];

 double d_Lat = location.getLatitude()-tunnel[0];

 final double R = 6371004d;

 final double pi = Math.PI;

 final double R_sydney = R * 0.830265d;// longtitude sydney R = R

* cos(-33.874)

 double distanceOfExit = Math.sqrt(Math.pow((pi*R/180*d_Lat),

2)+Math.pow(pi*R_sydney/180*d_Long, 2));

 return distanceOfExit;

 }

 private void asignLocation(double[][] route){

 Log.e("debug", "asign location....");

 Location location = null;

 int n = count;

 int N = route.length;

 DataWrapper wrapper = null;

 for (int k = 1;k<=n;k++){

 int index = ((N+1)*k/(n+1))-1;

 if(index < 0){

 index = 0;

 }else if(index>=route.length){

 index = route.length - 1;

 }

 wrapper = new DataWrapper();

 location = new Location("gps");

 Log.i("int","idx: "+index);

 wrapper = GPSBuffer.get(k-1);

 location.setLongitude(route[index][1]);

 location.setLatitude(route[index][0]);

 wrapper.location = location;

79

 //wrapper.setLocation(location);

 Log.w("int", "Long: "+location.getLongitude()+" Lat:

"+location.getLatitude());

 dataBuffer.add(wrapper);

 }

 }

 private void dataupload(DataWrapper wrapper){

 dataBuffer.add(wrapper);

 if (dataBuffer.size() >= MaxStandbyData) {

 Log.i("debug", "posting data online.");

 if (postData(dataBuffer)) {

 Log.i("debug", "data posted.");

 dataBuffer.clear();

 }

 }

 }

}

DeviceChooser.java

package com.unsw.pollutionsensor;

import java.util.Comparator;

import java.util.HashSet;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.EditText;

import android.widget.ListView;

import android.widget.AdapterView.OnItemClickListener;

80

import android.widget.RadioButton;

import android.widget.TextView;

import android.widget.Toast;

public class DeviceChooser extends Activity {

 //private ArrayAdapter<DeviceWrapper> arrayAdapter = null;

 private HashSet<BluetoothDevice> discoveredDevices = new

HashSet<BluetoothDevice>();

 private ArrayAdapter<DeviceWrapper> discoveryArrayAdapter = null;

 private ArrayAdapter<DeviceWrapper> builtInArrayAdapter = null;

 private int selectedListIndex = 1; // 'built in devices' list

 private class DeviceWrapper {

 private BluetoothDevice device;

 private String address;

 private String name;

 public DeviceWrapper (BluetoothDevice device) {

 this.device = device;

 }

 public DeviceWrapper (String address, String name) {

 this.address = address;

 this.name = name;

 }

 public String getAddress() {

 if (device != null) {

 return device.getAddress();

 } else {

 return address;

 }

 }

 public String getName() {

 if (device != null) {

 return device.getName();

 } else {

 return name;

 }

 }

 public String toString () {

 if (getName() != null && getName().length() > 0) {

81

 return getAddress()+" - "+getName();

 } else {

 return getAddress();

 }

 }

 }

 private class ItemClickListener implements OnItemClickListener {

 public void onItemClick (AdapterView<?> arg0, View arg1, int arg2,

long arg3) {

 DeviceWrapper dw = getCurrentArrayAdapter().getItem(arg2);

 EditText MACField =

(EditText)findViewById(R.id.discoveryMACAddressField);

 MACField.setText(dw.getAddress());

 }

 }

 private void changeListContent(int listIndex) {

 if (listIndex != selectedListIndex) {

 selectedListIndex = listIndex;

 ListView listView = (ListView)findViewById(R.id.list_view);

 switch (selectedListIndex) {

 case 0:

 listView.setAdapter(discoveryArrayAdapter);

 break;

 case 1:

 listView.setAdapter(builtInArrayAdapter);

 break;

 default:

 break;

 }

 }

 }

 ArrayAdapter<DeviceWrapper> getCurrentArrayAdapter() {

 switch (selectedListIndex) {

 case 0:

 return discoveryArrayAdapter;

 case 1:

 return builtInArrayAdapter;

 default:

 break;

 }

82

 return null;

 }

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.device_chooser);

 System.out.println("Deivice chooser onCreate");

 // testing/debugging

 //PollutionSensor.doSomething();

//getWindow().setSoftInputMode(WindowManager.LayoutParams.SOFT_INPUT_

STATE_ALWAYS_HIDDEN);

 // Setup the list view

 ListView listView = (ListView)findViewById(R.id.list_view);

 //arrayAdapter = new ArrayAdapter<DeviceWrapper>

(getApplicationContext(), R.layout.list_row, R.id.textView);

 discoveryArrayAdapter = new ArrayAdapter<DeviceWrapper>

(getApplicationContext(), R.layout.list_row, R.id.textView);

 builtInArrayAdapter = new ArrayAdapter<DeviceWrapper>

(getApplicationContext(), R.layout.list_row, R.id.textView);

 listView.setAdapter(builtInArrayAdapter);

 listView.setOnItemClickListener(new ItemClickListener());

 // Setup built in devices array adaptor

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:27:26",

"Two Way"));

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:1E:D2",

"Unit 1001"));

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:25:7B",

"Unit 1002"));

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:1E:D7",

"Unit 1003"));

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:1F:56",

"Unit 1004"));

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:1F:69",

"Unit 1005"));

 // Setup the radio buttons

83

 RadioButton discoveryButton =

(RadioButton)findViewById(R.id.RadioButtonDiscovery);

 RadioButton builtInButton =

(RadioButton)findViewById(R.id.RadioButtonBuiltIn);

 discoveryButton.setOnClickListener(new OnClickListener () {

 public void onClick (View v) {

 changeListContent(0);

 startBluetoothDiscovery();

 }

 });

 builtInButton.setOnClickListener(new OnClickListener () {

 public void onClick (View v) {

 stopBluetoothDiscovery();

 changeListContent(1);

 }

 });

 stopBluetoothDiscovery(); // to put the status message there

 changeListContent(1); // change to built-in by default

 // Setup the connect button

 Button button =

(Button)findViewById(R.id.discoveryConnectButton);

 button.setOnClickListener(new OnClickListener() {

 public void onClick (View v) {

 EditText MACField =

(EditText)findViewById(R.id.discoveryMACAddressField);

 String address = MACField.getText().toString();

 if (isValidMACAddress(address)) {

 Intent intent = new Intent();

 intent.putExtra("MACAddress", address.toUpperCase());

 setResult(RESULT_OK, intent);

 finish();

 } else {

 Toast.makeText(getApplicationContext(), "Invalid MAC

address", Toast.LENGTH_SHORT).show();

 }

 }

 private boolean isValidMACAddress(String address) {

 for (int i = 0; i < address.length(); i++){

 char c = address.charAt(i);

 if ((i+1) % 3 == 0) {

84

 if (c != ':') return false;

 } else if (!(c >= '0' && c<='9' || c>='A' && c<='F' || c>='a'

&& c<='f')) {

 return false;

 }

 }

 return true;

 }

 });

 }

 private void startBluetoothDiscovery() {

 // Start bluetooth discovery

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 int REQUEST_ENABLE_BT = 500;

 if (bluetoothAdapter != null) {

 if (!bluetoothAdapter.isEnabled()) {

 Intent enableBtIntent = new Intent

(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(enableBtIntent,

REQUEST_ENABLE_BT);

 }

 BroadcastReceiver receiver = new BroadcastReceiver() {

 public void onReceive (Context ctx, Intent intent) {

 if

(intent.getAction().equals(BluetoothAdapter.ACTION_DISCOVERY_FINISHED

)) {

 System.out.println("Discovery finished!");

 stopBluetoothDiscovery();

 } else {

 BluetoothDevice device =

intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 if (device != null) {

 boolean changed = false;

 if (!discoveredDevices.contains(device)) {

 discoveredDevices.add(device);

 DeviceWrapper dw = new

DeviceWrapper(device);

 getCurrentArrayAdapter().add(dw);

85

 System.out.println("Found new device:

"+device);

 changed = true;

 }

 if

(BluetoothDevice.ACTION_NAME_CHANGED.equals(intent.getAction())) {

 changed = true;

 }

 if (changed) {

 getCurrentArrayAdapter().sort(new

Comparator<DeviceWrapper>() {

 public int compare(DeviceWrapper a,

DeviceWrapper b) {

 return

a.toString().compareTo(b.toString());

 };

 });

 getCurrentArrayAdapter().notifyDataSetChanged();

 }

 }

 }

 }

 };

 IntentFilter filter = new

IntentFilter(BluetoothDevice.ACTION_FOUND);

 filter.addAction(BluetoothDevice.ACTION_NAME_CHANGED);

 filter.addAction(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);

 registerReceiver(receiver, filter);

 bluetoothAdapter.startDiscovery();

 TextView statusView =

(TextView)findViewById(R.id.discoveryStatusTextView);

 statusView.setText("Searching...");

 }

 }

 private void stopBluetoothDiscovery () {

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 if (bluetoothAdapter != null && bluetoothAdapter.isDiscovering()) {

 bluetoothAdapter.cancelDiscovery();

86

 }

 TextView statusView =

(TextView)findViewById(R.id.discoveryStatusTextView);

 statusView.setText(getCurrentArrayAdapter().getCount()+" devices

found.");

 }

 protected void onStop () {

 super.onStop();

 System.out.println("Deivice chooser onStop");

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 if (bluetoothAdapter != null) {

 bluetoothAdapter.cancelDiscovery();

 }

 }

}

Helpers.java

package com.unsw.pollutionsensor;

public class Helpers {

 // converts our custom 16 bit floating point number to a double

 // 12 bit significand, 4 bit exponent

 public static double rawFloat16ToDouble (int rawValue) {

 short significand = (short)((short)(rawValue & 0xffff) >> 4); //

this will also sign extend

 byte exponent = (byte)((byte)((rawValue & 0xf) << 4) >> 4); // shift

left/right by 3 to sign extend

 double v = significand*Math.pow(10, exponent);

 return v;

 }

}

DeviceMessage.java

package com.unsw.pollutionsensor;

import java.util.Date;

import java.util.HashMap;

import java.util.Map;

87

import android.location.Location;

public class DeviceMessage {

 public boolean controlReceived = false;

 public boolean dataReceived = false;

 public short receivedChecksum;

 public short computedChecksum;

 public int rawReferenceVoltage;

 public int deviceIdentifier=0;

 public int valuePairCount = 0;

 public int rawCoefficents[] = new int[3];

 public SensorData sensorData;

 public double sensorCoefficents[] = new double[3];

 public int sensorIdentifier[] = new int[3];

 public int LastClibDate[] = new int[3]; //DD/MM/YY

 public int NextCLIbDate[] = new int[3]; //DD/MM/YY

 public Location location = null;

 public Date timeStamp = null;

 public Map<Integer,double[]>coefficentMap = new

HashMap<Integer,double[]>();

 public double[] getSensorCoes(){

 int index = 0;

 for(int i:rawCoefficents){

 sensorCoefficents[index]=Helpers.rawFloat16ToDouble(i);

 index ++;

 }

 return sensorCoefficents;

 }

 public double getReferenceVoltage () {

 return Helpers.rawFloat16ToDouble (rawReferenceVoltage);

 }

 public double getCoefficient (int index) {

 return Helpers.rawFloat16ToDouble(rawCoefficents[index]);

 }

 //public ArrayList<SensorData> sensors = new ArrayList<SensorData>

();

}

88

SensorData.java

package com.unsw.pollutionsensor;

import java.util.HashMap;

import java.util.Map;

public class SensorData {

 public int sensorIdentifier[] = new int[3];

 public short sensorData[] = new short[3];

 public short batteryLevel = 255;

 public int deviceIdentifier=0;

 public Map<Integer, Short> sensorDataMap = new HashMap<Integer,

Short>();

}

UILog.java

package com.unsw.pollutionsensor;

import java.util.Formatter;

import android.app.Activity;

import android.widget.TextView;

public class UILog {

 private static TextView logView = null;

 public static final int LOG_TYPE_READINGS = 1 << 0;

 public static final int LOG_TYPE_RAW_DATA = 1 << 1;

 public static final int LOG_TYPE_INFO = 1 << 2;

 public static void printf (int logType, String format, Object... args)

{

 Formatter f = new Formatter();

 String str = f.format(format, args).toString();

 UILog.print(logType, str);

 }

 public static void println (int logType, String message) {

 UILog.print(logType, message+"\n");

 }

89

 public static void print (int logType, String message) {

 Activity activity = (Activity)logView.getContext();

 MainThreadRunner runner = new MainThreadRunner(logView, message,

MainThreadRunner.APPEND_MODE);

 activity.runOnUiThread(runner);

 }

 public static void clear () {

 Activity activity = (Activity)logView.getContext();

 MainThreadRunner runner = new MainThreadRunner(logView, "",

MainThreadRunner.SET_MODE);

 activity.runOnUiThread(runner);

 }

 public static void setLogView (TextView view) {

 logView = view;

 logView.setText("");

 }

 protected static class MainThreadRunner implements Runnable {

 private TextView _logView = null;

 private String _logText;

 private int _mode = APPEND_MODE;

 public static final int APPEND_MODE = 1;

 public static final int SET_MODE = 2;

 public MainThreadRunner (TextView logView, String logText, int

mode) {

 _logView = logView;

 _logText = logText;

 _mode = mode;

 }

 public void run() {

 if (_logView != null && _logText != null) {

 if (_mode == SET_MODE) {

 _logView.setText(_logText);

 } else {

 _logView.append(_logText);

 }

 }

 }

 }

90

}

Tunnels.java

package com.unsw.pollutionsensor;

public class Tunnels {

 //entrances E B C H I J K L M N Y Z AA BB EE FF GG JJ KK LL

 public double[][] entries = {

 {-33.935928,151.11119},

 {-33.937861,151.153091},

 {-33.93743,151.152244},

 {-33.871442,151.203166},

 {-33.870498,151.2033},

 {-33.874048,151.202533},

 {-33.87476,151.20331},

 {-33.886796,151.217945},

 {-33.885669,151.218245},

 {-33.874106,151.21755},

 {-33.876464,151.224924},

 {-33.872003,151.217985},

 {-33.876379,151.224945},

 {-33.874979,151.220482},

 {-33.866062,151.213894},

 {-33.841608,151.210719},

 {-33.862972,151.213661},

 {-33.801242,151.144651},

 {-33.812843,151.181483},

 {-33.813346,151.176215}

 };

 //Exits

 public double[][] getExits (int idxEntry){

 switch(idxEntry){

 case 0:

 double[][] Eto = {{-33.934922,151.142153},

{-33.937049,151.152236}, {-33.93777,151.15314}};

 return Eto;

 case 1:

 double[][] Bto = {{-33.936175,151.111364}};

 return Bto;

 case 2:

 double[][] Cto = {{-33.93743,151.152244}};

91

 return Cto;

 case 3:

 double[][] Hto = {{-33.873304,151.202994}};

 return Hto;

 case 4:

 double[][] Ito = {{-33.873304,151.202994}};

 return Ito;

 case 5:

 double[][] Jto = {{-33.87613,151.224961},

{-33.887328,151.217974}};

 return Jto;

 case 6:

 double[][] Kto = {{-33.87613,151.224961},

{-33.887328,151.217974}};

 return Kto;

 case 7:

 double[][] Lto = {

 {-33.875983,151.217218}, {-33.872903,151.203686},

 {-33.873057,151.20352},{-33.872344,151.217727}};

 return Lto;

 case 8:

 double[][] Mto = {{-33.872344,151.217727}};

 return Mto;

 case 9:

 double[][] Nto = {{-33.887328,151.217974}};

 return Nto;

 case 10:

 double[][] Yto = {{-33.872903,151.203686},

{-33.873057,151.20352}, {-33.870667,151.217271}};

 return Yto;

 case 11:

 double[][] Zto = {{-33.887328,151.217974},

{-33.887573,151.219444}, {-33.886838,151.221558}};

 return Zto;

 case 12:

 double[][] AAto = {{-33.875077,151.220517}};

 return AAto;

 case 13:

 double[][] BBto = {{-33.876241,151.224956}};

 return BBto;

 case 14:

 double[][] EEto = {{-33.841591,151.210319}};

 return EEto;

 case 15:

92

 double[][] FFto = {{-33.865946,151.213991}};

 return FFto;

 case 16:

 double[][] GGto = {{-33.865946,151.213991}};

 return GGto;

 case 17:

 double[][] JJto = {{-33.812132,151.176177},

{-33.812682,151.181206}};

 return JJto;

 case 18:

 double[][] KKto = {{-33.801383,151.144685}};

 return KKto;

 case 19:

 double[][] LLto = {{-33.801383,151.144685}};

 return LLto;

 default:

 return null;

 }

 }

 public double[][] getTunnel(int idxEntry, int idxExit){

 double[][] route = null;

 switch(idxEntry){

 case 0:

 if(idxExit == 0){

 route = M5WTE1;

 }else if(idxExit == 1){

 route =

computeRoute(computeRoute(M5WTE1,M5WTE2),M5WTE3);

 }else if(idxExit == 2){

 route =

computeRoute(computeRoute(M5WTE1,M5WTE2),M5WTE4);

 }

 return route;

 case 1:

 route = computeRoute(M5ETW1,M5ETW3);

 return route;

 case 2:

 route = computeRoute(M5ETW2,M5ETW3);

 return route;

 case 3:

 route = computeRoute(HQ1,Q2);

 return route;

 case 4:

93

 route = computeRoute(IQ1,Q2);

 return route;

 case 5:

 if(idxExit == 0){

 route =

computeRoute(computeRoute(computeRoute(computeRoute(JX1,JX2),NR0),NR2

),NR3);

 }else if(idxExit == 1){

 route = computeRoute(computeRoute(JX1,JX2),JX3);

 }

 return route;

 case 6:

 if(idxExit == 0){

 route =

computeRoute(computeRoute(computeRoute(computeRoute(KX1,JX2),NR0),NR2

),NR3);

 }else if(idxExit == 1){

 route = computeRoute(computeRoute(KX1,JX2),JX3);

 }

 return route;

 case 7:

 if(idxExit == 0){

 route = computeRoute(L1,LU2);

 }else if(idxExit == 1){

 route =

computeRoute(computeRoute(computeRoute(L1,LU2),UO1),UO2);

 }else if(idxExit == 2){

 route =

computeRoute(computeRoute(computeRoute(computeRoute(L1,LU2),UO1),UO2)

,OP);

 }else if(idxExit == 3){

 route = computeRoute(computeRoute(L1,LW2),LW3);

 }

 return route;

 case 8:

 route = computeRoute(MW1,LW3);

 return route;

 case 9:

 route = computeRoute(computeRoute(NR1,NR2),NR3);

 return route;

 case 10:

 if(idxExit == 0){

 route = computeRoute(computeRoute(Y1,YO2),UO2);

94

 }else if(idxExit == 1){

 route =

computeRoute(computeRoute(computeRoute(Y1,YO2),UO2),OP);

 }else if(idxExit == 2){

 route = computeRoute(Y1,YV2);

 }

 return route;

 case 11:

 if(idxExit == 0){

 route = computeRoute(computeRoute(Z1,Z3),NR3);

 }else if(idxExit == 1){

 route = computeRoute(computeRoute(Z1,Z2),ZS3);

 }else if(idxExit == 2){

 route = computeRoute(computeRoute(Z1,Z2),ZT3);

 }

 return route;

 case 12:

 route = AADD;

 return route;

 case 13:

 route = BBCC;

 return route;

 case 14:

 route = EEII;

 return route;

 case 15:

 route = computeRoute(FFHH1,FFHH2);

 return route;

 case 16:

 route = computeRoute(GG1,FFHH2);

 return route;

 case 17:

 if(idxExit == 0){

 route = computeRoute(JJNN1,OO2);

 }else if(idxExit == 1){

 route = computeRoute(JJNN1,JJNN2);

 }

 return route;

 case 18:

 route = computeRoute(KKMM1,KKMM2);

 return route;

 case 19:

 route = computeRoute(LL1,KKMM2);

 return route;

95

 default:

 return null;

 }

 }

 private double[][] computeRoute(double[][] R1, double[][] R2){

 double[][] route = new double[R1.length+R2.length][];

 int i = 0;

 for(double[] temp : R1){

 route[i] = temp;

 i++;

 }

 for(double[] temp : R2){

 route[i] = temp;

 i++;

 }

 return route;

 }

 //M5

 private double[][] M5WTE1 = {

 {-33.935928,151.11119},

 {-33.935917,151.111633},

 {-33.935903,151.11207},

 {-33.935897,151.112512},

 {-33.935897,151.112512},

 {-33.93589,151.112952},

 {-33.935892,151.113392},

 {-33.935899,151.113835},

 {-33.935919,151.114272},

 {-33.935941,151.114714},

 {-33.935963,151.115149},

 {-33.936028,151.116031},

 {-33.936059,151.116461},

 {-33.936095,151.11689},

 {-33.936119,151.117322},

 {-33.936155,151.117748},

 {-33.936188,151.118183},

 {-33.936224,151.118609},

 {-33.936264,151.119038},

 {-33.936295,151.119465},

 {-33.93633,151.119886},

 {-33.936362,151.12031},

 {-33.936388,151.120728},

96

 {-33.936419,151.121165},

 {-33.936455,151.121589},

 {-33.936486,151.122018},

 {-33.936517,151.122439},

 {-33.936549,151.122863},

 {-33.936582,151.123295},

 {-33.936604,151.123721},

 {-33.93662,151.124148},

 {-33.936624,151.124574},

 {-33.936624,151.125006},

 {-33.936606,151.125435},

 {-33.936591,151.125864},

 {-33.936564,151.126288},

 {-33.936517,151.126717},

 {-33.936468,151.127141},

 {-33.936404,151.127562},

 {-33.936322,151.127981},

 {-33.936228,151.128394},

 {-33.936137,151.128812},

 {-33.936046,151.129225},

 {-33.935952,151.129646},

 {-33.93587,151.130062},

 {-33.935792,151.13048},

 {-33.935703,151.130894},

 {-33.935612,151.131312},

 {-33.935523,151.131725},

 {-33.935434,151.132143},

 {-33.93534,151.132559},

 {-33.935242,151.132978},

 {-33.935155,151.133399},

 {-33.935075,151.133817},

 {-33.935004,151.134244},

 {-33.934924,151.134665},

 {-33.934864,151.135089},

 {-33.934817,151.135515},

 {-33.93477,151.135941},

 {-33.934735,151.136373},

 {-33.934708,151.136802},

 {-33.93469,151.137232},

 {-33.93467,151.138967},

 {-33.934697,151.139401},

 {-33.934722,151.139831},

 {-33.934746,151.140265},

 {-33.934777,151.1407},

97

 {-33.934826,151.141129},

 {-33.934864,151.141553},

 {-33.934904,151.141984},

 {-33.934922,151.142153},

 {-33.93492,151.142749}

 };

 private double[][] M5WTE2 = {

 {-33.934953,151.142411},

 {-33.935006,151.142837},

 {-33.935064,151.143264},

 {-33.935138,151.14369},

 {-33.935189,151.144122},

 {-33.935251,151.144554},

 {-33.935318,151.14498},

 {-33.935382,151.145407},

 {-33.935449,151.145841},

 {-33.935512,151.146273},

 {-33.935567,151.1467},

 {-33.935629,151.147126},

 {-33.935698,151.147553},

 {-33.935765,151.147982},

 {-33.93587,151.148398},

 {-33.93597,151.148821},

 {-33.93603,151.149248},

 {-33.936063,151.149648}

 };

 private double[][] M5WTE3 = {

 {-33.936112,151.150053},

 {-33.936233,151.150466},

 {-33.936366,151.150868},

 {-33.936524,151.15126},

 {-33.936707,151.151627},

 {-33.936891,151.151997},

 {-33.937049,151.152236},

 {-33.937301,151.152617}

 };

 private double[][] M5WTE4 = {

 {-33.936175,151.150053},

 {-33.93631,151.150452},

 {-33.936444,151.15086},

 {-33.9366,151.151254},

98

 {-33.93678,151.151638},

 {-33.936967,151.152005},

 {-33.937176,151.152351},

 {-33.937403,151.152695},

 {-33.93765,151.153014},

 {-33.93777,151.15314},

 {-33.9381,151.153534}

 };

 private double[][] M5ETW1 = {

 {-33.93786100, 151.15309100},

 {-33.93773000, 151.15289600},

 {-33.93749400, 151.15257100},

 {-33.93728100, 151.15222000},

 {-33.93709400, 151.15184700},

 {-33.93690900, 151.15147100},

 {-33.93674700, 151.15108300},

 {-33.93659100, 151.15069400},

 {-33.93646800, 151.15028300}

 };

 private double[][] M5ETW2 = {

 {-33.93743000, 151.15224400},

 {-33.93737600, 151.15214700},

 {-33.93719400, 151.15177200},

 {-33.93701100, 151.15140200},

 {-33.93683300, 151.15102600},

 {-33.93667800, 151.15063500},

 {-33.93651300, 151.15024800}

 };

 private double[][] M5ETW3 = {

 {-33.93634800, 151.14987600},

 {-33.93624800, 151.14946500},

 {-33.93615900, 151.14904900},

 {-33.93607200, 151.14863100},

 {-33.93599400, 151.14820500},

 {-33.93593700, 151.14777800},

 {-33.93587400, 151.14734600},

 {-33.93581200, 151.14692000},

 {-33.93575000, 151.14649100},

 {-33.93569400, 151.14606700},

99

 {-33.93563800, 151.14563500},

 {-33.93557800, 151.14520800},

 {-33.93551400, 151.14478700},

 {-33.93545100, 151.14435600},

 {-33.93539100, 151.14393200},

 {-33.93533100, 151.14350500},

 {-33.93527300, 151.14307600},

 {-33.93521800, 151.14264400},

 {-33.93516900, 151.14221200},

 {-33.93511500, 151.14178600},

 {-33.93506200, 151.14135100},

 {-33.93501300, 151.14092000},

 {-33.93498900, 151.14048500},

 {-33.93491300, 151.13873900},

 {-33.93491100, 151.13830700},

 {-33.93490800, 151.13787000},

 {-33.93492400, 151.13743000},

 {-33.93495100, 151.13699800},

 {-33.93497700, 151.13656400},

 {-33.93501100, 151.13613200},

 {-33.93505300, 151.13570500},

 {-33.93511800, 151.13526800},

 {-33.93517300, 151.13483900},

 {-33.93524400, 151.13442100},

 {-33.93532200, 151.13400200},

 {-33.93540000, 151.13357600},

 {-33.93548000, 151.13315500},

 {-33.93557600, 151.13273400},

 {-33.93566500, 151.13231500},

 {-33.93576700, 151.13189700},

 {-33.93585200, 151.13147800},

 {-33.93595000, 151.13105700},

 {-33.93603900, 151.13063300},

 {-33.93613500, 151.13021800},

 {-33.93622100, 151.12979100},

 {-33.93630800, 151.12936500},

 {-33.93639900, 151.12894600},

 {-33.93649100, 151.12852800},

 {-33.93658200, 151.12810700},

 {-33.93664600, 151.12767800},

 {-33.93669500, 151.12724300},

 {-33.93674700, 151.12680900},

 {-33.93679600, 151.12638200},

 {-33.93682200, 151.12594500},

100

 {-33.93685600, 151.12551000},

 {-33.93685800, 151.12507800},

 {-33.93686500, 151.12464400},

 {-33.93685600, 151.12421500},

 {-33.93684500, 151.12378300},

 {-33.93681800, 151.12334000},

 {-33.93678700, 151.12290900},

 {-33.93675100, 151.12247700},

 {-33.93672200, 151.12204200},

 {-33.93668400, 151.12160800},

 {-33.93664600, 151.12117600},

 {-33.93661800, 151.12074700},

 {-33.93658200, 151.12031800},

 {-33.93655300, 151.11988300},

 {-33.93651700, 151.11945400},

 {-33.93647700, 151.11902500},

 {-33.93643700, 151.11859300},

 {-33.93640400, 151.11815600},

 {-33.93637100, 151.11772400},

 {-33.93633300, 151.11728900},

 {-33.93629900, 151.11685800},

 {-33.93625900, 151.11642600},

 {-33.93622800, 151.11599400},

 {-33.93620800, 151.11556200},

 {-33.93618100, 151.11513000},

 {-33.93615500, 151.11469800},

 {-33.93613200, 151.11396100},

 {-33.93613200, 151.11396100},

 {-33.93612100, 151.11353200},

 {-33.93612600, 151.11310200},

 {-33.93613700, 151.11266800},

 {-33.93614400, 151.11223600},

 {-33.93615200, 151.11179900},

 {-33.93617500, 151.11136400},

 {-33.936215,151.110753}

 };

//cross city & easter distributer

 private double[][] L1 = {

 {-33.88679600, 151.21794500},

 {-33.88644200, 151.21797700},

 {-33.88607900, 151.21798200},

 {-33.88569600, 151.21796300},

101

 {-33.88537300, 151.21788600},

 {-33.88501700, 151.21776500},

 {-33.88469000, 151.21765800},

 {-33.88435300, 151.21754000},

 {-33.88398600, 151.21743000},

 {-33.88362100, 151.21736300},

 {-33.88327800, 151.21729000},

 {-33.88285700, 151.21721000}

 };

 private double[][] LU2 = {

 {-33.88257900, 151.21707600},

 {-33.88219800, 151.21699800},

 {-33.88188000, 151.21695000},

 {-33.88152100, 151.21689600},

 {-33.88111800, 151.21686400},

 {-33.88067500, 151.21683200},

 {-33.88028700, 151.21684200},

 {-33.87986200, 151.21686100},

 {-33.87948100, 151.21687200},

 {-33.87907600, 151.21690100},

 {-33.87864000, 151.21695200},

 {-33.87825000, 151.21699500},

 {-33.87792700, 151.21703500},

 {-33.87753300, 151.21709200},

 {-33.87715700, 151.21715600},

 {-33.87680000, 151.21719600},

 {-33.87636400, 151.21723400},

 {-33.87598300, 151.21721800},

 {-33.875464,151.217148}

 };

 private double[][] UO1 = {

 {-33.87555800, 151.21733300},

 {-33.87512800, 151.21745100},

 {-33.87485800, 151.21722300},

 {-33.87481400, 151.21677200},

 {-33.87478900, 151.21636500},

 {-33.87471600, 151.21586600},

 {-33.87461800, 151.21541500},

 {-33.87446600, 151.21499700},

 {-33.87433100, 151.21490000}

 };

 private double[][] UO2 = {

 {-33.87424400, 151.21439300},

102

 {-33.87416100, 151.21393500},

 {-33.87407200, 151.21348700},

 {-33.87397900, 151.21300400},

 {-33.87389400, 151.21256400},

 {-33.87380500, 151.21206300},

 {-33.87371600, 151.21159900},

 {-33.87363800, 151.21103300},

 {-33.87354400, 151.21046100},

 {-33.87346900, 151.20997300},

 {-33.87339100, 151.20949300},

 {-33.87330200, 151.20902400},

 {-33.87318600, 151.20854300},

 {-33.87305000, 151.20803400},

 {-33.87293200, 151.20758900},

 {-33.87285600, 151.20713300},

 {-33.87278500, 151.20665800},

 {-33.87273400, 151.20615900},

 {-33.87272500, 151.20571400},

 {-33.87275400, 151.20520400},

 {-33.87278300, 151.20476700},

 {-33.87282300, 151.20427600},

 {-33.87290300, 151.20368600},

 {-33.873184,151.203262}

 };

 private double[][] OP = {

 {-33.873057,151.20352},

 {-33.873391,151.203214}

 };

 private double[][] LW2 = {

 {-33.882735,151.21718}

 };

 private double[][] LW3 = {

 {-33.88238900, 151.21710000},

 {-33.88201300, 151.21703800},

 {-33.88166600, 151.21699500},

 {-33.88129800, 151.21696000},

 {-33.88093800, 151.21693100},

 {-33.88057700, 151.21691200},

 {-33.88016300, 151.21690700},

 {-33.87973500, 151.21691700},

 {-33.87932100, 151.21700000},

 {-33.87899600, 151.21703500},

 {-33.87864900, 151.21707600},

 {-33.87823000, 151.21713200},

103

 {-33.87783100, 151.21718600},

 {-33.87744400, 151.21723100},

 {-33.87703000, 151.21728500},

 {-33.87662700, 151.21732500},

 {-33.87623500, 151.21737300},

 {-33.87579800, 151.21743200},

 {-33.87537900, 151.21748100},

 {-33.87499000, 151.21752400},

 {-33.87456900, 151.21757200},

 {-33.87413500, 151.21762000},

 {-33.87374900, 151.21765000},

 {-33.87335100, 151.21766600},

 {-33.87291600, 151.21768200},

 {-33.87257100, 151.21770600},

 {-33.87234400, 151.21772700},

 {-33.871856,151.217824}

 };

 private double[][] HQ1 = {

 {-33.87144200, 151.20316600},

 {-33.87172900, 151.20316600},

 {-33.87205500, 151.20317600},

 {-33.87238900, 151.20319500},

 {-33.87258900, 151.20320100}

 };

 private double[][] IQ1 = {

 {-33.87049800, 151.20330000},

 {-33.87078300, 151.20330200},

 {-33.87105500, 151.20331900},

 {-33.87133800, 151.20334300},

 {-33.87161100, 151.20339900},

 {-33.87192100, 151.20348800},

 {-33.87221100, 151.20353600},

 {-33.87250200, 151.20346100}

 };

 private double[][] Q2 = {

 {-33.87283400, 151.20326000},

 {-33.87303900, 151.20318700},

 {-33.87330400, 151.20299400},

 {-33.873607,151.202739}

 };

 private double[][] JX1 = {

 {-33.87404800, 151.20253300},

 {-33.87407900, 151.20300200},

104

 {-33.87411200, 151.20352000}

 };

 private double[][] KX1 = {

 {-33.87476000, 151.20331000},

 {-33.87453300, 151.20302900},

 {-33.87431500, 151.20270400},

 {-33.87402600, 151.20257800},

 {-33.87391600, 151.20296700},

 {-33.87399200, 151.20344500}

 };

 private double[][] JX2 = {

 {-33.87414600, 151.20395200},

 {-33.87422400, 151.20432700},

 {-33.87429700, 151.20475900},

 {-33.87436400, 151.20514800},

 {-33.87442000, 151.20563600},

 {-33.87447500, 151.20610300},

 {-33.87452700, 151.20654500},

 {-33.87454900, 151.20707400},

 {-33.87456700, 151.20749700},

 {-33.87457800, 151.20792900},

 {-33.87454900, 151.20841700},

 {-33.87452400, 151.20884100},

 {-33.87447500, 151.20923300},

 {-33.87436400, 151.20968100},

 {-33.87422800, 151.21016400},

 {-33.87407200, 151.21063600},

 {-33.87393600, 151.21107300},

 {-33.87380900, 151.21153100},

 {-33.87362700, 151.21196600},

 {-33.87346700, 151.21230900},

 {-33.87352900, 151.21272500},

 {-33.87359300, 151.21317600},

 {-33.87366700, 151.21367200},

 {-33.87374700, 151.21414900},

 {-33.87382500, 151.21464300},

 {-33.87388100, 151.21509100},

 {-33.87396100, 151.21560000},

 {-33.87403200, 151.21605900},

 {-33.87410800, 151.21650400},

 {-33.87418100, 151.21697600},

 {-33.87425900, 151.21740300},

 {-33.87433500, 151.21787200}

105

 };

 private double[][] JX3 = {

 {-33.87441700, 151.21831500},

 {-33.87451300, 151.21884300},

 {-33.87460900, 151.21934500},

 {-33.87470700, 151.21986200},

 {-33.87479600, 151.22034800},

 {-33.87490500, 151.22087100},

 {-33.87500300, 151.22131300},

 {-33.87515700, 151.22175300},

 {-33.87534200, 151.22213700},

 {-33.87551800, 151.22245100},

 {-33.87563800, 151.22283200},

 {-33.87573600, 151.22328000},

 {-33.87580000, 151.22376000},

 {-33.87588500, 151.22420000},

 {-33.87602800, 151.22456200},

 {-33.87613000, 151.22496100},

 {-33.876219,151.225519}

 };

 private double[][] MW1 = {

 {-33.88566900, 151.21824500},

 {-33.88529100, 151.21811400},

 {-33.88488100, 151.21797900},

 {-33.88458900, 151.21787500},

 {-33.88418200, 151.21771900},

 {-33.88372300, 151.21757700},

 {-33.88335800, 151.21742400},

 {-33.88302400, 151.21729300}

 };

 private double[][] Y1 = {

 {-33.87646400, 151.22492400},

 {-33.87641300, 151.22437900},

 {-33.87635700, 151.22378900},

 {-33.87629500, 151.22322100},

 {-33.87617700, 151.22264700},

 {-33.87602800, 151.22207800},

 {-33.87589800, 151.22166200},

 {-33.87570200, 151.22120900},

 {-33.87549500, 151.22075300},

 {-33.87525300, 151.22027300},

 {-33.87510300, 151.21979000},

 {-33.87500800, 151.21933400},

106

 {-33.87493000, 151.21880800}

 };

 private double[][] YV2 = {

 {-33.87499000, 151.21822400},

 {-33.87506100, 151.21775200},

 {-33.87505000, 151.21733300},

 {-33.87503000, 151.21689900},

 {-33.87498500, 151.21639700},

 {-33.87494300, 151.21593600},

 {-33.87477400, 151.21563800},

 {-33.87445500, 151.21551200},

 {-33.87410300, 151.21553100},

 {-33.87374500, 151.21561100},

 {-33.87334900, 151.21570000},

 {-33.87294800, 151.21579100},

 {-33.87254700, 151.21588500},

 {-33.87216200, 151.21598900},

 {-33.87179000, 151.21610700},

 {-33.87148500, 151.21641600},

 {-33.87120200, 151.21674000},

 {-33.87089000, 151.21704900},

 {-33.87066700, 151.21727100},

 {-33.870331,151.217679},

 };

 private double[][] YO2 = {

 {-33.87484500, 151.21824200},

 {-33.87469100, 151.21724200},

 {-33.87462200, 151.21679700},

 {-33.87454200, 151.21627600},

 {-33.87446900, 151.21578800},

 {-33.87438800, 151.21527000},

 {-33.87433700, 151.21494600}

 };

 private double[][] Z1 = {

 {-33.87200300, 151.21798500},

 {-33.87234400, 151.21792600},

 {-33.87276300, 151.21785100},

 {-33.87320800, 151.21780800},

 {-33.87352700, 151.21778400},

 {-33.87392500, 151.21774600},

 {-33.87434400, 151.21769800},

 {-33.87469600, 151.21765800},

 {-33.87503400, 151.21762000},

 {-33.87545300, 151.21756900},

107

 {-33.87586000, 151.21751800},

 {-33.87630100, 151.21746200},

 {-33.87666200, 151.21741900},

 {-33.87707600, 151.21736500},

 {-33.87747700, 151.21731200},

 {-33.87784700, 151.21726300},

 {-33.87821200, 151.21721000},

 {-33.87862000, 151.21716100},

 {-33.87901100, 151.21710200},

 {-33.87931400, 151.21705400},

 {-33.87969500, 151.21703300}

 };

 private double[][] Z2 = {

 {-33.87995100, 151.21708900},

 {-33.88027600, 151.21708900},

 {-33.88065300, 151.21709700},

 {-33.88102700, 151.21711000},

 {-33.88137200, 151.21718800},

 {-33.88180400, 151.21725500},

 {-33.88216500, 151.21731700},

 {-33.88257400, 151.21740000},

 {-33.88298000, 151.21749700},

 {-33.88336900, 151.21761700},

 {-33.88377000, 151.21777300},

 {-33.88412200, 151.21791200},

 {-33.88450700, 151.21804400},

 {-33.88489200, 151.21806500}

 };

 private double[][] ZT3 = {

 {-33.88523100, 151.21824200},

 {-33.88558300, 151.21840300},

 {-33.88591700, 151.21855600},

 {-33.88622800, 151.21869800},

 {-33.88648900, 151.21891300},

 {-33.88661100, 151.21935500},

 {-33.88668300, 151.21983300},

 {-33.88671100, 151.22031300},

 {-33.88674500, 151.22078500},

 {-33.88678300, 151.22117100},

 {-33.88683800, 151.22155800},

 {-33.886932,151.222199}

 };

108

 private double[][] ZS3 = {

 {-33.88521500, 151.21812200},

 {-33.88559800, 151.21826400},

 {-33.88591200, 151.21840100},

 {-33.88622800, 151.21858800},

 {-33.88650700, 151.21883200},

 {-33.88685800, 151.21907400},

 {-33.88719900, 151.21924800},

 {-33.88757300, 151.21944400},

 {-33.888005,151.219645}

 };

 private double[][] Z3 = {

 {-33.880256,151.21703}

 };

 private double[][] NR0 = {

 {-33.87433500, 151.21788000},

 {-33.87405400, 151.21793700},

 {-33.87403000, 151.21748300},

 {-33.87436400, 151.21734100}

 };

 private double[][] NR1 = {

 {-33.87410600, 151.21755000},

 {-33.87440900, 151.21740300}

 };

 private double[][] NR2 = {

 {-33.87466500, 151.21729000},

 {-33.87506500, 151.21725300},

 {-33.87541500, 151.21725000},

 {-33.87579600, 151.21730900},

 {-33.87612800, 151.21730100},

 {-33.87652900, 151.21727400},

 {-33.87694300, 151.21722800},

 {-33.87727000, 151.21718000},

 {-33.87758600, 151.21712900},

 {-33.87786200, 151.21708900},

 {-33.87820300, 151.21705700},

 {-33.87853500, 151.21701100},

 {-33.87887300, 151.21697900},

 {-33.87919400, 151.21695800},

 {-33.87949700, 151.21696600},

 {-33.87982000, 151.21698200},

109

 {-33.88012900, 151.21699500}

 };

 private double[][] NR3 = {

 {-33.88054600, 151.21703000},

 {-33.88087800, 151.21705400},

 {-33.88126500, 151.21707300},

 {-33.88161700, 151.21712100},

 {-33.88196200, 151.21718600},

 {-33.88228000, 151.21725000},

 {-33.88262600, 151.21732000},

 {-33.88298800, 151.21737100},

 {-33.88334300, 151.21738900},

 {-33.88368800, 151.21742200},

 {-33.88401700, 151.21749400},

 {-33.88434000, 151.21760900},

 {-33.88464700, 151.21771700},

 {-33.88498800, 151.21783500},

 {-33.88530400, 151.21793900},

 {-33.88563200, 151.21801400},

 {-33.88599700, 151.21804100},

 {-33.88632600, 151.21803800},

 {-33.88669400, 151.21803000},

 {-33.88699200, 151.21800400},

 {-33.88732800, 151.21797400},

 {-33.887802,151.217902}

 };

 private double[][] AADD = {

 {-33.87637900, 151.22494500},

 {-33.87631300, 151.22435500},

 {-33.87625200, 151.22386200},

 {-33.87617900, 151.22326100},

 {-33.87604100, 151.22271600},

 {-33.87583800, 151.22225000},

 {-33.87561800, 151.22189000},

 {-33.87539100, 151.22144000},

 {-33.87521900, 151.22096500},

 {-33.87507700, 151.22051700},

 {-33.874932,151.219865}

 };

 private double[][] BBCC = {

 {-33.87497900, 151.22048200},

 {-33.87510600, 151.22098900},

110

 {-33.87526100, 151.22141800},

 {-33.87548400, 151.22182600},

 {-33.87568000, 151.22220700},

 {-33.87587600, 151.22268700},

 {-33.87599900, 151.22310500},

 {-33.87605900, 151.22362600},

 {-33.87612500, 151.22416500},

 {-33.87624100, 151.22495600},

 {-33.876306,151.225538}

 };

 //harbour tunnel

 private double[][] FFHH1 = {

 {-33.84160800, 151.21071900},

 {-33.84203400, 151.21083100},

 {-33.84246800, 151.21093100},

 {-33.84287800, 151.21104300},

 {-33.84334200, 151.21122300},

 {-33.84381200, 151.21146400},

 {-33.84426800, 151.21164100},

 {-33.84473200, 151.21184000},

 {-33.84518800, 151.21205200},

 {-33.84566100, 151.21226900},

 {-33.84607100, 151.21245700},

 {-33.84648300, 151.21259600},

 {-33.84681000, 151.21270600},

 {-33.84719300, 151.21285100},

 {-33.84756800, 151.21300100},

 {-33.84796200, 151.21317000},

 {-33.84835800, 151.21329600},

 {-33.84877500, 151.21336300},

 {-33.84920500, 151.21341700},

 {-33.84958600, 151.21344700},

 {-33.84996700, 151.21349200},

 {-33.85036800, 151.21349800},

 {-33.85071100, 151.21350600},

 {-33.85107200, 151.21350600},

 {-33.85152100, 151.21351100},

 {-33.85189800, 151.21351400},

 {-33.85228100, 151.21351900},

 {-33.85264600, 151.21352400},

 {-33.85306500, 151.21352700},

 {-33.85345100, 151.21353200},

 {-33.85383800, 151.21354800},

 {-33.85425700, 151.21357300},

111

 {-33.85470900, 151.21358900},

 {-33.85514600, 151.21360700},

 {-33.85553500, 151.21362900},

 {-33.85592100, 151.21364500},

 {-33.85627900, 151.21365600},

 {-33.85670300, 151.21367700},

 {-33.85708300, 151.21369600},

 {-33.85742200, 151.21370700},

 {-33.85785400, 151.21372300},

 {-33.85824200, 151.21374400},

 {-33.85866300, 151.21379500},

 {-33.85904800, 151.21384900},

 {-33.85939800, 151.21387300},

 {-33.85980300, 151.21389400},

 {-33.86016600, 151.21389200},

 {-33.86053800, 151.21387300},

 {-33.86091200, 151.21385200},

 {-33.86131100, 151.21381900},

 {-33.86172100, 151.21379000},

 {-33.86207900, 151.21380600},

 {-33.86245600, 151.21378200},

 {-33.86292800, 151.21360700},

 {-33.86329300, 151.21343900}

 };

 private double[][] GG1 = {

 {-33.86297200, 151.21366100},

 {-33.86332000, 151.21349200}

 };

 private double[][] FFHH2 = {

 {-33.86373400, 151.21327200},

 {-33.86411100, 151.21313000},

 {-33.86452000, 151.21308200},

 {-33.86491000, 151.21315700},

 {-33.86526900, 151.21334200},

 {-33.86560900, 151.21358900},

 {-33.86594600, 151.21399100},

 {-33.866249,151.214557}

 };

 private double[][] EEII = {

 {-33.86606200, 151.21389400},

 {-33.86576100, 151.21350800},

 {-33.86536000, 151.21321100},

112

 {-33.86493500, 151.21300400},

 {-33.86442200, 151.21296100},

 {-33.86396800, 151.21306600},

 {-33.86355400, 151.21324300},

 {-33.86309900, 151.21346800},

 {-33.86260500, 151.21366400},

 {-33.86210400, 151.21371700},

 {-33.86162900, 151.21371200},

 {-33.86112400, 151.21371700},

 {-33.86057800, 151.21372600},

 {-33.86001700, 151.21372600},

 {-33.85950700, 151.21372000},

 {-33.85902100, 151.21369100},

 {-33.85851600, 151.21362600},

 {-33.85800100, 151.21357800},

 {-33.85746700, 151.21354600},

 {-33.85697900, 151.21351600},

 {-33.85644900, 151.21347600},

 {-33.85595900, 151.21346300},

 {-33.85545700, 151.21344400},

 {-33.85490100, 151.21342500},

 {-33.85437700, 151.21340400},

 {-33.85386700, 151.21338000},

 {-33.85335700, 151.21336300},

 {-33.85282500, 151.21334700},

 {-33.85232100, 151.21332600},

 {-33.85176000, 151.21329600},

 {-33.85126300, 151.21328000},

 {-33.85073700, 151.21325100},

 {-33.85023800, 151.21322900},

 {-33.84977300, 151.21320500},

 {-33.84927800, 151.21315700},

 {-33.84879500, 151.21310600},

 {-33.84831200, 151.21302800},

 {-33.84785700, 151.21289700},

 {-33.84745400, 151.21270900},

 {-33.84700400, 151.21254800},

 {-33.84657400, 151.21239800},

 {-33.84608800, 151.21222600},

 {-33.84559200, 151.21205400},

 {-33.84509000, 151.21186900},

 {-33.84466900, 151.21166000},

 {-33.84421700, 151.21144000},

 {-33.84373100, 151.21121800},

113

 {-33.84322600, 151.21103500},

 {-33.84272000, 151.21085300},

 {-33.84227200, 151.21067000},

 {-33.84189400, 151.21046700},

 {-33.84159100, 151.21031900},

 {-33.841107,151.210185}

 };

 //lane cove

 private double[][] JJNN1 = {

 {-33.80124200, 151.14465100},

 {-33.80156600, 151.14510400},

 {-33.80185800, 151.14550600},

 {-33.80215200, 151.14586000},

 {-33.80248600, 151.14626300},

 {-33.80281200, 151.14665700},

 {-33.80315300, 151.14709400},

 {-33.80344000, 151.14749400},

 {-33.80374300, 151.14795000},

 {-33.80404000, 151.14843800},

 {-33.80434500, 151.14900400},

 {-33.80459500, 151.14953800},

 {-33.80482600, 151.15005800},

 {-33.80504300, 151.15058400},

 {-33.80525900, 151.15110700},

 {-33.80546200, 151.15166500},

 {-33.80566000, 151.15215500},

 {-33.80590300, 151.15264400},

 {-33.80617300, 151.15308300},

 {-33.80647100, 151.15352100},

 {-33.80679400, 151.15398500},

 {-33.80708000, 151.15435200},

 {-33.80739600, 151.15477900},

 {-33.80766600, 151.15516800},

 {-33.80793500, 151.15555900},

 {-33.80819800, 151.15599600},

 {-33.80847000, 151.15647900},

 {-33.80870000, 151.15694000},

 {-33.80893600, 151.15744200},

 {-33.80916300, 151.15797000},

 {-33.80937500, 151.15853400},

 {-33.80958200, 151.15915600},

 {-33.80973200, 151.15968400},

114

 {-33.80988100, 151.16028500},

 {-33.81000800, 151.16086700},

 {-33.81011900, 151.16140900},

 {-33.81024000, 151.16205000},

 {-33.81035300, 151.16262700},

 {-33.81045600, 151.16325700},

 {-33.81054500, 151.16383400},

 {-33.81063000, 151.16438400},

 {-33.81071700, 151.16499000},

 {-33.81079900, 151.16551000},

 {-33.81089700, 151.16603900},

 {-33.81102700, 151.16662600},

 {-33.81114000, 151.16715400},

 {-33.81130300, 151.16765900},

 {-33.81148600, 151.16827300},

 {-33.81166600, 151.16884100},

 {-33.81182000, 151.16932200}

 };

 private double[][] OO2 = {

 {-33.81192900, 151.16991400},

 {-33.81203400, 151.17047200},

 {-33.81214100, 151.17101700},

 {-33.81218100, 151.17159900},

 {-33.81220100, 151.17214600},

 {-33.81223000, 151.17277900},

 {-33.81225000, 151.17338500},

 {-33.81227200, 151.17399900},

 {-33.81229500, 151.17461400},

 {-33.81224100, 151.17519300},

 {-33.81218300, 151.17574000},

 {-33.81213200, 151.17617700}

 };

 private double[][] JJNN2 = {

 {-33.81201400, 151.17004000},

 {-33.81211600, 151.17059800},

 {-33.81219900, 151.17125000},

 {-33.81224100, 151.17182700},

 {-33.81227900, 151.17252400},

 {-33.81233000, 151.17319500},

 {-33.81237000, 151.17375800},

 {-33.81237700, 151.17431300},

 {-33.81235900, 151.17495400},

115

 {-33.81228600, 151.17553600},

 {-33.81223400, 151.17609900},

 {-33.81219000, 151.17667900},

 {-33.81215900, 151.17729600},

 {-33.81216500, 151.17794200},

 {-33.81219200, 151.17848900},

 {-33.81225200, 151.17908700},

 {-33.81233500, 151.17962900},

 {-33.81244800, 151.18020300},

 {-33.81256600, 151.18070500},

 {-33.81268200, 151.18120600},

 {-33.812845,151.181845}

 };

 private double[][] KKMM1 = {

 {-33.81284300, 151.18148300},

 {-33.81271100, 151.18086600},

 {-33.81258900, 151.18025400},

 {-33.81249300, 151.17969400},

 {-33.81241700, 151.17912000},

 {-33.81233000, 151.17848100},

 {-33.81233500, 151.17786200},

 {-33.81235000, 151.17723100},

 {-33.81241300, 151.17649900},

 {-33.81248200, 151.17592800},

 {-33.81257100, 151.17533000},

 {-33.81262400, 151.17480400},

 {-33.81265300, 151.17424100},

 {-33.81266200, 151.17363200},

 {-33.81265100, 151.17300700},

 {-33.81260700, 151.17249500},

 {-33.81252000, 151.17189600}

 };

 private double[][] LL1 = {

 {-33.81334600, 151.17621500},

 {-33.81293200, 151.17595700},

 {-33.81256900, 151.17624400},

 {-33.81240800, 151.17678300},

 {-33.81267100, 151.17715100},

 {-33.81306300, 151.17705200},

 {-33.81331700, 151.17673000},

 {-33.81345600, 151.17622000},

 {-33.81339800, 151.17565700},

 {-33.81320800, 151.17509900},

116

 {-33.81299900, 151.17443400},

 {-33.81288100, 151.17387100},

 {-33.81281800, 151.17327200},

 {-33.81275600, 151.17268200},

 {-33.81263600, 151.17202800}

 };

 private double[][] KKMM2 = {

 {-33.81241500, 151.17129600},

 {-33.81230800, 151.17070300},

 {-33.81218300, 151.17009900},

 {-33.81201600, 151.16949900},

 {-33.81184200, 151.16888700},

 {-33.81164200, 151.16816300},

 {-33.81147400, 151.16743900},

 {-33.81138800, 151.16682400},

 {-33.81124900, 151.16613500},

 {-33.81112000, 151.16551500},

 {-33.81099300, 151.16489100},

 {-33.81085500, 151.16423900},

 {-33.81075200, 151.16359200},

 {-33.81065700, 151.16295100},

 {-33.81055900, 151.16236700},

 {-33.81044900, 151.16171700},

 {-33.81034500, 151.16107400},

 {-33.81022400, 151.16041900},

 {-33.81006800, 151.15973500},

 {-33.80984300, 151.15906700},

 {-33.80955300, 151.15842100},

 {-33.80933100, 151.15781200},

 {-33.80908300, 151.15721400},

 {-33.80880200, 151.15661900},

 {-33.80850800, 151.15605500},

 {-33.80819400, 151.15550800},

 {-33.80782800, 151.15495300},

 {-33.80751400, 151.15446500},

 {-33.80715300, 151.15395200},

 {-33.80679000, 151.15347200},

 {-33.80645100, 151.15296000},

 {-33.80615700, 151.15243700},

 {-33.80586700, 151.15186000},

 {-33.80562000, 151.15127800},

 {-33.80537700, 151.15067500},

 {-33.80514700, 151.15009500},

 {-33.80490400, 151.14954600},

117

 {-33.80462600, 151.14899600},

 {-33.80433600, 151.14845700},

 {-33.80403700, 151.14794200},

 {-33.80370100, 151.14743700},

 {-33.80336400, 151.14695500},

 {-33.80295600, 151.14645800},

 {-33.80253100, 151.14597600},

 {-33.80210500, 151.14550900},

 {-33.80173900, 151.14510700},

 {-33.80138300, 151.14468500},

 {-33.801024,151.144165}

 };

 }

