
SCHOOL OF ELECTRICAL ENGINEERING AND

TELECOMMUNICATIONS

Communication

between Sensors and

Mobile Phone
Thesis B Report

Supervisor: A/Prof. Vijay Sivaraman

Author: Jiang Junjie (3297513)

Bachelor of Telecommunication Engineering

2011-10-20

1

Thesis title: Communication between

Sensors and Mobile Phone Topic number: VR36

Student Name: Junjie Jiang Student ID: 3297513

A. Problem statement

Medical researches have indicated some relationships between air pollutions and diseases including

respiratory allergies, emphysema and asthma. Current air pollution monitory systems are stationary and

only low-resolution pollution map is provided. The Haze Watch system is aiming to measure air pollutants

in Sydney while provide accurate high-resolution pollution data with mobile sensor units. The prototype

system has been developed and operated, but it still needs improvements on problems including, no

pollution readings when GPS lost, inefficient protocol and one-way communication between device and

mobile phone.

B. Objective

Estimate the user‟s routes when GPS signal lost

Improve the protocol architecture

Establish the duplex communication between wireless sensor board and mobile phone

Enhance the data uploading method

C. My solution

Develop linear and nonlinear interpolation method for tunnels

Separate constant fields and varying fields in protocol version 1

Connect RX/DT pin (pin 12) on microcontroller and UART_tx pin (pin 5) on BT module

Agreed configuration characters transmitted for data acquisition

Buffer and timeout mechanism when data uploading

D. Contributions (at most one per line, most important first)

Achieved the duplex communication between wireless sensor board and mobile phone

Developed displacement-based data acquisition method

Location interpolation method

Enhancements on data uploading method

Field tests

Provide software assistance for sensor calibration

E. Suggestions for future work

Efficient power management

Monitoring modules on board by microcontroller

New protocol based on two-way communication

While I may have benefited from discussion with other people, I certify that this thesis

is entirely my own work, except where appropriately documented acknowledgements

are included.

Signature: _________________________________ Date: 20/ 10/ 2011

2

Thesis Pointers

List relevant page numbers in the column on the left. Be precise and selective: Don‟t list all

pages of your thesis!

7 Problem Statement

8 Objective

Theory (up to 5 most relevant ideas)

18-25 Location interpolation

26 Protocol

31,32 USART interface

38 Buffer

40 TCP connection timeout

Method of solution (up to 5 most relevant points)

18-25 Linear and nonlinear interpolation

21 Heversine formula

28-31 Separate constant fields and varying fields in protocol

35 Displacement-based data acquisition

40 Buffer resize

Contributions (most important first)

30-34 Achieved the duplex communication between device and mobile phone

35 Developed displacement-based data acquisition method

17-22 Location interpolation method

38-40 Enhancements on data uploading method

22-25,35-37 Field tests

My work

19-21,29-34, 39-40 System block diagrams/algorithms/equations solved

19-21,29-34, 39-40 Description of procedure (e.g. for experiments)

Results

23-25,35-37 Succinct presentation of results

23-25,35-37 Analysis

23-25,35-37 Significance of results

Conclusion

43 Statement of whether the outcomes met the objectives

41-42 Suggestions for future research

Literature: (up to 5 most important references)

11,12,13,14,16,26,35 [1] N. Youdale

27,32 [19] Microchip Technology Inc

28,33,41 [20] Adeunis RF.

7,12,13,17 [2] J. Carrapetta

9 [5] World Health Organization

3

Abstract

The Haze Watch project aims to build a mobile air pollution monitoring system which

produces a high-resolution image of the air quality in a large region as well as the

accurate pollution exposure for individuals. The system consists of wireless sensor

device, Android Smartphone, database server and clients applications. Based on the

cooperation between device and Smartphone the air pollution are measured and

uploaded to database server for computing a visualized pollution level.

Currently, the whole project is divided and under improvement from different parts. In

this article, the enhancements on communication between wireless sensor device and

Android Smartphone will be exhibited.

4

Acknowledgements

I would like to acknowledge my supervisor, A/prof. Vijay Sivaraman who has

provided me with excellent guidance, direction and support throughout my thesis. I

would also like to thank my group partner, Hailian Zhang, who has completed all the

works in this thesis with me. I would like to further thank other project members,

Dawei Lu, Kunxuan Bi, James Carrapetta, and Nikolaus Youdale for their

contributions on this project.

5

Table of Contents

Abstract... 3

Acknowledgements... 4

1 Introduction .. 7

Our Role .. 7

Our Objective ... 8

2 Background .. 9

2.1 Air Pollution .. 9

2.2 Correlative Projects ...10

2.2.1 MDAU..10

2.2.2 MAQUMON..10

2.2.3 Discussion ... 11

2.3 System Overview .. 11

2.3.1 Wireless Sensor Board ..12

2.3.2 Smart Phone ..13

2.3.3 Database Server..14

2.3.4 User Applications ...14

3 GPS Lost and Location Estimation..16

3.1 GPS Lost ..16

3.2 GPS Lost Detection ...16

3.3 Location Estimation Method ...18

3.3.1 Linear Interpolation ..18

3.3.2 Nonlinear Interpolation ...19

3.3.3 Hybrid System ...21

3.4 Field Test Result ..22

4 Communication Between device and Mobile Phone ..26

4.1 Protocol Version 1 ...26

4.2 Protocol Version 2 ...28

4.2.1 Control Message...29

4.2.2 Data Message...30

4.3 Two-way Communication ...30

4.3.1 Schematic ..31

4.3.2 Procedures ...32

6

4.3.3 Displacement-Based Data Acquisition ...35

4.4 Test Results ..35

5 Data Uploading ..38

5.1 Constrains ..38

5.2 Uploading Method ...38

5.2.1 Buffer ...38

5.2.2 Timeout...40

6 Future Work...41

6.1 Hardware..41

6.1.1 Batteries ..41

6.1.2 Power Managements ...41

6.1.3 Modules Monitory ..41

6.2 Smartphone Application ...42

6.2.1 Intelligent Application ...42

6.2.2 New Protocol ...42

7 Conclusion ..43

References ..44

Appendix..46

7

1 Introduction

Air pollution in the progress of urbanization is increasing with burgeoning population

and increased traffic and industry. Simply consider the stale or moldy smell in the air

or the black exhausts of automobiles. The public health has been threatened but

unknown for major publics. Medical researches have indicated some relationship

between air pollution and diseases including respiratory allergies in some extents, but

still making best efforts for seeking conclusive evidences. Consequently, a robust air

quality monitoring system with abilities to provide accurate high-resolution pollution

data at anywhere within urban area is advised.

Haze Watch system is a mobile air pollution monitoring system designed and

developed by James Carrapetta [1], Nikolaus Youdale [2], and Amanda Chow [3] in

the University of New South Wales. This project is aiming to measure the major types

of air pollutants in Sydney by wireless mobile sensor units and display the pollution

level as well as the accurate pollution exposure for individuals via several applications

processing on various platforms. The prototype system has been developed and

continuously operated for the last one year, but it still needs improvements on various

problems including, no pollution readings when GPS lost, inefficient protocol,

one-way communication between device and mobile phone, unfriendly user interface,

power consumption of Smartphone and uncelebrated sensor readings.

Our Role

Aiming at providing a robust, accurate and flexible pollution measurement system, in

this year, 2011, this project has been divided several parts for further developments.

These parts are including:

1) User interface for Android application

2) Calibration for pollution sensors

3) Communication between wireless sensor device and Android phone

4) Improvement on iPhone client application

5) Database server maintains

8

6) New sensors for wireless sensor board

My partner Hailian Zhang and I are involving in improve the communication method

between sensors and Android phone in order to obtain reliable and accurate pollution

readings.

Our Objective

In general, our thesis aims to improve the system by:

 Estimate the user‟s routes when GPS signal lost

 Improve the protocol architecture

 Establish the duplex communication between wireless sensor board and

mobile phone

 Realize the distance based pollution sampling method

 Enhance the data uploading method

In the rest of this article, the background information regard to air pollutions as well as

its jeopardies concerning to the public health will be presented initially. Right

following the background information some relative pollution monitory projects and

our Haze Watch will be introduced. In the main sections, the circumstance of GPS lost

and new location estimation method for dealing with the pollution readings within that

circumstance will be introduced first. Then, the communication protocol between

device and mobile phone followed by two-way communication achievements will be

exhibited detailedly. Subsequently, an enhancement on data uploading method will be

demonstrated and this report will end with a conclusion regarding to the works we

have done in the thesis A and B.

9

2 Background

2.1 Air Pollution

Air pollution as one of the most significant pollution concerns constantly affects the

major human beings, but only few people realized how serious this problem is. A

medicinal research for ThinkQuest [4] specifies that it is about 20000 times with

approximately 20000 liters air on average that an adult will breathe every day. Thus,

„how your good the air is‟, has an inextricable relationship with one‟s health.

The major pollutants affecting public health includes ozone (O3), carbon monoxide

(CO), nitrogen dioxide (NO2), sulfur dioxide (SO2) and particulate matters (PM) [5].

According to large amount researches, it has shown that the long-term effects of those

air pollutants on health are including diseases emphysema, asthma, lung and heart

diseases, and respiratory allergies [6]. The WHO (World Health Organization) [5]

estimated that approximately 2 million premature deaths worldwide are caused by

pollutants in the air annually and by reducing the particulate matter in the atmosphere

the death related to the air could be reduced by 15%. The medical studies are still

focusing efforts on searching for conclusive relationships between exposure to air

pollution and various medical conditions. Therefore, an air pollution monitoring

system aiming at satisfied the increasing requirements on personal healthy quality is

extremely helpful and important for professionals, governments and individuals.

In Sydney, the DECCW (Department of Environment, Climate Change and Water) [7]

takes the responsibility for monitoring air pollution in NSW. Currently, they are

running 14 fixed observer stations around Sydney and the citizens can visit their

homepage to view AQI (Air Quality Index) map and search the air quality database

which have been demonstrated in figure1.

10

Figure 1 The DECCW Air Quality Index map [7]

2.2 Correlative Projects

However, stationary monitoring systems may hardly provide a high-resolution image

of AQI. This has been aware years ago and with the new developed technologies, like

3G network, engineers around world have started to invent and develop mobile air

pollution monitoring systems in order to provide more accurate, robust, reliable air

pollution readings.

2.2.1 MDAU

S. Dhanalkshmi [8] and her group members from Idhaya Engineering College for

Women have designed a Mobile Data-Acquisition Unit (MDAU) which could record

air pollution data and request location information through a GPS module. These data

are subsequently uploaded to server through a GPRS-Modem (General Packet Radio

Service Modem).

2.2.2 MAQUMON

The MAQUMON (Mobile Air Quality Monitoring Network) is a project that

11

undertaken in 2007 by the Networked

Embedded Systems Lab at ISIS, Vanderbilt

University [9]. It has built a prototype device

packing several modules into a small package.

This prototype in figure 2 consists of metal

oxide semiconductor sensors, GPS module

accelerometer, LCD, USB port, flash memory

and a Bluetooth interface. The collected pollution readings are able to periodically

upload to a server through the Internet via a laptop or a PDA and displayed on

Microsoft SensorMap.

2.2.3 Discussion

Several other projects have been presented in [1], for instance, iSniff, Sensaris,

MESSAGE project. By closely study at their concepts, it is not hard to find that these

projects have a common idea which is integrating pollution measurement module with

GPS module and/or mobile network module. This design model, in deed, successfully

achieved mobile monitoring, but it also boosts the budget for each single device. The

budget given in MDAU is estimated as around US$650, it is far more than an

individual can offer for this kind of device.

2.3 System Overview

Based on essentially same concept but different method to achieve, the Haze Watch

system separates the GPS module and network module from the sensor board by

utilize as much existing hardware as possible present in Smartphones as substitutions

rather than duplicate them [1]. The general architecture of overall system is shown as

figure 3.

Figure 2 MAQUMON Prototype

12

Figure 3 Architecture of Haze Watch system [1]

2.3.1 Wireless Sensor Board

The wireless sensor board designed by J. Carrapetta [2] is the device which takes

responsibility of measuring the air pollutants in the atmosphere. The manufactured

board is presented in figure 4.

Figure 4 Wireless Sensor Board [1]

This wireless sensor board integrated 3 metal oxide semiconductor sensors measuring

O3, NO2, and CO, a PIC16F690 microcontroller (MCU), an ARF32 Bluetooth (BT), a

13

triple-LED as a state indicator and a power source supplied by 4 AA batteries.

Manufacturing prize for this board is estimated around AU$100~120 [2].

Once the device is powered up, the sensors on board start converting the pollutants

level into voltage changes and reflecting these changes onto the analog input pins of

the MCU. The microcontroller subsequently converts these voltages into a 10-bits

digital value through built- in ADC (analog to digital converter) module. The device

continuously collects samples from each sensor and stores them into memory. After

data collection phase, microcontroller enables the Bluetooth to send all collected data

as well as other reference coefficients and sleeps a while before next period start.

2.3.2 Smart Phone

The android application programmed by N. Youdale [1] connects with device though

Bluetooth under RFCOMM protocol [10]. It takes responsibility that tags each

received pollution readings with accurate location and time marks as well as uploading

tagged readings to the database server.

After the BT connection has established, the

Smartphone has been programmed to constantly read

data from BT input stream and convert the digital

sensor voltage values into standard air pollution

readings in terms of ppm by substituting them into

calibration equations. Subsequently, these values are

stamped with date and geographical location

obtained from built- in functions of the Smartphone,

before they are uploaded to serveWr through 3G

network.

The Android phones are selected in current phase

because of its open source code for Bluetooth

module and wide and abundant customer groups.

Figure 5 User Interface of Android

Application [11, 12]

14

2.3.3 Database Server

The server is also designed by Youdale [1] and it is an extremely important part in the

whole system. It runs a database to store all the pollution readings sent from Android

phones while provides an interface to client application to querying data from database.

It also used for host the project website and source codes for applications.

2.3.4 User Applications

Currently, the client applications include a website containing a pollution map

designed by A. Chow [3] and an iPhone application designed by Youdale [1].

Figure 6 Screenshot of the pollution maps web application [1]

The pollution map (figure 6) provides any accessed user with a graphical picture of the

pollution levels in Sydney, overlaid on Google map. The pollution levels are

represented in term of colors with blue means low and red means high. Points at where

data has been collected including readings for each pollutant may also be viewed on

this map.

15

Figure 7 Screenshot of personal pollution exposure application running on an iPhone [1]

The iPhone application (figure 7) aims to compute the personal exposure of clients. It

can track user‟s geographical location and request pollution data from the server to

graphically display the pollutant level around user over time.

16

3 GPS Lost and Location Estimation

3.1 GPS Lost

Like almost all the other GPS based positioning and navigation system, the Haze

Watch system is suffered from the weak GPS signal strength and incorrect location

information inside a tunnel. The GPS lost means that the GPS module in the

Smartphone stops functioning and no longer providing any accurate locations.

However, the pollution data inside a tunnel is extremely important for certain

researchers, for example, an environmental engineer may monitor the pollution level

to figure out whether their fans are working or not. Additionally, a chunk of blank

appears in a tracked trip would give some negative impressions on this system.

Consequently, how to estimate the positions inside tunnels is an extremely important

task in this thesis.

3.2 GPS Lost Detection

To avoid the absent of data inside tunnels, a precise GPS lost detector is required

basically. A location filter mechanism provided on [13] has been employed by

Nikolaus [1]. This filter works following the procedure shown in figure 8, where the

black lines represent false in conditional checks while the red means true.

Figure 8 Flow Chat of Android provied GPS Filter

Obtain

New Loc.

Info.

∆t > 2min
∆Accuracy

< 0m

Last Known Loc. =

New Loc.

Accuracy

< 200m

Discards New Loc.

17

This kind of location filter mainly used to maintain a relatively good location for users

by comparing the time and accuracy of newly obtained location information with the

stored one. This mechanism in some extent can detect the GPS signal lost but it cannot

satisfy the situations in tunnels, because it works based on the newly incoming

location information which might not be updated for minutes under that circumstance.

Therefore, the field test done by James [2] has the result shown in figure 9.

Figure 9 Carbon Monoxide Readings Plotted on a Visualisation Map [2]

A modified filter is developed based on the original location filtering mechanism. This

filter works not only when new positioning information is available but also when a

set of new pollution data acquiring current location (data reception and GPS update are

not synchronized in the traditional data pushing mode, the it always regard last known

location as current location. This will be improved and presented in section 4.3.3). The

last known location will be cleared out when any newly received location is failed in

Accuracy check. Similarly, it will be emptied when the last known location is found

not updated within 10s (depends on the minimum time interval settings of the GPS) as

the pollution data requiring locations. Therefore, as soon as the application received a

null location, the application will regard the mobile phone is entered GPS lost phase

18

and start applying location estimation method.

3.3 Location Estimation Method

Overview of current indoor positioning and navigation technologies [14, 15, 16], they

could be classified into follow categories:

 Map based positioning system. The location information of a target is based

on premeasured and built map in a database.

 Electromagnetic wave based positioning technology. The location of an

objective is determined through applying analyses and measurements on the

features like frequency, detection and strength of electromagnetic waves

received by the system. Commonly, these technologies require some base

stations or transmitters with fixed and known positions.

 Cooperative positioning technology. These technologies determine the

locations of a group of objects by measuring the relative location and

exchanging the information among each other.

 Inertial Navigation System. It is a system determines target‟s position by

integrating the speed and orientation information from accelerometer and

gyroscope assisted with several other sensors and algorithms. With only the

accelerometer and gyroscope, the positioning error of this system will

increase dramatically.

Since it is almost impossible to preinstall fix base stations inside tunnels or built up a

cooperative positioning network, the INS and map based system have been consider.

Comparing these two technologies, the INS seems more flexible for diverse situations,

but it drains out the batteries extremely quickly because the large power consumption

when continuous sensing data. Therefore, INS has been abandoned at last and only the

simplest method has been selected.

3.3.1 Linear Interpolation

Linear interpolation is the simplest approach to estimate the route by simply regard the

path during the GPS lost period is a straight line. When the GPS lost is detected, the

19

application will enable a counter to count the number of pollution data has received

during this period and store these data into memory. As long as a newly accurate

location is detected, the location for each cached data will be calculated applying the

formula:

∆𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = (
∆𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒

∆𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒
) =

(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒−𝐿𝑎𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒−𝐿𝑎𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒

)

𝑁𝑜. 𝑜𝑓 𝑑𝑎𝑡𝑎

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐿𝑎𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛+ ∆𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 × 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑑𝑎𝑡𝑎

Since the time interval of each received data is equal and fixed (explained in section 4)

and the speed of the car could deem as constant, the position for each data is equally

distributed on the straight path between the start and end point of the route.

3.3.2 Nonlinear Interpolation

The nonlinear interpolation is based on premeasured tunnel map stored in the hard disc.

Five major tunnels in Sydney including, Eastern Distributer, Cross City Tunnel,

Sydney Harbor Tunnel, Lane Cove Tunnel and M5 East Tunnel, are premeasured in

this application with each adjacent two sample has approximately equal distance

interval at 40 meters, and all the possible entrances and corresponding exits are clearly

marked. These tunnels then are divided into small parts at each fork of the road and the

all possible routes are indicated with names and indexes as demonstrated in table 1

[17].

Entrance

Index

Entrances Exit Exit

Index

Routes

7 L U 0 L to U=L1+LU2

O 1 L to

O=L1+LU2+UO1+UO2

P 2 L to

P=L1+LU2+UO1+UO2+OP

W 3 L to W=L1+LW2+LW3

Table 1 Tunnel Matching Table

The corresponding routes are shown in figure 10.

20

Figure 10 Possible Route From Entrance L

After all the tunnels are mapped, the next step is to select correct tunnel when GPS

lost. The flow chat shown in figure 11 is the steps to estimate the appropriate tunnel

from all.

Figure 11

21

The application first compares the last accepted location with all entrances‟

coordinates to find the closest two using the Haversine formula (an equation gives

circle distances between two points on a sphere from their longitudes and latitudes

[18]):

𝑑 = 2𝑅 ∙ 𝑎𝑡𝑎𝑛2 (√𝑎,√1 − 𝑎),

𝑤𝑒𝑟𝑒, 𝑎 = 𝑠𝑖𝑛 (
 𝐿𝑎𝑡

2
) + 𝑐𝑜𝑠(𝐿𝑎𝑡1) 𝑐𝑜𝑠(𝐿𝑎𝑡2) 𝑠𝑖𝑛 (

 𝐿𝑛𝑔

2
),

∆𝐿𝑎𝑡 =
2𝜋

360
× (𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 − 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒1),

∆𝐿𝑛𝑔 =
2𝜋

360
× (𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 −𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1)

𝑅 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡𝑒 𝑒𝑎𝑟𝑡

The reason why to choose the closest two entrances is that several entrances are very

close to each other as well as the GPS may not return a location at the precise entrance

of the tunnel. In order to avoid mismatching the route, the closest two entrances with

distances smaller then 500m are selected for route estimation. For the same reason, the

closest two exits comparing to the current location are selected. Then by comparing

the summation of the errors the route will be estimated as the combination which gives

the shortest distance offset over all.

Based on the assumption, constant speed, the approximated location in the tunnel

could be calculated through,

𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≈

1
𝑛+ 1× 𝑘

1
𝑁+ 1

,

 𝑛 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑑𝑎𝑡𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑡𝑢𝑛𝑛𝑒𝑙

𝑁 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑟𝑒𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

Finally, the pollution data will wrapped with coordinate stored in the corresponding

index.

3.3.3 Hybrid System

Each single interpolation method above has its advantages and drawbacks and cannot

fully satisfy the positioning when GPS lost. The linear interpolation is flexible for any

22

location and no premeasured coordinates are required while the nonlinear interpolation

is more accurate in the prebuilt areas. Additionally, location information for tunnels

requires large memory space in hard disc and RAM (Random Access Memory) when

operating route estimation. Hence, a hybrid system is realized for these interpolations

to complement each other. The system will operate linear interpolation in conditions:

1. Number of pollution data collected during GPS lost is smaller than 5, which

means when users drives at speed 60km/s the start location is about 420m

away from the end location.

2. Cannot find an entrance within 500m around the start location and the distance

between two locations is not excess 500m.

3. Cannot find a possible exit within 500m around the end location when

entrances are given and the distance between two locations is not excess 500m.

The first concern for choosing 5 set of pollution data as the threshold to distinguish the

two interpolation is that the displacement during receiving 5 pollution data is

estimated as 420 in regular situations. It is a distance that can cover almost all the

short tunnels in Sydney. Additionally, the threshold is checked before any tunnel

information becomes instances for distance calculation, thus the application may faster

the responses.

3.4 Field Test Result

Several field tests for demonstrate the performance of the interpolations has been

taken.

The linear interpolation method has been test in two tunnels. One is a short tunnel, the

airport tunnel, with result shown in figure 12.

23

Figure 12 Linear Interpolation at Airport Tunnel

In this test the points that have been circled, are the samples applied linear

interpolation. The first point is the last accepted location while the last point is the new

location. It is obvious that the linear interpolation performs well with all the

interpolated points have dropped on to the tunnel.

The M5 East tunnel has also been test for linear interpolation with result shown in

figure 13.

Figure 13 Linear Interpolation at M5 East Tunnel

24

In this test, almost all the results drift off the road with significant errors which can be

at most 200m away from the tunnel. Therefore, the linear interpolation is not suitable

for these long tunnels.

The nonlinear interpolation method is also tested. The experiment chose the route start

from our school and goes into the Eastern Distributor from the South Dowling St.

entrance. Then, from the Eastern Distributor, we turned left entering the cross city

tunnel and exited from M4 Western Distributor Freeway. It was chosen for

demonstrating the performance of the route chose method of nonlinear interpolation

because of its complexity. The test result is demonstrated in figure 14.

Figure 14 Nonlinear Interpolation at Eastern Distributor and Cross City Tunnel [17]

Basically, the test result is encouraging and satisfactory. The data collected inside the

tunnel was assigned locations stick on the actual path and the route estimated by the

application does not have any significant error. The only concern regard to the

experiment is the exit chosen between O and P. These two exit are very close to each

25

other, even it cannot identified from the figure result, the route was estimated based on

exit P, read from outputted log, instead of actual exit O. But fortunately it is acceptable

for this drift, since it did not create other errors.

26

4 Communication Between device and Mobile Phone

For reliable and high-performance network communication between wireless device

and mobile phone, a protocol formatting rules that specify how data is packaged into

messages sent and received was designed, approved and employed in this project.

4.1 Protocol Version 1

Protocol version 1 is the first prototype message format introduced in [1, 2] for data

exchanging between device and mobile phone. The based concept of this protocol is to

wrap all data with clear defined and agreed header and footer and associate with a

checksum for confidential concern. Also, the data included in the message has to have

ability that can distinguish different device and identify the features of the connected

board. Therefore, the protocol is designed as the format shown in figure 15.

Figure 15 Protocol Version 1

The message format in the figure 15 is one-dimensional and starts from top left to

bottom right. Each field encompassed in the protocol is putted in black frame with

number of bytes in the brackets. The information contained in each single message

includes,

 Protocol version: marks the current protocol version and indicates the

sequence of following fields.

 Device ID: identify the processing device

 Number of sensors: number of sensors working on the current device. For

Version (1) Sensor No. (1)

Sample No.(1)

Check Sum (1) Footer 0xEEEEEEEE (4)

10 * 3 * (Sensor ID (1) + Sensor Readings (1)) = (60)

Header 0xFFFFFFFF (4) Device ID (2)

3 * (Sensor ID (1) + +3 * Sensor Coefficients (2)) = (21)

Reference Voltage (2)

27

the manufactured devices, it has fixed number of 3 sensors built on board.

 Reference voltage: a parameter for Android phone to convert the digital data

to analog voltage values

 Sensor IDs: identify each sensor‟s coefficients or reading

 Sensor coefficients: provide all three coefficients in the calibrated formula

which used for calculating the pollution level in terms of ppm (parts per

million) from sensor voltage. Each coefficient is represented in floating-point

with first 12 bits significant signed integer and 4bits exponent signed integer

and the actual value= 𝑠𝑖𝑔 × 10𝑒𝑥𝑝. The value could be ranged between

−2048 × 108~2048 × 108 and the precision could be as high as1 × 10−8.

 Number of samples: number of data sampled on each sensor. It is 10 samples

for protocol version 1.

 Sensor data: the raw digital value that directly converted from analog input,

the voltage of a sensor, through ADC module of the microcontroller. This

value is determined with following steps [19]:

 Divide the reference voltage, the Vdd operated on microcontroller in this

case, into 1024 (210) levels and each level covers a small range of

voltage.

 Sample the voltage of the sensor and allocate it into a corresponding level

 Convert this level into 10-bits binary

The reasons for each field was selected are clearly introduced in [1]. Once the

connection between device and mobile phone is established, the phone will start

reading data from an arbitrary location mostly not aligned with the beginning of a

message. Then the header of message is listened as the starting mark of a completed

message stream. The 4-bytes hex number FFFFFFF is chosen because of this specific

sequence would appear nowhere in both handshake protocol of BT connection and

designed message format.

The microcontroller operated on board is a RISC (reduced instruction set) 8-bit

microcontroller, PIC16F690. Like most other microcontrollers at the same level can

28

only handle 8-bit integer math in hardware and has no floating-point math hardware.

Such computations are opted to execute on the Smartphones, where math libraries and

floating-point operations are far more perfect. So instead of transmitting a computed

pollution value, several fields including Reference voltage, Sensor coefficients and

Sensor data are sent over BT connection.

This protocol has been phenomenal successful in transmitting data from device to

Android phone. The Haze Watch system has successfully collected pollution data

around Sydney, but it is not robust enough comparing with other similar projects.

The numerous information contained in a single message, is transmitted regularly and

repeatedly whenever the device is switched on. Among it, parts of the information will

stay constant and unnecessarily to be sent as long as the connection between the

devices and mobile phone remains open. It is extraordinarily power-consuming as it

required 40mA (60mA peak) transmission current while only 15mA for maintain the

connection and 5mA for listening connection requires [20].

The multiple samples provided in one message stream will be averaged after converted

in to pollution levels, which is unreasonable because these data acquisitions happened

in different time and locations. The whole procedures to collect 10 data samples

running based on protocol 1 takes approximately 15s. It takes about another 15s for

transmit the bulky message over the BT connect (the reasons for this relatively long

transmission period will be presented in section 4.3.2), which means, when sensors

travelling at 60km/h the practical location of the first sample is 500~650m away from

the location stamp as well as 30s earlier than the time stamp given by the Android

phone.

Consequently, new version of protocol and an improved procedure for data acquisition

is designed, developed and implemented.

4.2 Protocol Version 2

The main objective of protocol version 2 is to avoid the constant information

29

contained transmitted repeatedly by via separate them from varying valuables. The

message format consisted with constant fields is called control message while the

other is data message.

4.2.1 Control Message

The control message comprises information fields exhibited in figure 16.

Figure 16 Protocol Version 2 Control Message

 Version: marks the current protocol version and indicates the sequence of

following fields.

 Message Type: new field added in protocol version 2. It is used to distinguish the

control message and data message as well as specifies the sequence of following

data. Control message is denoted by integer number „1‟ in this field.

 Device ID: identify the processing device

 Last calibration date and Next calibration date: new fields added in protocol

version 2. They indicate the last and next calibration dates for each different

device. The sensor used on the wireless boards need to be calibrated every half

year and these fields are used to alarm users.

 Reference voltage: a parameter for Android phone to convert the digital data to

analog voltage values

 Sensor ID: identify coefficients for each sensor

 Sensor coefficients : provide all three coefficients in the voltage-ppm transfer

functions.

In order to preserve the integrity, this protocol also employs header and footer to wrap

the information contained. Also, two new fields are integrated while the sensor count

field is discarded. This is because the wireless sensor board already has standard

schematic with fix sensor count that equals 3.

Version (1) Msg. type (1)

Check Sum (1) Footer 0xEEEEEEEE (4)

Header 0xFFFFFFFF (4) Device ID (2)

Last Calibration Date (3) Next Calibration Date (3) Reference Voltage (2)

3 * (Sensor ID (1) + +3 * Sensor Coefficients (2)) = (21)

30

4.2.2 Data Message

The data message is transmitted following the data sequence demonstrated in figure

17.

Figure 17 Protocol Version 2 Data Message

 Version: marks the current protocol version and indicates the sequence of

following fields.

 Message Type: new field added in protocol version 2. It is used to distinguish the

control message and data message as well as specifies the sequence of following

data. Data message is denoted by integer number „2‟ in this field.

 Battery Level: new field added in protocol version 2. It is a continuously

decreasing digital value representing the voltage of device‟s batteries and it will be

converted into percentage of electricity remained inside the batteries.

 Sensor ID: identify coefficients for each sensor

 Sensor coefficients : provide all three coefficients in the voltage-ppm transfer

functions.

Same as control message, the data message also started with header, version and

message type flag and end with footer. Likewise, battery level field is added to satisfy

the corresponding function that alarm user to recharge batteries packed on device

[11,12]. Furthermore, misused readings from ADC in microcontroller are corrected. As

mentioned in section 4.1, the output of ADC is a 10-bit digital reading. However, in

protocol version 1, all the pollution readings are only used the 8 most significant bits

and the reference voltage is divided into 256 (28) different levels instead of 1024.

Consequently, the resolution and accuracy of these readings are reduced. As a

correction, all the pollution readings are extended to 2 bytes, 8-bits for storing the

10-bits ADC outputs.

4.3 Two-way Communication

The two-way communication is designed to improve the data acquisition method and

Version (1) Msg. type (1)

Check Sum (1) Footer 0xEEEEEEEE (4)

Header 0xFFFFFFFF (4) Bettery Level (2)

3 * (Sensor ID (1) + Sensor Readings (2)) = (9)

31

enhance the interaction between device and Smartphone. Associating new protocol on

data exchanging and achieving distance-based data acquisition method are the two

main purposes and achievements in this thesis.

4.3.1 Schematic

In order to realize duplex communication, the original schematic of the wireless sensor

board is modified into the new one shown in figure 18.

Figure 18 Schematic for Two-way Communication

32

The microcontroller interfaces with the BT module

using the USART interface. The simple connection

between RX/DT pin (pin 12) on microcontroller and

UART_tx pin (pin 5) on BT module will make the

hardware available for duplex communication. The

Enhanced Universal Synchronous Asynchronous

Receiver Transmitter (EUSART) built in PIC16F690

is a serial I/O communications peripheral which

transmits and receives data using the standard

non-return-to-zero (NRZ) format, so the controller has

ability to detect and initiates character reception on

the falling edge of the first bit for any incoming data signal sequences [19]. But the

connection between I/O port (pin 5) on controller and UART_rts (pin 7) on BT module

is still preserved for further use. The new schematic has been built on breadboard as

posed in figure19 and already be used in field tests presented in section 3.4 and 4.4.

4.3.2 Procedures

Once the hardware is ready for two-way communication, the whole procedures for

data exchanging between sensor board and Android phone will change dramatically

with the assistance of protocol version 2.

In the previous version the device can only blindly and continuously push data once it

has been powered. For now, when the device is powered up, it goes to standby mode

and wait for any incoming message. The RCIF interrupt flag bit will be set when there

is an unread character in the RCREG, receiver register where the received byte is

stored [19]. At same time the device will jump out form standby mode, read data from

RCREG then check the meaning of the data. It is single byte control with „1‟

represents “request to send control message” while „4‟ signifies data message is

requested. These two characters are chosen to avoid mismatching these configure

bytes with the start delimiter and end delimiter of BT connection‟s handshake text

Figure 19 Board for Two-way

Communication

33

which are „2‟ and „3‟ [20]. Any byte that neither „1‟ nor „4‟ will be ignored while the

corresponding messages for „1‟ and „4‟ will be transmitted immediately after they

received.

Furthermore, the overestimated transmission delay between two characters causes the

abnormal long period in transmission phases. The speed of the physical USART

interface is 9600bits/s with data format 1start bit, 8 data bits and 1stop bit, 10 bits in

total [19, 20]. Thus, it requires only approximately 104us to transmit 1byte from

microcontroller to BT module. And for BT module, it fully complies with the V2.0

Bluetooth® standard and data rate goes up to 723kbps [20], which could broadcast

data even faster. Therefore, the original transmission delay is reduced form 200ms to

10ms (can be even shorter) and the transmission period of a data message is reduced to

around 200ms. Additionally, a 4s „cool down‟ between each data message is added

since there is no necessity for sampling air pollution too frequently. So the sampling

period will fix at about 5s/sample when the data is acquired uninterruptedly. A sample

byte received on RX/DT pin of the controller is captured on oscilloscope shown in

figure 20 with 1 start bit (the first square peak) followed by „11001011‟ as data and 1

stop bit.

Figure 20 Oscilloscope Captured Received Signal

34

At the application aspect, the Android phone will first require control message to be

send as soon as the BT connection is ready. The control message is used to construct a

framework for further incoming data. Once the framework is established, it will not be

requested again and only data message is transmitted in the rest of time. The

procedures are presented in a visualized way as figure 21, the screen shot of outputted

Log.

Figure 21 Screen Shot of The Log for The Application

35

4.3.3 Displacement-Based Data Acquisition

Since the location information can only be obtained by the Smartphone, the duplex

data switching capability makes it possible that the device samples the air pollutants

equidistantly.

In the displacement-based model, the GPS updates the user location equidistantly.

When this update detected by application, the acquisition for pollution data will be

send to device and it start sampling data at that critical position. This kind of method

avoids the location drift caused by transmission delay and the accuracy is only

depended on GPS module of the Smartphone. Besides, too much data collected in a

small area when user is stationary, is unnecessary and will waste energy and also

heavies the server load [1].

4.4 Test Results

The two-way communication assisted new protocol has been tested and functioned in

several field tests including those demonstrated in section 3.4. And the nonlinear

interpolation tests had also taken as a part of a power consumption experiment. Two

devices mounted two different microcontrollers with old and new protocol burned,

were supplied with fully charged Energizer AA batteries. These two devices were

switched on at same time at 8 o‟clock in the morning and the old device failed to

connect with mobile phone after 15h and 10m while the new one failed after 28h and

24m. This significant improvement is mainly because the device goes to sleep mode

when there is no connection between device and phone established.

The displacement-based data acquisition method also has been tested and the result is

shown in figure 22

36

Figure 22 Displacement-based Data Acquisition Method

Obviously, the pollution samples are perfectly taken at every 200m displacement from

each other. This function improved the pollution collection manner significantly

especially when users waiting for a traffic light. The red circles in figure 22 are

marking the traffic lights while the figure 23 is showing the data collection manner in

the normal data push mode.

37

Figure 23 Normal Data Push Mode

It is very obviously that in figure 23, air pollution is over-measured in a short period at

a small area and some of them are even overlaid by later measurements, while this

situation can be totally eliminated by displacement-based data acquisition method.

38

5 Data Uploading

The application running on the Android phone is consist of two threads. One is the

main thread which takes responsibility to manage application and update user interface.

The other one is the service thread which consists of maintaining BT connection,

processing pollution data and uploading pollution readings.

5.1 Constrains

In the previous Android application, the average readings of each sensor will be

computed and wrapped with current time and location. Subsequently, it will convert

this packet to an xml file then try to upload this packet through http post and returning

back to data receiving phase as soon as there is a response from the server.

The old procedures might no longer suitable for the new data acquisition methods. The

updated protocol running between device and Android phone reduces the pollution

sampling period into 5s, which means Android phone has to try TCP connection and

upload one XML file every 5s. Such a high frequent uploading rate will significantly

increase the battery consumption as well as the 3G network traffics since each

connection required handshakes based on TCP protocol. Besides that, the single

service thread has to have unblocked and free accessed features for a good preference.

In the old procedures there are no time limitations for expecting the server‟s response.

If a disconnection happens between Android phone and server, the whole application

will be stacked until there is any response from server.

5.2 Uploading Method

Some modifications have been worked on the data uploading phase of the application.

5.2.1 Buffer

A data buffer is employed for caching any completely processed data (tagged with

correct location and time) before uploading. The size each well readied data can be

estimated as follow:

39

 Data: readings of each sensor mapped with pollutants‟ name

 Names of pollutants: 1 String (3char * 2bytes * 3sensors = 18bytes)

 Values of sensors: 1 Double (1double * 8bytes * 3sensors = 24bytes)

 Date: including year, month, date, hour, minute, second

 1 Integer value for each parts (6int * 4bytes = 24bytes)

 Location: consist of a huge amount of information [13]

 Longitude: 1 Double (8bytes)

 Latitude: 1 Double (8bytes)

 Altitude: 1 Double (8bytes)

 Accuracy: 1 Float (4bytes)

 Speed: 1 Float (4bytes)

 Bearing: 1 Float (4bytes)

 Time: 1 Long(8bytes)

 Provider: 1 String (varied length)

Consequently, we may estimate the

data packet size is 120bytes and set the

initial buffer size to 20 packets with the

upper limit of the buffer size is 100

packets, which means it only takes at

most 12kilobytes of RAM. The typical

size of RAM for a Smartphone is

ranging from 256MegaBytes to 4

GigaBytes, for our case it is more than

sufficient for our needs. The sample

XML file uploaded corresponding to

multiple data uploading is

demonstrated in figure 24.

Figure 24 Uploaded XML File [1]

40

5.2.2 Timeout

A timeout mechanism has been utilized for unblocking the service thread. It processes

obeying the flow chat presented in figure 25.

Figure 25 Timeout Procedures

Once the application tries to setup a connection between Android phone and the server,

it will only wait 5s for server‟s reply. If the request dose not receives any

acknowledgement from server with this time limit, the application will be interrupted

and jumped out from listening server‟s response. The unsuccessful uploaded data will

keep caching in buffer, but the buffer size will be enlarged by 20 for more data. This

loop will repeat at most 5time until the buffer size reaches the upper limit, 100. If still

no response for the last try, all data cached in buffer will be clear and the buffer size

will be reset to 20.

This design is considering the stability of the whole system in some short term

disconnection situations occurred like 3G network signal lost while not overload the

RAM because of long term disconnection, for instance, the server is down.

41

6 Future Work

If we compare the Haze Watch project to a human being, it is just entering the

adolescence form infancy. The possibilities for this project are almost unlimited.

According to my personal knowledge and ability, several recommendations for future

works have been presented in this section.

6.1 Hardware

6.1.1 Batteries

The power system of the device is supplied by rechargeable batteries. When the

batteries run out of electricity, it is very unfriendly for user to take batteries out of

device and recharge them for 11hours. If a rechargeable power supply with vehicle

mounted charger adapter is available for device, it would be much helpful.

6.1.2 Power Managements

Based on the power consumption experiment and some researches, the 3.3V voltage

regulator on-board consumes a great amount power and turns them into heat. The

current power supply output 4.8V DC voltage, but the Bluetooth module can only

work with voltage not excessed 3.6V [20]. The 3.3V voltage regulator is only one

solution, other ways to divide and stable the supply voltage would have to be

undertaken on increasing the battery performance.

6.1.3 Modules Monitory

Currently, all the modules on wireless sensor board are powered up and enabled once

the device is switched on. Since the two-way communication has achieved as well as

the standby model of the device, the various modules could be designed as monitory

by microcontroller. For example, the Vss pin of the sensors could be connected to the

digital I/O ports of the controller and output logic high to enable the sensor while

output low to disable them.

42

6.2 Smartphone Application

6.2.1 Intelligent Application

Currently, the application running on the smartphone requires client manually open the

application and connect to the device. Although some auto connection mechanism has

been developed by other group, this automation method is power consuming because

it require a continuously speed detection based on GPS. A robust automation method

on connection between device and phone or other aspects would be helpful for a

friendly user experience.

6.2.2 New Protocol

Since the application has achieved duplex communication with device, new functions

depending on message exchanging will become more and more complex. Therefore, a

new protocol for the two-way communication would be needed and it has to carefully

choose the format to distinguish the standard handshake messages.

43

7 Conclusion

The old stationary air pollution monitory systems are going be obsoleted and replaced

in future development. Haze Watch system with potential capacities on providing a

more accurate, robust, reliable air pollution monitory system and higher-resolution

image of the air quality, has been developed and operated.

The works taken within this thesis have solved the difficulty of data collection in

tunnels in Sydney. The two-way communication established between the device and

Smartphone has laid foundation for other more complicated functions to be realized in

further developments. Based on the practical experiments and their corresponding

results, I believe we have achieved objectives set in thesis A. But the possibilities for

Haze Watch system are far more then these, significant improvements are expected in

future.

44

References

[1] J. Carrapetta, “Haze Watch: Design of a wireless sensor board for measuring air

pollution”, University of New South Wales, Sydney, Thesis 2010.

[2] N. Youdale, “Haze Watch: Database Server and Mobile Applications for Measuring

and Evaluating Air Pollution Exposure”, University of New South Wales, Sydney,

Thesis 2010.

[3] A. Chow, “Haze Watch: Data Modeling and Visualization using Google Maps”,

University of New South Wales, Sydney, Thesis 2010.

[4] Caroline et al.,(n.d.) Air Pollution [Online, accessed 10 May 2011].

<http://library.thinkquest.org/26026/Environmental_Problems/air_pollution.html>.

[5] World Health Organization. (2011). Air pollution. [Online, accessed 14 May 2011].

<http://www.who.int/topics/air_pollution/en/>.

[6] Wikipedia. (21 May 2011 at 13:21). Air pollution. [Online, accessed 22 May 2011].

<http://en.wikipedia.org/wiki/Air_pollution>.

[7] Office of Environment & Heritage. (02 March 2011) Air quality index (AQI) values

– updated hourly. [Online, accessed 23 May 2011].

<http://www.environment.nsw.gov.au/AQMS/aboutaqi.htm>

[8] S. Dhanalkshmi, et al. (2011). A Mobile Air Pollution Monitoring System Using

GPRS. [Online, accessed 20 May 2011].

<http://www.aksheyaa.com/ece/A%20Mobile%20Air.pdf>

[9] Institute for Software Integrated Systems. (Jan 2008) Mobile Air Quality

Monitoring Network. [Online, accessed 22 May 2011].

<http://www.isis.vanderbilt.edu/projects/maqumon>.

[10] Android developers. (20 May 2011). Bluetooth. [Online, accessed 18 May 2011].

<http://developer.android.com/guide/topics/wireless/bluetooth.html>

[11] D. Lu. (October 2011). Android interface for pollution monitoring system.

University of New South Wales, Sydney, Thesis 2011.

[12] K. Bi. (October 2011). Android interface for pollution monitoring system.

University of New South Wales, Sydney, Thesis 2011.

http://library.thinkquest.org/26026/Environmental_Problems/air_pollution.html
http://www.who.int/topics/air_pollution/en/
http://en.wikipedia.org/wiki/Air_pollution
http://www.environment.nsw.gov.au/AQMS/aboutaqi.htm
http://www.aksheyaa.com/ece/A%20Mobile%20Air.pdf
http://www.isis.vanderbilt.edu/projects/maqumon
http://developer.android.com/guide/topics/wireless/bluetooth.html

45

[13] Android Developers. (20 May 2011). Location. [Online, accessed 18 May 2011].

<http://developer.android.com/reference/android/location/Location.html>

[14] J. Rantakokko et al., “Accurate and Reliable Soldier and First Responder Inder

Positioning: Multisensor System and Cooperative Localization” IEEE Wireless

Communications, vol. 18, issue 2, April 2011, pp. 10-18.

[15] S. Draganov, M. Harlacher, L. Haas, M. Wenske and C. Schneider, “Synthetic

Aperture Navigation in Multipath Envi-ronments” IEEE Wireless Communica-tions,

vol. 18, issue 2, April 2011, pp. 52-58.

[16] L. M. Ni, D. Zhang and M. R. Souryal, “RFID-Based Localization and Tracking

Technologies,” IEEE Wireless Communications, vol. 18, issue 2, April 2011, pp.

45-51.

[17] H. Zhang. (October 2011). Communication between Sensors and Mobile Phone.

University of New South Wales, Sydney, Thesis 2011.

[18] Wikipedia. (3 October 2011 at 10:56). Haversine formula. [Online, accessed 18

August 2011]. <http://en.wikipedia.org/wiki/Haversine_formula>.

[19] Microchip Technology Inc.(2008) PIC16F631/677/685/687/689/690 Data Sheet.

[20] Adeunis RF. (Aug 2007) ARF32 Bluetooth Modules ‐ User Guide. Datasheet.

http://developer.android.com/reference/android/location/Location.html
http://en.wikipedia.org/wiki/Haversine_formula

46

Appendix

PollutionSensor.java

package com.unsw.pollutionsensor;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.content.Context;

import android.content.Intent;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Bundle;

import android.provider.Settings;

import android.util.Log;

import android.widget.RadioButton;

import android.widget.RadioGroup;

import android.widget.TextView;

public class PollutionSensor extends Activity {

 private PollutionLocationListener locationListener = null;

 private LocationManager locationManager = null;

 BluetoothThread bluetoothThread = null;

 private static final int CHOOSE_DEVICE_REQUEST = 10;

 private String deviceMACAddress = null;

 TextView logView = null;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.pollution_sensor);

 Log.v("debug","Pollution Sensor onCreate");

 logView = (TextView)findViewById(R.id.logTextView);

 UILog.setLogView(logView);

 UILog.println(UILog.LOG_TYPE_INFO, "App startup");

 // RadioButton config

 RadioGroup myRG =

(RadioGroup)this.findViewById(R.id.radioGroup1);

 final RadioButton push =

(RadioButton)this.findViewById(R.id.radio0);

 final RadioButton aquire =

(RadioButton)this.findViewById(R.id.radio1);

 myRG.setOnCheckedChangeListener(new

47

RadioGroup.OnCheckedChangeListener(){

 @Override

 public void onCheckedChanged(RadioGroup group, int checkedId)

{

 if (bluetoothThread!=null) {

 // TODO Auto-generated method stub

 if (checkedId == push.getId()) {

 bluetoothThread.settingPush(true);

 } else if (checkedId == aquire.getId()) {

 bluetoothThread.settingPush(false);

 }

 }

 }

 });

 if (deviceMACAddress == null) {

 // First spawn the device chooser

 Intent intent = new Intent (this, DeviceChooser.class);

 startActivityForResult(intent, CHOOSE_DEVICE_REQUEST);

 } else {

 startBluetoothConnection(deviceMACAddress);

 }

 }

 protected void onActivityResult(int requestCode, int resultCode,

Intent data) {

 if (requestCode == CHOOSE_DEVICE_REQUEST) {

 if (resultCode == RESULT_OK) {

 // A contact was picked. Here we will just display it

 // to the user.

 deviceMACAddress = data.getStringExtra("MACAddress");

 Log.v("debug","Try Start BT connection to " +

deviceMACAddress);

 startBluetoothConnection(deviceMACAddress);

 }

 }

 }

 private void startBluetoothConnection (String address) {

 if (address == null || address.length() == 0) {

 Log.e("debug","Failed to get MAC address from intent, using defualt

instead");

48

 address = "00:18:B2:01:1E:D2";

 }

 UILog.clear();

 UILog.println(UILog.LOG_TYPE_INFO, "Connecting to "+address);

 Log.v("debug","will connect to "+address);

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 if (!bluetoothAdapter.isEnabled()) {

 Intent enableBtIntent = new Intent

(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(enableBtIntent, 500); // 500 is an

arbitrary number (could be anything)

 }

 // setup location updates

 locationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

 locationListener = new PollutionLocationListener();

if(!locationManager.isProviderEnabled(android.location.LocationManage

r.GPS_PROVIDER)) {

 Intent myIntent = new

Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS);

 startActivity(myIntent);

 }

 //locationManager.requestLocationUpdates(LocationManager.GPS_PROVI

DER, 0,200, locationListener);

 //locationManager.requestLocationUpdates(LocationManager.NETWORK_P

ROVIDER, 0, 200, locationListener);

 locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDE

R, 5000,0, locationListener);

 locationManager.requestLocationUpdates(LocationManager.NETWORK_PRO

VIDER, 5000, 0, locationListener);

49

 bluetoothThread = new BluetoothThread();

 bluetoothThread.setDeviceMACAddress(address);

 bluetoothThread.setLocationListener(locationListener);

 bluetoothThread.start();

 }

 protected void onStop () {

 super.onStop();

 Log.v("debug","Pollution sensor onStop");

 if (bluetoothThread != null) {

 bluetoothThread.cancel();

 }

 //off GPS update

 if (locationManager != null && locationListener != null){

 locationManager.removeUpdates(locationListener);

 }

 }

 protected void onDestroy(){

 super.onDestroy();

 Log.v("debug","Pollution sensor on destroy");

 System.exit(0);

 }

 public class PollutionLocationListener implements LocationListener {

 private Location lastLocation = null;

 private Location initialLocation = null;

 public boolean newLocation = false;

 //testing

 private int counter = 0;

 @Override

 public void onLocationChanged(Location location) {

 Log.i("location", "in Location changed:

"+location.toString()+" counter = "+counter);

 if(initialLocation == null && location.getAccuracy()<200){

 Log.d("location", "iniLocation:

"+location.getAccuracy()+" "+location.getLongitude()

 +" "+location.getLatitude());

 initialLocation = location;

 }

50

 /**

 * Two Way -- Location based data collect */

 if(location!=null){

 if (lastLocation == null){

 if(location.getAccuracy()<100){

 Log.d("location", "newLocation:

"+location.getAccuracy()+" "+location.getLongitude()

 +" "+location.getLatitude());

 lastLocation = location;

 newLocation = true;

 }

 }else{

 long timeDelta = location.getTime() -

lastLocation.getTime();

 if(timeDelta>0 && location.getAccuracy()<100){

 Log.d("location", "newLocation:

"+location.getAccuracy()+" "+location.getLongitude()

 +" "+location.getLatitude());

 lastLocation = location;

 newLocation = true;

 }else if(timeDelta>0 && location.getAccuracy()>=100){

 Log.d("location", "inAccLocation:

"+location.getAccuracy()+" "+location.getLongitude()

 +" "+location.getLatitude());

 lastLocation = null;

 newLocation = false;

 }else{

 newLocation = false;

 }

 }

 }

 /**

 * Two Way -- Location based data collect finish */

 /**

 * Old filter */

 /*if (isBetterLocation(location, lastLocation)) {

 lastLocation = location;

51

 }*/

 /**

 * Old filter end*/

 }

 public Location getInitialLocation (){

 return initialLocation;

 }

 public Location getLastLocation () {

 if(lastLocation!=null){

 long dt = System.currentTimeMillis() -

lastLocation.getTime();

 if(dt>10000l){

 lastLocation = null;

 Log.e("location","Location timeout.");

 }else{

 Log.i("location",lastLocation.toString());

 }

 }

 return lastLocation;

 }

 @Override

 public void onProviderDisabled(String provider) {

 // TODO Auto-generated method stub

 Log.v("location","Location provider disable.");

 }

 @Override

 public void onProviderEnabled(String provider) {

 // TODO Auto-generated method stub

 Log.v("debug","Location provider enable.");

 }

 @Override

 public void onStatusChanged(String provider, int status, Bundle

extras) {

 // TODO Auto-generated method stub

 }

 // Some example code from Android docs

 private static final int TWO_MINUTES = 1000 * 60 * 2;

52

 /** Determines whether one Location reading is better than the

current Location fix

 * @param location The new Location that you want to evaluate

 * @param currentBestLocation The current Location fix, to which

you want to compare the new one

 */

 protected boolean isBetterLocation(Location location, Location

currentBestLocation) {

 if (currentBestLocation == null) {

 // A new location is always better than no location

 return true;

 }

 // Check whether the new location fix is newer or older

 long timeDelta = location.getTime() -

currentBestLocation.getTime();

 boolean isSignificantlyNewer = timeDelta > TWO_MINUTES;

 boolean isSignificantlyOlder = timeDelta < -TWO_MINUTES;

 boolean isNewer = timeDelta > 0;

 // If it's been more than two minutes since the current location,

use the new location

 // because the user has likely moved

 if (isSignificantlyNewer) {

 return true;

 // If the new location is more than two minutes older, it must

be worse

 } else if (isSignificantlyOlder) {

 return false;

 }

 // Check whether the new location fix is more or less accurate

 int accuracyDelta = (int) (location.getAccuracy() -

currentBestLocation.getAccuracy());

 boolean isLessAccurate = accuracyDelta > 0;

 boolean isMoreAccurate = accuracyDelta < 0;

 boolean isSignificantlyLessAccurate = accuracyDelta > 200;

 // Check if the old and new location are from the same provider

 boolean isFromSameProvider =

isSameProvider(location.getProvider(),

 currentBestLocation.getProvider());

53

 // Determine location quality using a combination of timeliness

and accuracy

 if (isMoreAccurate) {

 return true;

 } else if (isNewer && !isLessAccurate) {

 return true;

 } else if (isNewer && !isSignificantlyLessAccurate &&

isFromSameProvider) {

 return true;

 }

 return false;

 }

 /** Checks whether two providers are the same */

 private boolean isSameProvider(String provider1, String provider2)

{

 if (provider1 == null) {

 return provider2 == null;

 }

 return provider1.equals(provider2);

 }

 }

}

BluetoothStreamReader.java

package com.unsw.pollutionsensor;

import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;

import android.util.Log;

public class BluetoothStreamReader {

 private boolean cancelled = false;

 private static enum State {

 RECEIVE_HEADER,

 RECEIVE_PROTOCOL_VERSION,

 RECEIVE_DEVICE_ID,

 RECEIVE_COEFFICIENT_SENSOR_ID,

 RECEIVE_COEFFICIENT_VALUES,

 RECEIVE_REFERENCE_VOLTAGE,

54

 RECEIVE_BATTERY_LEVEL,

 RECEIVE_SENSOR_VALUE_PAIR_COUNT,

 RECEIVE_SENSOR_INDEX,

 RECEIVE_SENSOR_VALUE,

 RECEIVE_CHECKSUM,

 RECERIVE_MSG_TYPE,

 RECERIVE_LAST_CALIBRATION,

 RECERIVE_NEXT_CALIBRATION,

 RECERIVE_FOOTER;

 };

 private static final int MSG_HEADER[] = {0xFF, 0xFF, 0xFF, 0xFF};

 private static final int MSG_FOOTER[] = {0xEE, 0xEE, 0xEE, 0xEE};

 private static final int CURRENT_PROTOCOL_VERSION = 2;

 private static final int CONTROL_MSG = 1;

 private static final int DATA_MSG = 2;

 private boolean messageComplete = false;

 public void cancel() {

 cancelled = true;

 }

 public DeviceMessage receiveSensorMessage (InputStream inStream,

DeviceMessage dMessage, int MsgType) {

 messageComplete = false;

 State state = State.RECEIVE_HEADER;

 int d, data_index = 0;

 ArrayList<Short> msgBytes = new ArrayList<Short>();

 try {

 while (!cancelled && !messageComplete) {

 d = inStream.read(); // read byte from stream

 Log.d("in", Integer.toString(d));

 //msgBytes.add((short)d);

 //debugBytesPrint(msgBytes);

 switch (state) {

 case RECEIVE_HEADER:

 if (d == MSG_HEADER[data_index]) {

 data_index++;

 if (data_index == 4) {

 state = State.RECEIVE_PROTOCOL_VERSION;

 data_index = 0;

 }

55

 } else {

 data_index = 0;

 }

 break;

 case RECEIVE_PROTOCOL_VERSION:

 if (d == CURRENT_PROTOCOL_VERSION) {

 msgBytes.add((short)d);

 readRestOfMessage_v2(dMessage, inStream, state,

msgBytes, MsgType);

 return dMessage;

 } else if (d > CURRENT_PROTOCOL_VERSION) {

 System.out.println("WARNING: received message of

newer unknown protocol version ("+d+"). Results are undefined");

 return dMessage;

 } else if (d == 1){

 System.out.println("WARNING: received message

protocol version ("+d+") cannot process");

 return dMessage;

 }

 break;

 }

 }

 inStream.close();

 } catch (IOException e) {

 Log.e("debug", "Protocol version reading error:

"+e.toString());

 }

 return dMessage;

 }

 private DeviceMessage readRestOfMessage_v2 (DeviceMessage dMessage,

InputStream inStream, State state, ArrayList<Short> msgBytes, int MsgType)

{

 int d;

 /**

 * Check massage type 1 for control massage, 2 for data massage

 * */

 state = State.RECERIVE_MSG_TYPE;

 try{

 while (!cancelled && !messageComplete){

 d = inStream.read(); // read byte from stream

 Log.d("in", Integer.toString(d));

56

 msgBytes.add((short)d);

 //debugBytesPrint(msgBytes);

 Log.w("in", "read msg type.");

 if (d==CONTROL_MSG && d==MsgType){

 readControlMsg_v2(dMessage, inStream, state,

msgBytes);

 return dMessage;

 }else if(d==DATA_MSG && d==MsgType){

 readDataMsg_v2(dMessage, inStream, state, msgBytes);

 return dMessage;

 }else{

 dMessage.dataReceived = false;

 return dMessage;

 }

 }

 }catch (IOException e) {

 Log.e("debug", "Msg type reading error: "+e.toString());

 }

 return dMessage;

 }

 private DeviceMessage readControlMsg_v2 (DeviceMessage dMessage,

InputStream inStream, State state, ArrayList<Short> msgBytes) {

 Log.i("in","read control msg.");

 int d, data_index = 0,i = 0;

 short byteBuf[] = new short[16];

 // initial state

 state = State.RECEIVE_DEVICE_ID;

 try {

 while (!cancelled && !messageComplete) {

 d = inStream.read(); // read byte from stream

 Log.d("in", Integer.toString(d));

 //msgBytes.add((short)d);

 //debugBytesPrint(msgBytes);

 switch (state) {

 case RECEIVE_DEVICE_ID:

 msgBytes.add((short)d);

 byteBuf[data_index++] = (short)d;

 if (data_index >= 2) {

 dMessage.deviceIdentifier =

57

(byteBuf[0]<<8)|byteBuf[1];

 data_index = 0;

 state = State.RECERIVE_LAST_CALIBRATION;

 }

 break;

 case RECERIVE_LAST_CALIBRATION:

 msgBytes.add((short)d);

 byteBuf[data_index++] = (short)d;

 if (data_index >= 3){

 dMessage.LastClibDate[0] = byteBuf[0];

 dMessage.LastClibDate[1] = byteBuf[1];

 dMessage.LastClibDate[2] = byteBuf[2];

 data_index = 0;

 state = State.RECERIVE_NEXT_CALIBRATION;

 }

 break;

 case RECERIVE_NEXT_CALIBRATION:

 msgBytes.add((short)d);

 byteBuf[data_index++] = (short)d;

 if (data_index >= 3){

 dMessage.NextCLIbDate[0] = byteBuf[0];

 dMessage.NextCLIbDate[1] = byteBuf[1];

 dMessage.NextCLIbDate[2] = byteBuf[2];

 data_index = 0;

 state = State.RECEIVE_REFERENCE_VOLTAGE;

 }

 break;

 case RECEIVE_REFERENCE_VOLTAGE:

 msgBytes.add((short)d);

 byteBuf[data_index++] = (short)d;

 if (data_index >= 2) {

 dMessage.rawReferenceVoltage =

(byteBuf[0]<<8)|byteBuf[1];

 data_index = 0;

 state = State.RECEIVE_COEFFICIENT_SENSOR_ID;

 }

 break;

 case RECEIVE_COEFFICIENT_SENSOR_ID:

 msgBytes.add((short)d);

 dMessage.sensorIdentifier[data_index]=(int) d;

 state = State.RECEIVE_COEFFICIENT_VALUES;

 break;

 case RECEIVE_COEFFICIENT_VALUES:

58

 msgBytes.add((short)d);

 byteBuf[i++] = (short)d;

 if (i >= 6) {

 dMessage.rawCoefficents[0] =

(byteBuf[0]<<8)|byteBuf[1];

 dMessage.rawCoefficents[1] =

(byteBuf[2]<<8)|byteBuf[3];

 dMessage.rawCoefficents[2] =

(byteBuf[4]<<8)|byteBuf[5];

 dMessage.coefficentMap.put(dMessage.sensorIdentifier[data_index],

dMessage.getSensorCoes());

 data_index ++;

 i = 0;

 if (data_index < 3) {

 state = State.RECEIVE_COEFFICIENT_SENSOR_ID;

 } else {

 state = State.RECEIVE_CHECKSUM;

 data_index = 0;

 }

 }

 break;

 case RECEIVE_CHECKSUM:

 int sum = 0;

 for(short temp : msgBytes){

 sum += temp;

 }

 Log.i("in", Integer.toBinaryString(sum));

 Log.i("in", Integer.toBinaryString(d));

 int L = Integer.toBinaryString(d).split("").length-1;

 String[] checkSum =

Integer.toBinaryString(sum^d).split("");

 Log.i("in", Integer.toBinaryString(sum^d)+"

"+checkSum.length);

 boolean check = true;

 for(int

idx=checkSum.length-1;idx>=(checkSum.length-L)&&idx>0;idx--){

 if(Integer.parseInt(checkSum[idx])!=0)check=false;

 }

 //if(((double)(sum^d))!=Math.pow(2,

(checkSum.length-2))){

59

 if(!check){

 msgBytes.clear();

 messageComplete = true;

 Log.i("debug", "check sum wrong!");

 }else{

 dMessage.receivedChecksum = (short)d;

 state = State.RECERIVE_FOOTER;

 }

 break;

 case RECERIVE_FOOTER:

 if (d == MSG_FOOTER[data_index]) {

 data_index++;

 if (data_index == 4) {

 data_index = 0;

 Log.i("debug", "Control stream received");

 dMessage.controlReceived = true;

 messageComplete = true;

 msgBytes.clear();

 }

 } else {

 msgBytes.clear();

 System.out.println("Error: massage format

error.");

 messageComplete = true;

 }

 break;

 default:

 break;

 }

 }

 }catch (IOException e) {

 Log.e("debug", "Control reading error: "+e.toString());

 }

 return dMessage;

 }

 private DeviceMessage readDataMsg_v2 (DeviceMessage dMessage,

InputStream inStream, State state, ArrayList<Short> msgBytes) {

 Log.i("in", "read data msg.");

 SensorData tempSensor = new SensorData();

 int d, data_index = 0;

 int i = 0;

 short byteBuf[] = new short[16];

60

 short s = 0;

 // initial state

 // state = State.RECEIVE_DEVICE_ID;

 state = State.RECEIVE_BATTERY_LEVEL;

 try {

 while (!cancelled && !messageComplete) {

 d = inStream.read(); // read byte from stream

 Log.d("in", Integer.toString(d));

 //msgBytes.add((short)d);

 //debugBytesPrint(msgBytes);

 switch (state) {

 case RECEIVE_BATTERY_LEVEL:

 msgBytes.add((short)d);

 byteBuf[i++] = (short)d;

 if (i>1) {

 s = (short) (byteBuf[0]*256+byteBuf[1]);

 tempSensor.batteryLevel = s;

 state = State.RECEIVE_SENSOR_INDEX;

 s = 0;

 i = 0;

 }

 break;

 case RECEIVE_SENSOR_INDEX:

 msgBytes.add((short)d);

 tempSensor.sensorIdentifier[data_index] = (int)d;

 state = State.RECEIVE_SENSOR_VALUE;

 break;

 case RECEIVE_SENSOR_VALUE:

 msgBytes.add((short)d);

 byteBuf[i++] = (short)d;

 if(i>1){

 s = (short) (byteBuf[0]*256+byteBuf[1]);

 tempSensor.sensorData[data_index] = s;

 tempSensor.sensorDataMap.put(tempSensor.sensorIdentifier[data_inde

x], tempSensor.sensorData[data_index]);

 data_index++;

 i = 0;

 if (data_index >= 3){

 state = State.RECEIVE_CHECKSUM;

 data_index = 0;

 s = 0;

61

 i = 0;

 }else{

 state = State.RECEIVE_SENSOR_INDEX;

 }

 }

 break;

 case RECEIVE_CHECKSUM:

 int sum = 0;

 for(short temp : msgBytes){

 sum += temp;

 }

 Log.i("in", Integer.toBinaryString(sum));

 Log.i("in", Integer.toBinaryString(d));

 int L =

Integer.toBinaryString(d).split("").length-1;

 String[] checkSum =

Integer.toBinaryString(sum^d).split("");

 Log.i("in", Integer.toBinaryString(sum^d)+"

"+checkSum.length);

 boolean check = true;

 for(int

idx=checkSum.length-1;idx>=(checkSum.length-L)&&idx>0;idx--){

 if(Integer.parseInt(checkSum[idx])!=0)check=false;

 }

 //if(((double)(sum^d))!=Math.pow(2,

(checkSum.length-2))){

 if(!check){

 msgBytes.clear();

 messageComplete = true;

 Log.i("debug", "check sum wrong!");

 }else{

 dMessage.receivedChecksum = (short)d;

 state = State.RECERIVE_FOOTER;

 }

 break;

 case RECERIVE_FOOTER:

 if (d == MSG_FOOTER[data_index]) {

 data_index++;

 if (data_index == 4) {

 data_index = 0;

 messageComplete = true;

62

 dMessage.sensorData = tempSensor;

 Log.i("debug", "Data stream received");

 msgBytes.clear();

 dMessage.dataReceived = true;

 }

 } else {

 System.out.println("Error: massage format

error.");

 msgBytes.clear();

 messageComplete = true;

 }

 break;

 default:

 break;

 }

 }

 }catch (IOException e) {

 Log.e("debug", "Data reading error: "+e.toString());

 }

 return dMessage;

 }

}

BluetoothThread.java

package com.unsw.pollutionsensor;

import java.io.DataOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.io.StringWriter;

import java.io.UnsupportedEncodingException;

import java.text.DecimalFormat;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

63

import java.util.UUID;

import org.apache.http.HttpResponse;

import org.apache.http.NameValuePair;

import org.apache.http.ParseException;

import org.apache.http.client.ClientProtocolException;

import org.apache.http.client.HttpClient;

import org.apache.http.client.entity.UrlEncodedFormEntity;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.message.BasicNameValuePair;

import org.apache.http.params.BasicHttpParams;

import org.apache.http.params.HttpConnectionParams;

import org.apache.http.params.HttpParams;

import org.apache.http.util.EntityUtils;

import org.xmlpull.v1.XmlSerializer;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.bluetooth.BluetoothSocket;

import android.location.Location;

import android.util.Log;

import android.util.Xml;

import

com.unsw.pollutionsensor.PollutionSensor.PollutionLocationListener;

public class BluetoothThread extends Thread {

 private String deviceMACAddress = null;

 private static final UUID RFCOMM_UUID =

UUID.fromString("00001101-0000-1000-8000-00805F9B34FB");

 private boolean receiveEnabled = true;

 private PollutionLocationListener locationListener = null;

 private ArrayList<DataWrapper> GPSBuffer = new

ArrayList<DataWrapper>();

 private ArrayList<DataWrapper> dataBuffer = new

ArrayList<DataWrapper>();

 private BluetoothStreamReader streamReader = null;

 private Location initialLocation = null;

 private int count = 0;

 private Date initialDate = null;

 private static final int SENSOR_ID_NO2 = 2;

64

 private static final int SENSOR_ID_O3 = 1;

 private static final int SENSOR_ID_CO = 3;

 //Max No. of data per-bundle

 private int MaxStandbyData = 5;

 /**

 * */

 private boolean dataPush = true;

 public void settingPush(boolean temp){

 dataPush = temp;

 }

 /**

 * */

 public void setDeviceMACAddress (String address) {

 deviceMACAddress = address;

 }

 public void setLocationListener (PollutionLocationListener listener)

{

 locationListener = listener;

 }

 private BluetoothSocket getBluetoothSocket() {

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 BluetoothDevice device =

bluetoothAdapter.getRemoteDevice(deviceMACAddress);

 BluetoothSocket btSocket = null;

 try {

 btSocket =

device.createRfcommSocketToServiceRecord(RFCOMM_UUID);

 } catch (IOException e) {

 Log.e("debug", "Error: failed to create socket");

 }

 // Discovery is quite intensive. Just in case it's running, stop

it

 bluetoothAdapter.cancelDiscovery();

65

 return btSocket;

 }

 public void cancel () {

 if (streamReader != null) {

 streamReader.cancel();

 }

 receiveEnabled = false;

 }

 public void run () {

 BluetoothSocket socket = null;

 InputStream inStream = null;

 OutputStream outStream = null;

 DataOutputStream dataOutStream = null;

 receiveEnabled = true;

 DeviceMessage msg = new DeviceMessage();

 /**

 * Get bluetooth connection */

 socket = getBluetoothSocket();

 try {

 socket.connect();

 } catch (IOException e2) {

 // TODO Auto-generated catch block

 Log.e("debug", "Failed to connect to socket");

 UILog.println(UILog.LOG_TYPE_INFO, "Failed to connect");

 }

 try {

 inStream = socket.getInputStream();

 } catch (Exception e1) {

 // TODO Auto-generated catch block

 Log.e("debug", "Error: failed to connect to inputstream");

 }

 try {

 outStream = socket.getOutputStream();

 } catch (Exception e1) {

 // TODO Auto-generated catch block

 Log.e("debug", "Error: failed to connect to outputstream");

 }

 dataOutStream = new DataOutputStream(outStream);

66

 Log.i("debug", "Connected to socket");

 UILog.println(UILog.LOG_TYPE_INFO, "Connected!");

 /**

 * Receive data*/

 while (receiveEnabled) {

 /**

 * Acquiring control msg

 * */

 while (!msg.controlReceived){

 Log.w("debug", "Don't have control msg. Acquiring

contral msg...");

 try {

 dataOutStream.write(1);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 Log.e("debug", "Error: failed to send data");

 }

 msg = receiveSensorValues(inStream, msg, 1);

 }

 /**wait for the initial known location*/

 while (initialLocation == null) {

 Log.w("debug", "Waiting for Initial Location

information");

 initialLocation =

locationListener.getInitialLocation();

 initialDate = new Date();

 try {

 Thread.sleep(500);

 } catch (InterruptedException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 /**Wait for location changes*/

67

 if(!dataPush){

 Log.w("debug", "Waiting for Location change");

 while(!locationListener.newLocation);

 locationListener.newLocation = false;

 }

 /**Acquiring Data */

 while (!msg.dataReceived){

 try {

 Thread.sleep(8000);

 } catch (InterruptedException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 }

 Log.w("debug","Acquiring data msg...");

 try {

 dataOutStream.write(4);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 Log.e("debug", "Error: failed to send data");

 }

 msg = receiveSensorValues(inStream, msg, 2);

 }

 /**Data Processing */

 processSensorValues(msg);

 msg.dataReceived = false;

 // Wait a bit

 try {

 Log.v("debug", "Bluetooth Thread is Sleeping...");

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 try {

68

 inStream.close();

 outStream.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 try {

 if (socket != null) {

 socket.close();

 Log.i("debug", "socket closed");

 }

 } catch (IOException e) {

 Log.e("debug", "Error: failed to close socket");

 }

 Log.v("debug","Bluetooth Thread finish");

 }

 private DeviceMessage receiveSensorValues (InputStream inStream,

DeviceMessage dMessage, int MsgType) {

 streamReader = new BluetoothStreamReader();

 DeviceMessage msg =

streamReader.receiveSensorMessage(inStream,dMessage,MsgType);

 streamReader = null;

 return msg;

 }

 private void processSensorValues (DeviceMessage msg) {

 Log.d("debug", "processing data.");

 // Pollutant values

 DataWrapper wrapper = new DataWrapper();

 wrapper.pollutantValues = convertToPollutantValues(msg);

 wrapper.date = new Date();

 Location location = locationListener.getLastLocation();

 if(location != null){

 Log.i("debug", "accepted location:

"+location.getAccuracy()+" "+location.getLongitude()

 +" "+location.getLatitude());

 wrapper.location = location;

69

 dataupload(wrapper);

 if (count == 0){

 Log.w("debug", "update initallocation.");

 initialLocation = location;

 initialDate = new Date();

 }else{

 Log.w("debug", "counter = "+count+" try

interpolation.");

 //Interpolation(location, wrapper.date);

 linearInterpolation(location, wrapper.date);

 initialLocation = location;

 initialDate = new Date();

 count = 0;

 if(dataBuffer.size()!=0){

 if(postData(dataBuffer)){

 dataBuffer.clear();

 Log.w("debug", "!!!Done interpolation.!!!");

 }

 }else{

 GPSBuffer.clear();

 }

 }

 }

 //if don't have location information

 else if (location == null){

 if(dataBuffer.size() != 0){

 if (postData(dataBuffer)) {

 dataBuffer.clear();

 }

 }

 count += 1;

 GPSBuffer.add(wrapper);

 Log.e("debug", "inacc location. "+count);

 }

 }

 private String pollutantStringForSensor (int sensorIdentifier) {

70

 switch (sensorIdentifier) {

 case SENSOR_ID_NO2:

 return "no2";

 case SENSOR_ID_O3:

 return "o3";

 case SENSOR_ID_CO:

 return "co";

 }

 return "unknown";

 }

 private boolean isSensorEnabled (int sensorIdentifer) {

 switch (sensorIdentifer) {

 case SENSOR_ID_NO2:

 return true;

 case SENSOR_ID_O3:

 return true; // don't have calibration values for this

 case SENSOR_ID_CO:

 return true;

 }

 return false;

 }

 private double pollutantValueForSensor (short data, double refVoltage,

double[] sensorCoefficient) {

 double v = ((double)data)/255.0*refVoltage;

 double c0 = sensorCoefficient[0];

 double c1 = sensorCoefficient[1];

 double c2 = sensorCoefficient[2];

 // Apply quadratic calibration function

 double calibrated_value = c0*v*v + c1*v + c2;

 System.out.println("calibrated value = "+calibrated_value);

 if (calibrated_value < 0) calibrated_value = 0;

 return calibrated_value;

 }

 private Map<String, Double> convertToPollutantValues (DeviceMessage

msg) {

 Map<String, Double> map = new HashMap<String, Double>();

 for (int sensorID : msg.coefficentMap.keySet()){

71

 if (isSensorEnabled(sensorID)) {

 map.put(pollutantStringForSensor(sensorID),

 pollutantValueForSensor(msg.sensorData.sensorDataMap.get(sensorID),

msg.getReferenceVoltage(), msg.coefficentMap.get(sensorID)));

 }

 }

 return map;

 }

 private String xmlForPollutantValues (ArrayList<DataWrapper>

dataList) {

 XmlSerializer serializer = Xml.newSerializer();

 StringWriter writer = new StringWriter();

 String xmlString = null;

 try {

 serializer.setOutput(writer);

 serializer.startDocument("UTF-8", true);

 serializer.startTag("", "data");

 serializer.startTag("", "info");

 serializer.startTag("", "user_name");

 serializer.text("debug");

 serializer.endTag("", "user_name");

 serializer.startTag("", "comment");

 serializer.text("Testing");

 serializer.endTag("", "comment");

 serializer.startTag("", "group");

 serializer.text("3608");

 serializer.endTag("", "group");

 serializer.endTag("", "info");

 serializer.startTag("", "samples");

 SimpleDateFormat dateFormat = new

SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 // print samples

 for (DataWrapper d : dataList) {

 serializer.startTag("", "sample");

 serializer.startTag("", "datetime");

 serializer.text(dateFormat.format(d.date));

 serializer.endTag("", "datetime");

 serializer.startTag("", "latitude");

72

 serializer.text(String.valueOf(d.location.getLatitude()));

 serializer.endTag("", "latitude");

 serializer.startTag("", "longitude");

 serializer.text(String.valueOf(d.location.getLongitude()));

 serializer.endTag("", "longitude");

 for (Map.Entry<String, Double> entry :

d.pollutantValues.entrySet()) {

 serializer.startTag("", entry.getKey());

 serializer.text(String.valueOf(entry.getValue()));

 serializer.endTag("", entry.getKey());

 }

 serializer.endTag("", "sample");

 }

 serializer.endTag("", "samples");

 serializer.endTag("", "data");

 serializer.endDocument();

 xmlString = writer.toString();

 } catch (Exception e) {

 System.out.println("Error with xml");

 }

 Log.e("int",xmlString);

 return xmlString;

 }

 private boolean postData (ArrayList<DataWrapper> dataList) {

 String responseBody = null;

 if (dataList.size() > 0) {

 String xml = xmlForPollutantValues(dataList);

 UILog.clear();

 UILog.printf(UILog.LOG_TYPE_INFO, "Most recent sample\n\n");

 UILog.println(UILog.LOG_TYPE_INFO,

dataList.get(dataList.size()-1).toLogString());

 HttpParams httpParameters = new BasicHttpParams();

 HttpConnectionParams.setConnectionTimeout(httpParameters,

5000);

 HttpClient client = new DefaultHttpClient(httpParameters);

73

 HttpPost httpPost = new

HttpPost("http://www.pollution.ee.unsw.edu.au/post-data.php");

 List<NameValuePair> nameValuePairs = new

ArrayList<NameValuePair>(2);

 nameValuePairs.add(new BasicNameValuePair("content", xml));

 if (client != null) {

 try {

 httpPost.setEntity(new

UrlEncodedFormEntity(nameValuePairs));

 HttpResponse response = client.execute(httpPost);

 if (response != null) {

 responseBody =

EntityUtils.toString(response.getEntity());

 Log.d("debug", "http response: "+response);

 MaxStandbyData = 5;

 }

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 } catch (ClientProtocolException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 MaxStandbyData+=5;

 } catch (ParseException e) {

 e.printStackTrace();

 }

 }

 }

 return (responseBody != null);

 }

 private class DataWrapper {

 public Date date = null;

 public Map<String, Double> pollutantValues = new HashMap<String,

Double>();

 public Location location = null;

 String s = "";

 public String toString() {

 return "{'"+date+"', "+pollutantValues+"', "+location+"'}";

 }

74

 public String toLogString() {

 SimpleDateFormat dateFormat = new

SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 //check whether location is null

 if (location != null){

 s = "Date: "+dateFormat.format(date)+"\nLocation:

"+location.getLatitude()+", "+location.getLongitude()+"\n\n";

 }else{

 s = "Date: "+dateFormat.format(date)+"\nLocation:

"+"null"+", "+"null"+"\n\n";

 }

 DecimalFormat decimalFormat = new DecimalFormat("0.0000");

 for (Map.Entry<String, Double> entry :

pollutantValues.entrySet()) {

 s += entry.getKey()+" =

"+decimalFormat.format(entry.getValue())+" ppm\n";

 }

 return s;

 }

 }

 private void linearInterpolation(Location location, Date time){

 Location tempLocation = null;

 DataWrapper wrapper =null;

 double longitude = initialLocation.getLongitude();

 double latitude = initialLocation.getLatitude();

 double templongitude = 0;

 double templatitude = 0;

 double deltalongitude = (location.getLongitude() -

longitude)/(count+1);

 double deltalatitude = (location.getLatitude() -

latitude)/(count+1);

 for (int i=count;i>=1;i--){

 wrapper = new DataWrapper();

 tempLocation = new Location("gps");

 wrapper = GPSBuffer.get(i-1);

 //Date date = wrapper.date;

 templongitude = longitude + deltalongitude * i;

 templatitude = latitude + deltalatitude* i;

 tempLocation.setLatitude(templatitude);

75

 tempLocation.setLongitude(templongitude);

 wrapper.location = tempLocation;

 dataBuffer.add(wrapper);

 }

 }

 private void Interpolation(Location location, Date time){

 Log.e("debug", "interpolation....");

 Tunnels tunnels = new Tunnels();

 final int dt_ShortTunnel = 4;

 double[][] route = null;

 if(count > dt_ShortTunnel){

 // the longitude and latitude for each entry of the tunnel

 // make sure the index is same

 double[][] entries = tunnels.entries;

 int n_tunnels = entries.length;

 double[] distanceOfEntry = new double[n_tunnels];

 double[] minEntry = {999999d, 999999d};

 int[] idxMinEntry = {0,0};

 for(int i=0;i<n_tunnels;i++){

 distanceOfEntry[i] =

calculateDistance(initialLocation,entries[i]);

 if(distanceOfEntry[i]<=minEntry[0]){

 minEntry[1] = minEntry[0];

 minEntry[0] = distanceOfEntry[i];

 idxMinEntry[1] = idxMinEntry[0];

 idxMinEntry[0] = i;

 }

 }

 Log.i("int","distances: "+minEntry[0]+" "+minEntry[1]);

 boolean firstOutRange = minEntry[0]>600;

 boolean secondOutRange = minEntry[1]>600;

 // find possible exit

 if(firstOutRange){

 double[] loc =

76

{location.getLatitude(),location.getLongitude()};

 double distance = calculateDistance(initialLocation,loc);

/* long lastTime = initialDate.getTime();

 double deltaT =(double) ((time.getTime() -

lastTime)/1000);// seconds

*/ if(distance<1000){

 linearInterpolation(location,time);

 }

 }else if(secondOutRange){

 double[][] exits1 = tunnels.getExits(idxMinEntry[0]);

 double distanceOfExit = 0;

 int i = 0;

 int idxMinExit = 0;

 double minExit = 999999d;

 for(double[] loc : exits1){

 distanceOfExit = calculateDistance(location,loc);

 if(distanceOfExit<=minExit) {

 minExit = distanceOfExit;

 idxMinExit = i;

 }

 i++;

 }

 if (minExit<400) {

 route = tunnels.getTunnel(idxMinEntry[0],

idxMinExit);

 Log.d("int", "1: EN: "+idxMinEntry[0]+" EX:

"+idxMinExit);

 for(double[]temp1:route){

 Log.d("int", "1: "+temp1[1]+","+temp1[0]);

 }

 }else{

 double[] loc =

{location.getLatitude(),location.getLongitude()};

 double distance =

calculateDistance(initialLocation,loc);

/* long lastTime = initialDate.getTime();

77

 double deltaT =(double) ((time.getTime() -

lastTime)/1000);// seconds

*/ if(distance<1000){

 linearInterpolation(location,time);

 }

 }

 }else{

 double[][] exits1 = tunnels.getExits(idxMinEntry[0]);

 double[][] exits2 = tunnels.getExits(idxMinEntry[1]);

 double distanceOfExit = 0;

 int i = 0;

 int[] idxMinExit = {0,0};

 double[] minExit = {999999d, 999999d};

 for(double[] loc : exits1){

 distanceOfExit = calculateDistance(location,loc);

 if(distanceOfExit<=minExit[0]) {

 minExit[0] = distanceOfExit;

 idxMinExit[0] = i;

 }

 i++;

 }

 i = 0;

 for(double[] loc : exits2){

 distanceOfExit = calculateDistance(location,loc);

 if(distanceOfExit<=minExit[0]) {

 minExit[1] = distanceOfExit;

 idxMinExit[1] = i;

 }

 i++;

 }

 boolean betterRoute =

(minEntry[0]+minExit[0])<(minEntry[1]+minExit[1]);

 if(betterRoute){

 if (minExit[0]<400) {

 route =

78

tunnels.getTunnel(idxMinEntry[0],idxMinExit[0]);

 Log.d("int", "2: EN: "+idxMinEntry[0]+" EX:

"+idxMinExit[0]);

 }else{

 double[] loc =

{location.getLatitude(),location.getLongitude()};

 double distance =

calculateDistance(initialLocation,loc);

 /* long lastTime = initialDate.getTime();

 double deltaT =(double) ((time.getTime() -

lastTime)/1000);// seconds

*/ if(distance<1000){

 linearInterpolation(location,time);

 }

 }

 }else{

 if (minExit[1]<400) {

 route =

tunnels.getTunnel(idxMinEntry[1],idxMinExit[1]);

 Log.d("int", "3: EN: "+idxMinEntry[1]+" EX:

"+idxMinExit[1]);

 }else{

 double[] loc =

{location.getLatitude(),location.getLongitude()};

 double distance =

calculateDistance(initialLocation,loc);

/* long lastTime = initialDate.getTime();

 double deltaT =(double) ((time.getTime() -

lastTime)/1000);// seconds

*/ if(distance<1000){

 linearInterpolation(location,time);

 }

 }

 }

 }

 if(route!=null)asignLocation(route);

 }else{

 linearInterpolation(location,time);

 }

79

 }

 private double calculateDistance(Location location,double[] tunnel){

 double d_Long = location.getLongitude()-tunnel[1];

 double d_Lat = location.getLatitude()-tunnel[0];

 final double R = 6371004d;

 final double pi = Math.PI;

 final double R_sydney = R * 0.830265d;// longtitude sydney R = R

* cos(-33.874)

 double distanceOfExit = Math.sqrt(Math.pow((pi*R/180*d_Lat),

2)+Math.pow(pi*R_sydney/180*d_Long, 2));

 return distanceOfExit;

 }

 private void asignLocation(double[][] route){

 Log.e("debug", "asign location....");

 Location location = null;

 int n = count;

 int N = route.length;

 DataWrapper wrapper = null;

 for (int k = 1;k<=n;k++){

 int index = ((N+1)*k/(n+1))-1;

 if(index < 0){

 index = 0;

 }else if(index>=route.length){

 index = route.length - 1;

 }

 wrapper = new DataWrapper();

 location = new Location("gps");

 Log.i("int","idx: "+index);

 wrapper = GPSBuffer.get(k-1);

 location.setLongitude(route[index][1]);

 location.setLatitude(route[index][0]);

 wrapper.location = location;

 //wrapper.setLocation(location);

 Log.w("int", "Long: "+location.getLongitude()+" Lat:

80

"+location.getLatitude());

 dataBuffer.add(wrapper);

 }

 }

 private void dataupload(DataWrapper wrapper){

 dataBuffer.add(wrapper);

 if (dataBuffer.size() >= MaxStandbyData) {

 Log.i("debug", "posting data online.");

 if (postData(dataBuffer)) {

 Log.i("debug", "data posted.");

 dataBuffer.clear();

 }

 }

 }

}

DeviceChooser.java

package com.unsw.pollutionsensor;

import java.util.Comparator;

import java.util.HashSet;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.EditText;

import android.widget.ListView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.RadioButton;

import android.widget.TextView;

import android.widget.Toast;

81

public class DeviceChooser extends Activity {

 //private ArrayAdapter<DeviceWrapper> arrayAdapter = null;

 private HashSet<BluetoothDevice> discoveredDevices = new

HashSet<BluetoothDevice>();

 private ArrayAdapter<DeviceWrapper> discoveryArrayAdapter = null;

 private ArrayAdapter<DeviceWrapper> builtInArrayAdapter = null;

 private int selectedListIndex = 1; // 'built in devices' list

 private class DeviceWrapper {

 private BluetoothDevice device;

 private String address;

 private String name;

 public DeviceWrapper (BluetoothDevice device) {

 this.device = device;

 }

 public DeviceWrapper (String address, String name) {

 this.address = address;

 this.name = name;

 }

 public String getAddress() {

 if (device != null) {

 return device.getAddress();

 } else {

 return address;

 }

 }

 public String getName() {

 if (device != null) {

 return device.getName();

 } else {

 return name;

 }

 }

 public String toString () {

 if (getName() != null && getName().length() > 0) {

 return getAddress()+" - "+getName();

 } else {

 return getAddress();

82

 }

 }

 }

 private class ItemClickListener implements OnItemClickListener {

 public void onItemClick (AdapterView<?> arg0, View arg1, int arg2,

long arg3) {

 DeviceWrapper dw = getCurrentArrayAdapter().getItem(arg2);

 EditText MACField =

(EditText)findViewById(R.id.discoveryMACAddressField);

 MACField.setText(dw.getAddress());

 }

 }

 private void changeListContent(int listIndex) {

 if (listIndex != selectedListIndex) {

 selectedListIndex = listIndex;

 ListView listView = (ListView)findViewById(R.id.list_view);

 switch (selectedListIndex) {

 case 0:

 listView.setAdapter(discoveryArrayAdapter);

 break;

 case 1:

 listView.setAdapter(builtInArrayAdapter);

 break;

 default:

 break;

 }

 }

 }

 ArrayAdapter<DeviceWrapper> getCurrentArrayAdapter() {

 switch (selectedListIndex) {

 case 0:

 return discoveryArrayAdapter;

 case 1:

 return builtInArrayAdapter;

 default:

 break;

 }

 return null;

 }

83

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.device_chooser);

 System.out.println("Deivice chooser onCreate");

 // testing/debugging

 //PollutionSensor.doSomething();

//getWindow().setSoftInputMode(WindowManager.LayoutParams.SOFT_INPUT_

STATE_ALWAYS_HIDDEN);

 // Setup the list view

 ListView listView = (ListView)findViewById(R.id.list_view);

 //arrayAdapter = new ArrayAdapter<DeviceWrapper>

(getApplicationContext(), R.layout.list_row, R.id.textView);

 discoveryArrayAdapter = new ArrayAdapter<DeviceWrapper>

(getApplicationContext(), R.layout.list_row, R.id.textView);

 builtInArrayAdapter = new ArrayAdapter<DeviceWrapper>

(getApplicationContext(), R.layout.list_row, R.id.textView);

 listView.setAdapter(builtInArrayAdapter);

 listView.setOnItemClickListener(new ItemClickListener());

 // Setup built in devices array adaptor

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:27:26",

"Two Way"));

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:1E:D2",

"Unit 1001"));

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:25:7B",

"Unit 1002"));

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:1E:D7",

"Unit 1003"));

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:1F:56",

"Unit 1004"));

 builtInArrayAdapter.add(new DeviceWrapper("00:18:B2:01:1F:69",

"Unit 1005"));

 // Setup the radio buttons

 RadioButton discoveryButton =

(RadioButton)findViewById(R.id.RadioButtonDiscovery);

 RadioButton builtInButton =

84

(RadioButton)findViewById(R.id.RadioButtonBuiltIn);

 discoveryButton.setOnClickListener(new OnClickListener () {

 public void onClick (View v) {

 changeListContent(0);

 startBluetoothDiscovery();

 }

 });

 builtInButton.setOnClickListener(new OnClickListener () {

 public void onClick (View v) {

 stopBluetoothDiscovery();

 changeListContent(1);

 }

 });

 stopBluetoothDiscovery(); // to put the status message there

 changeListContent(1); // change to built-in by default

 // Setup the connect button

 Button button =

(Button)findViewById(R.id.discoveryConnectButton);

 button.setOnClickListener(new OnClickListener() {

 public void onClick (View v) {

 EditText MACField =

(EditText)findViewById(R.id.discoveryMACAddressField);

 String address = MACField.getText().toString();

 if (isValidMACAddress(address)) {

 Intent intent = new Intent();

 intent.putExtra("MACAddress", address.toUpperCase());

 setResult(RESULT_OK, intent);

 finish();

 } else {

 Toast.makeText(getApplicationContext(), "Invalid MAC

address", Toast.LENGTH_SHORT).show();

 }

 }

 private boolean isValidMACAddress(String address) {

 for (int i = 0; i < address.length(); i++){

 char c = address.charAt(i);

 if ((i+1) % 3 == 0) {

 if (c != ':') return false;

 } else if (!(c >= '0' && c<='9' || c>='A' && c<='F' || c>='a'

&& c<='f')) {

85

 return false;

 }

 }

 return true;

 }

 });

 }

 private void startBluetoothDiscovery() {

 // Start bluetooth discovery

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 int REQUEST_ENABLE_BT = 500;

 if (bluetoothAdapter != null) {

 if (!bluetoothAdapter.isEnabled()) {

 Intent enableBtIntent = new Intent

(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(enableBtIntent,

REQUEST_ENABLE_BT);

 }

 BroadcastReceiver receiver = new BroadcastReceiver() {

 public void onReceive (Context ctx, Intent intent) {

 if

(intent.getAction().equals(BluetoothAdapter.ACTION_DISCOVERY_FINISHED

)) {

 System.out.println("Discovery finished!");

 stopBluetoothDiscovery();

 } else {

 BluetoothDevice device =

intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 if (device != null) {

 boolean changed = false;

 if (!discoveredDevices.contains(device)) {

 discoveredDevices.add(device);

 DeviceWrapper dw = new

DeviceWrapper(device);

 getCurrentArrayAdapter().add(dw);

 System.out.println("Found new device:

"+device);

 changed = true;

86

 }

 if

(BluetoothDevice.ACTION_NAME_CHANGED.equals(intent.getAction())) {

 changed = true;

 }

 if (changed) {

 getCurrentArrayAdapter().sort(new

Comparator<DeviceWrapper>() {

 public int compare(DeviceWrapper a,

DeviceWrapper b) {

 return

a.toString().compareTo(b.toString());

 };

 });

 getCurrentArrayAdapter().notifyDataSetChanged();

 }

 }

 }

 }

 };

 IntentFilter filter = new

IntentFilter(BluetoothDevice.ACTION_FOUND);

 filter.addAction(BluetoothDevice.ACTION_NAME_CHANGED);

 filter.addAction(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);

 registerReceiver(receiver, filter);

 bluetoothAdapter.startDiscovery();

 TextView statusView =

(TextView)findViewById(R.id.discoveryStatusTextView);

 statusView.setText("Searching...");

 }

 }

 private void stopBluetoothDiscovery () {

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 if (bluetoothAdapter != null && bluetoothAdapter.isDiscovering()) {

 bluetoothAdapter.cancelDiscovery();

 }

 TextView statusView =

87

(TextView)findViewById(R.id.discoveryStatusTextView);

 statusView.setText(getCurrentArrayAdapter().getCount()+" devices

found.");

 }

 protected void onStop () {

 super.onStop();

 System.out.println("Deivice chooser onStop");

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 if (bluetoothAdapter != null) {

 bluetoothAdapter.cancelDiscovery();

 }

 }

}

Helpers.java

package com.unsw.pollutionsensor;

public class Helpers {

 // converts our custom 16 bit floating point number to a double

 // 12 bit significand, 4 bit exponent

 public static double rawFloat16ToDouble (int rawValue) {

 short significand = (short)((short)(rawValue & 0xffff) >> 4); //

this will also sign extend

 byte exponent = (byte)((byte)((rawValue & 0xf) << 4) >> 4); // shift

left/right by 3 to sign extend

 double v = significand*Math.pow(10, exponent);

 return v;

 }

}

DeviceMessage.java

package com.unsw.pollutionsensor;

import java.util.Date;

import java.util.HashMap;

import java.util.Map;

import android.location.Location;

88

public class DeviceMessage {

 public boolean controlReceived = false;

 public boolean dataReceived = false;

 public short receivedChecksum;

 public short computedChecksum;

 public int rawReferenceVoltage;

 public int deviceIdentifier=0;

 public int valuePairCount = 0;

 public int rawCoefficents[] = new int[3];

 public SensorData sensorData;

 public double sensorCoefficents[] = new double[3];

 public int sensorIdentifier[] = new int[3];

 public int LastClibDate[] = new int[3]; //DD/MM/YY

 public int NextCLIbDate[] = new int[3]; //DD/MM/YY

 public Location location = null;

 public Date timeStamp = null;

 public Map<Integer,double[]>coefficentMap = new

HashMap<Integer,double[]>();

 public double[] getSensorCoes(){

 int index = 0;

 for(int i:rawCoefficents){

 sensorCoefficents[index]=Helpers.rawFloat16ToDouble(i);

 index ++;

 }

 return sensorCoefficents;

 }

 public double getReferenceVoltage () {

 return Helpers.rawFloat16ToDouble (rawReferenceVoltage);

 }

 public double getCoefficient (int index) {

 return Helpers.rawFloat16ToDouble(rawCoefficents[index]);

 }

 //public ArrayList<SensorData> sensors = new ArrayList<SensorData>

();

}

SensorData.java

89

package com.unsw.pollutionsensor;

import java.util.HashMap;

import java.util.Map;

public class SensorData {

 public int sensorIdentifier[] = new int[3];

 public short sensorData[] = new short[3];

 public short batteryLevel = 255;

 public int deviceIdentifier=0;

 public Map<Integer, Short> sensorDataMap = new HashMap<Integer,

Short>();

}

UILog.java

package com.unsw.pollutionsensor;

import java.util.Formatter;

import android.app.Activity;

import android.widget.TextView;

public class UILog {

 private static TextView logView = null;

 public static final int LOG_TYPE_READINGS = 1 << 0;

 public static final int LOG_TYPE_RAW_DATA = 1 << 1;

 public static final int LOG_TYPE_INFO = 1 << 2;

 public static void printf (int logType, String format, Object... args)

{

 Formatter f = new Formatter();

 String str = f.format(format, args).toString();

 UILog.print(logType, str);

 }

 public static void println (int logType, String message) {

 UILog.print(logType, message+"\n");

 }

 public static void print (int logType, String message) {

 Activity activity = (Activity)logView.getContext();

90

 MainThreadRunner runner = new MainThreadRunner(logView, message,

MainThreadRunner.APPEND_MODE);

 activity.runOnUiThread(runner);

 }

 public static void clear () {

 Activity activity = (Activity)logView.getContext();

 MainThreadRunner runner = new MainThreadRunner(logView, "",

MainThreadRunner.SET_MODE);

 activity.runOnUiThread(runner);

 }

 public static void setLogView (TextView view) {

 logView = view;

 logView.setText("");

 }

 protected static class MainThreadRunner implements Runnable {

 private TextView _logView = null;

 private String _logText;

 private int _mode = APPEND_MODE;

 public static final int APPEND_MODE = 1;

 public static final int SET_MODE = 2;

 public MainThreadRunner (TextView logView, String logText, int

mode) {

 _logView = logView;

 _logText = logText;

 _mode = mode;

 }

 public void run() {

 if (_logView != null && _logText != null) {

 if (_mode == SET_MODE) {

 _logView.setText(_logText);

 } else {

 _logView.append(_logText);

 }

 }

 }

 }

}

91

Tunnels.java

package com.unsw.pollutionsensor;

public class Tunnels {

 //entrances E B C H I J K L M N Y Z AA BB EE FF GG JJ KK LL

 public double[][] entries = {

 {-33.935928,151.11119},

 {-33.937861,151.153091},

 {-33.93743,151.152244},

 {-33.871442,151.203166},

 {-33.870498,151.2033},

 {-33.874048,151.202533},

 {-33.87476,151.20331},

 {-33.886796,151.217945},

 {-33.885669,151.218245},

 {-33.874106,151.21755},

 {-33.876464,151.224924},

 {-33.872003,151.217985},

 {-33.876379,151.224945},

 {-33.874979,151.220482},

 {-33.866062,151.213894},

 {-33.841608,151.210719},

 {-33.862972,151.213661},

 {-33.801242,151.144651},

 {-33.812843,151.181483},

 {-33.813346,151.176215}

 };

 //Exits

 public double[][] getExits (int idxEntry){

 switch(idxEntry){

 case 0:

 double[][] Eto = {{-33.934922,151.142153},

{-33.937049,151.152236}, {-33.93777,151.15314}};

 return Eto;

 case 1:

 double[][] Bto = {{-33.936175,151.111364}};

 return Bto;

 case 2:

 double[][] Cto = {{-33.93743,151.152244}};

 return Cto;

 case 3:

 double[][] Hto = {{-33.873304,151.202994}};

92

 return Hto;

 case 4:

 double[][] Ito = {{-33.873304,151.202994}};

 return Ito;

 case 5:

 double[][] Jto = {{-33.87613,151.224961},

{-33.887328,151.217974}};

 return Jto;

 case 6:

 double[][] Kto = {{-33.87613,151.224961},

{-33.887328,151.217974}};

 return Kto;

 case 7:

 double[][] Lto = {

 {-33.875983,151.217218}, {-33.872903,151.203686},

 {-33.873057,151.20352},{-33.872344,151.217727}};

 return Lto;

 case 8:

 double[][] Mto = {{-33.872344,151.217727}};

 return Mto;

 case 9:

 double[][] Nto = {{-33.887328,151.217974}};

 return Nto;

 case 10:

 double[][] Yto = {{-33.872903,151.203686},

{-33.873057,151.20352}, {-33.870667,151.217271}};

 return Yto;

 case 11:

 double[][] Zto = {{-33.887328,151.217974},

{-33.887573,151.219444}, {-33.886838,151.221558}};

 return Zto;

 case 12:

 double[][] AAto = {{-33.875077,151.220517}};

 return AAto;

 case 13:

 double[][] BBto = {{-33.876241,151.224956}};

 return BBto;

 case 14:

 double[][] EEto = {{-33.841591,151.210319}};

 return EEto;

 case 15:

 double[][] FFto = {{-33.865946,151.213991}};

 return FFto;

 case 16:

93

 double[][] GGto = {{-33.865946,151.213991}};

 return GGto;

 case 17:

 double[][] JJto = {{-33.812132,151.176177},

{-33.812682,151.181206}};

 return JJto;

 case 18:

 double[][] KKto = {{-33.801383,151.144685}};

 return KKto;

 case 19:

 double[][] LLto = {{-33.801383,151.144685}};

 return LLto;

 default:

 return null;

 }

 }

 public double[][] getTunnel(int idxEntry, int idxExit){

 double[][] route = null;

 switch(idxEntry){

 case 0:

 if(idxExit == 0){

 route = M5WTE1;

 }else if(idxExit == 1){

 route =

computeRoute(computeRoute(M5WTE1,M5WTE2),M5WTE3);

 }else if(idxExit == 2){

 route =

computeRoute(computeRoute(M5WTE1,M5WTE2),M5WTE4);

 }

 return route;

 case 1:

 route = computeRoute(M5ETW1,M5ETW3);

 return route;

 case 2:

 route = computeRoute(M5ETW2,M5ETW3);

 return route;

 case 3:

 route = computeRoute(HQ1,Q2);

 return route;

 case 4:

 route = computeRoute(IQ1,Q2);

 return route;

 case 5:

94

 if(idxExit == 0){

 route =

computeRoute(computeRoute(computeRoute(computeRoute(JX1,JX2),NR0),NR2

),NR3);

 }else if(idxExit == 1){

 route = computeRoute(computeRoute(JX1,JX2),JX3);

 }

 return route;

 case 6:

 if(idxExit == 0){

 route =

computeRoute(computeRoute(computeRoute(computeRoute(KX1,JX2),NR0),NR2

),NR3);

 }else if(idxExit == 1){

 route = computeRoute(computeRoute(KX1,JX2),JX3);

 }

 return route;

 case 7:

 if(idxExit == 0){

 route = computeRoute(L1,LU2);

 }else if(idxExit == 1){

 route =

computeRoute(computeRoute(computeRoute(L1,LU2),UO1),UO2);

 }else if(idxExit == 2){

 route =

computeRoute(computeRoute(computeRoute(computeRoute(L1,LU2),UO1),UO2)

,OP);

 }else if(idxExit == 3){

 route = computeRoute(computeRoute(L1,LW2),LW3);

 }

 return route;

 case 8:

 route = computeRoute(MW1,LW3);

 return route;

 case 9:

 route = computeRoute(computeRoute(NR1,NR2),NR3);

 return route;

 case 10:

 if(idxExit == 0){

 route = computeRoute(computeRoute(Y1,YO2),UO2);

 }else if(idxExit == 1){

 route =

computeRoute(computeRoute(computeRoute(Y1,YO2),UO2),OP);

95

 }else if(idxExit == 2){

 route = computeRoute(Y1,YV2);

 }

 return route;

 case 11:

 if(idxExit == 0){

 route = computeRoute(computeRoute(Z1,Z3),NR3);

 }else if(idxExit == 1){

 route = computeRoute(computeRoute(Z1,Z2),ZS3);

 }else if(idxExit == 2){

 route = computeRoute(computeRoute(Z1,Z2),ZT3);

 }

 return route;

 case 12:

 route = AADD;

 return route;

 case 13:

 route = BBCC;

 return route;

 case 14:

 route = EEII;

 return route;

 case 15:

 route = computeRoute(FFHH1,FFHH2);

 return route;

 case 16:

 route = computeRoute(GG1,FFHH2);

 return route;

 case 17:

 if(idxExit == 0){

 route = computeRoute(JJNN1,OO2);

 }else if(idxExit == 1){

 route = computeRoute(JJNN1,JJNN2);

 }

 return route;

 case 18:

 route = computeRoute(KKMM1,KKMM2);

 return route;

 case 19:

 route = computeRoute(LL1,KKMM2);

 return route;

 default:

 return null;

96

 }

 }

 private double[][] computeRoute(double[][] R1, double[][] R2){

 double[][] route = new double[R1.length+R2.length][];

 int i = 0;

 for(double[] temp : R1){

 route[i] = temp;

 i++;

 }

 for(double[] temp : R2){

 route[i] = temp;

 i++;

 }

 return route;

 }

 //M5

 private double[][] M5WTE1 = {

 {-33.935928,151.11119},

 {-33.935917,151.111633},

 {-33.935903,151.11207},

 {-33.935897,151.112512},

 {-33.935897,151.112512},

 {-33.93589,151.112952},

 {-33.935892,151.113392},

 {-33.935899,151.113835},

 {-33.935919,151.114272},

 {-33.935941,151.114714},

 {-33.935963,151.115149},

 {-33.936028,151.116031},

 {-33.936059,151.116461},

 {-33.936095,151.11689},

 {-33.936119,151.117322},

 {-33.936155,151.117748},

 {-33.936188,151.118183},

 {-33.936224,151.118609},

 {-33.936264,151.119038},

 {-33.936295,151.119465},

 {-33.93633,151.119886},

 {-33.936362,151.12031},

 {-33.936388,151.120728},

 {-33.936419,151.121165},

 {-33.936455,151.121589},

 {-33.936486,151.122018},

97

 {-33.936517,151.122439},

 {-33.936549,151.122863},

 {-33.936582,151.123295},

 {-33.936604,151.123721},

 {-33.93662,151.124148},

 {-33.936624,151.124574},

 {-33.936624,151.125006},

 {-33.936606,151.125435},

 {-33.936591,151.125864},

 {-33.936564,151.126288},

 {-33.936517,151.126717},

 {-33.936468,151.127141},

 {-33.936404,151.127562},

 {-33.936322,151.127981},

 {-33.936228,151.128394},

 {-33.936137,151.128812},

 {-33.936046,151.129225},

 {-33.935952,151.129646},

 {-33.93587,151.130062},

 {-33.935792,151.13048},

 {-33.935703,151.130894},

 {-33.935612,151.131312},

 {-33.935523,151.131725},

 {-33.935434,151.132143},

 {-33.93534,151.132559},

 {-33.935242,151.132978},

 {-33.935155,151.133399},

 {-33.935075,151.133817},

 {-33.935004,151.134244},

 {-33.934924,151.134665},

 {-33.934864,151.135089},

 {-33.934817,151.135515},

 {-33.93477,151.135941},

 {-33.934735,151.136373},

 {-33.934708,151.136802},

 {-33.93469,151.137232},

 {-33.93467,151.138967},

 {-33.934697,151.139401},

 {-33.934722,151.139831},

 {-33.934746,151.140265},

 {-33.934777,151.1407},

 {-33.934826,151.141129},

 {-33.934864,151.141553},

 {-33.934904,151.141984},

98

 {-33.934922,151.142153},

 {-33.93492,151.142749}

 };

 private double[][] M5WTE2 = {

 {-33.934953,151.142411},

 {-33.935006,151.142837},

 {-33.935064,151.143264},

 {-33.935138,151.14369},

 {-33.935189,151.144122},

 {-33.935251,151.144554},

 {-33.935318,151.14498},

 {-33.935382,151.145407},

 {-33.935449,151.145841},

 {-33.935512,151.146273},

 {-33.935567,151.1467},

 {-33.935629,151.147126},

 {-33.935698,151.147553},

 {-33.935765,151.147982},

 {-33.93587,151.148398},

 {-33.93597,151.148821},

 {-33.93603,151.149248},

 {-33.936063,151.149648}

 };

 private double[][] M5WTE3 = {

 {-33.936112,151.150053},

 {-33.936233,151.150466},

 {-33.936366,151.150868},

 {-33.936524,151.15126},

 {-33.936707,151.151627},

 {-33.936891,151.151997},

 {-33.937049,151.152236},

 {-33.937301,151.152617}

 };

 private double[][] M5WTE4 = {

 {-33.936175,151.150053},

 {-33.93631,151.150452},

 {-33.936444,151.15086},

 {-33.9366,151.151254},

 {-33.93678,151.151638},

 {-33.936967,151.152005},

 {-33.937176,151.152351},

99

 {-33.937403,151.152695},

 {-33.93765,151.153014},

 {-33.93777,151.15314},

 {-33.9381,151.153534}

 };

 private double[][] M5ETW1 = {

 {-33.93786100, 151.15309100},

 {-33.93773000, 151.15289600},

 {-33.93749400, 151.15257100},

 {-33.93728100, 151.15222000},

 {-33.93709400, 151.15184700},

 {-33.93690900, 151.15147100},

 {-33.93674700, 151.15108300},

 {-33.93659100, 151.15069400},

 {-33.93646800, 151.15028300}

 };

 private double[][] M5ETW2 = {

 {-33.93743000, 151.15224400},

 {-33.93737600, 151.15214700},

 {-33.93719400, 151.15177200},

 {-33.93701100, 151.15140200},

 {-33.93683300, 151.15102600},

 {-33.93667800, 151.15063500},

 {-33.93651300, 151.15024800}

 };

 private double[][] M5ETW3 = {

 {-33.93634800, 151.14987600},

 {-33.93624800, 151.14946500},

 {-33.93615900, 151.14904900},

 {-33.93607200, 151.14863100},

 {-33.93599400, 151.14820500},

 {-33.93593700, 151.14777800},

 {-33.93587400, 151.14734600},

 {-33.93581200, 151.14692000},

 {-33.93575000, 151.14649100},

 {-33.93569400, 151.14606700},

 {-33.93563800, 151.14563500},

 {-33.93557800, 151.14520800},

 {-33.93551400, 151.14478700},

100

 {-33.93545100, 151.14435600},

 {-33.93539100, 151.14393200},

 {-33.93533100, 151.14350500},

 {-33.93527300, 151.14307600},

 {-33.93521800, 151.14264400},

 {-33.93516900, 151.14221200},

 {-33.93511500, 151.14178600},

 {-33.93506200, 151.14135100},

 {-33.93501300, 151.14092000},

 {-33.93498900, 151.14048500},

 {-33.93491300, 151.13873900},

 {-33.93491100, 151.13830700},

 {-33.93490800, 151.13787000},

 {-33.93492400, 151.13743000},

 {-33.93495100, 151.13699800},

 {-33.93497700, 151.13656400},

 {-33.93501100, 151.13613200},

 {-33.93505300, 151.13570500},

 {-33.93511800, 151.13526800},

 {-33.93517300, 151.13483900},

 {-33.93524400, 151.13442100},

 {-33.93532200, 151.13400200},

 {-33.93540000, 151.13357600},

 {-33.93548000, 151.13315500},

 {-33.93557600, 151.13273400},

 {-33.93566500, 151.13231500},

 {-33.93576700, 151.13189700},

 {-33.93585200, 151.13147800},

 {-33.93595000, 151.13105700},

 {-33.93603900, 151.13063300},

 {-33.93613500, 151.13021800},

 {-33.93622100, 151.12979100},

 {-33.93630800, 151.12936500},

 {-33.93639900, 151.12894600},

 {-33.93649100, 151.12852800},

 {-33.93658200, 151.12810700},

 {-33.93664600, 151.12767800},

 {-33.93669500, 151.12724300},

 {-33.93674700, 151.12680900},

 {-33.93679600, 151.12638200},

 {-33.93682200, 151.12594500},

 {-33.93685600, 151.12551000},

 {-33.93685800, 151.12507800},

 {-33.93686500, 151.12464400},

101

 {-33.93685600, 151.12421500},

 {-33.93684500, 151.12378300},

 {-33.93681800, 151.12334000},

 {-33.93678700, 151.12290900},

 {-33.93675100, 151.12247700},

 {-33.93672200, 151.12204200},

 {-33.93668400, 151.12160800},

 {-33.93664600, 151.12117600},

 {-33.93661800, 151.12074700},

 {-33.93658200, 151.12031800},

 {-33.93655300, 151.11988300},

 {-33.93651700, 151.11945400},

 {-33.93647700, 151.11902500},

 {-33.93643700, 151.11859300},

 {-33.93640400, 151.11815600},

 {-33.93637100, 151.11772400},

 {-33.93633300, 151.11728900},

 {-33.93629900, 151.11685800},

 {-33.93625900, 151.11642600},

 {-33.93622800, 151.11599400},

 {-33.93620800, 151.11556200},

 {-33.93618100, 151.11513000},

 {-33.93615500, 151.11469800},

 {-33.93613200, 151.11396100},

 {-33.93613200, 151.11396100},

 {-33.93612100, 151.11353200},

 {-33.93612600, 151.11310200},

 {-33.93613700, 151.11266800},

 {-33.93614400, 151.11223600},

 {-33.93615200, 151.11179900},

 {-33.93617500, 151.11136400},

 {-33.936215,151.110753}

 };

//cross city & easter distributer

 private double[][] L1 = {

 {-33.88679600, 151.21794500},

 {-33.88644200, 151.21797700},

 {-33.88607900, 151.21798200},

 {-33.88569600, 151.21796300},

 {-33.88537300, 151.21788600},

 {-33.88501700, 151.21776500},

 {-33.88469000, 151.21765800},

102

 {-33.88435300, 151.21754000},

 {-33.88398600, 151.21743000},

 {-33.88362100, 151.21736300},

 {-33.88327800, 151.21729000},

 {-33.88285700, 151.21721000}

 };

 private double[][] LU2 = {

 {-33.88257900, 151.21707600},

 {-33.88219800, 151.21699800},

 {-33.88188000, 151.21695000},

 {-33.88152100, 151.21689600},

 {-33.88111800, 151.21686400},

 {-33.88067500, 151.21683200},

 {-33.88028700, 151.21684200},

 {-33.87986200, 151.21686100},

 {-33.87948100, 151.21687200},

 {-33.87907600, 151.21690100},

 {-33.87864000, 151.21695200},

 {-33.87825000, 151.21699500},

 {-33.87792700, 151.21703500},

 {-33.87753300, 151.21709200},

 {-33.87715700, 151.21715600},

 {-33.87680000, 151.21719600},

 {-33.87636400, 151.21723400},

 {-33.87598300, 151.21721800},

 {-33.875464,151.217148}

 };

 private double[][] UO1 = {

 {-33.87555800, 151.21733300},

 {-33.87512800, 151.21745100},

 {-33.87485800, 151.21722300},

 {-33.87481400, 151.21677200},

 {-33.87478900, 151.21636500},

 {-33.87471600, 151.21586600},

 {-33.87461800, 151.21541500},

 {-33.87446600, 151.21499700},

 {-33.87433100, 151.21490000}

 };

 private double[][] UO2 = {

 {-33.87424400, 151.21439300},

 {-33.87416100, 151.21393500},

 {-33.87407200, 151.21348700},

 {-33.87397900, 151.21300400},

103

 {-33.87389400, 151.21256400},

 {-33.87380500, 151.21206300},

 {-33.87371600, 151.21159900},

 {-33.87363800, 151.21103300},

 {-33.87354400, 151.21046100},

 {-33.87346900, 151.20997300},

 {-33.87339100, 151.20949300},

 {-33.87330200, 151.20902400},

 {-33.87318600, 151.20854300},

 {-33.87305000, 151.20803400},

 {-33.87293200, 151.20758900},

 {-33.87285600, 151.20713300},

 {-33.87278500, 151.20665800},

 {-33.87273400, 151.20615900},

 {-33.87272500, 151.20571400},

 {-33.87275400, 151.20520400},

 {-33.87278300, 151.20476700},

 {-33.87282300, 151.20427600},

 {-33.87290300, 151.20368600},

 {-33.873184,151.203262}

 };

 private double[][] OP = {

 {-33.873057,151.20352},

 {-33.873391,151.203214}

 };

 private double[][] LW2 = {

 {-33.882735,151.21718}

 };

 private double[][] LW3 = {

 {-33.88238900, 151.21710000},

 {-33.88201300, 151.21703800},

 {-33.88166600, 151.21699500},

 {-33.88129800, 151.21696000},

 {-33.88093800, 151.21693100},

 {-33.88057700, 151.21691200},

 {-33.88016300, 151.21690700},

 {-33.87973500, 151.21691700},

 {-33.87932100, 151.21700000},

 {-33.87899600, 151.21703500},

 {-33.87864900, 151.21707600},

 {-33.87823000, 151.21713200},

 {-33.87783100, 151.21718600},

 {-33.87744400, 151.21723100},

 {-33.87703000, 151.21728500},

104

 {-33.87662700, 151.21732500},

 {-33.87623500, 151.21737300},

 {-33.87579800, 151.21743200},

 {-33.87537900, 151.21748100},

 {-33.87499000, 151.21752400},

 {-33.87456900, 151.21757200},

 {-33.87413500, 151.21762000},

 {-33.87374900, 151.21765000},

 {-33.87335100, 151.21766600},

 {-33.87291600, 151.21768200},

 {-33.87257100, 151.21770600},

 {-33.87234400, 151.21772700},

 {-33.871856,151.217824}

 };

 private double[][] HQ1 = {

 {-33.87144200, 151.20316600},

 {-33.87172900, 151.20316600},

 {-33.87205500, 151.20317600},

 {-33.87238900, 151.20319500},

 {-33.87258900, 151.20320100}

 };

 private double[][] IQ1 = {

 {-33.87049800, 151.20330000},

 {-33.87078300, 151.20330200},

 {-33.87105500, 151.20331900},

 {-33.87133800, 151.20334300},

 {-33.87161100, 151.20339900},

 {-33.87192100, 151.20348800},

 {-33.87221100, 151.20353600},

 {-33.87250200, 151.20346100}

 };

 private double[][] Q2 = {

 {-33.87283400, 151.20326000},

 {-33.87303900, 151.20318700},

 {-33.87330400, 151.20299400},

 {-33.873607,151.202739}

 };

 private double[][] JX1 = {

 {-33.87404800, 151.20253300},

 {-33.87407900, 151.20300200},

 {-33.87411200, 151.20352000}

 };

 private double[][] KX1 = {

105

 {-33.87476000, 151.20331000},

 {-33.87453300, 151.20302900},

 {-33.87431500, 151.20270400},

 {-33.87402600, 151.20257800},

 {-33.87391600, 151.20296700},

 {-33.87399200, 151.20344500}

 };

 private double[][] JX2 = {

 {-33.87414600, 151.20395200},

 {-33.87422400, 151.20432700},

 {-33.87429700, 151.20475900},

 {-33.87436400, 151.20514800},

 {-33.87442000, 151.20563600},

 {-33.87447500, 151.20610300},

 {-33.87452700, 151.20654500},

 {-33.87454900, 151.20707400},

 {-33.87456700, 151.20749700},

 {-33.87457800, 151.20792900},

 {-33.87454900, 151.20841700},

 {-33.87452400, 151.20884100},

 {-33.87447500, 151.20923300},

 {-33.87436400, 151.20968100},

 {-33.87422800, 151.21016400},

 {-33.87407200, 151.21063600},

 {-33.87393600, 151.21107300},

 {-33.87380900, 151.21153100},

 {-33.87362700, 151.21196600},

 {-33.87346700, 151.21230900},

 {-33.87352900, 151.21272500},

 {-33.87359300, 151.21317600},

 {-33.87366700, 151.21367200},

 {-33.87374700, 151.21414900},

 {-33.87382500, 151.21464300},

 {-33.87388100, 151.21509100},

 {-33.87396100, 151.21560000},

 {-33.87403200, 151.21605900},

 {-33.87410800, 151.21650400},

 {-33.87418100, 151.21697600},

 {-33.87425900, 151.21740300},

 {-33.87433500, 151.21787200}

 };

 private double[][] JX3 = {

 {-33.87441700, 151.21831500},

106

 {-33.87451300, 151.21884300},

 {-33.87460900, 151.21934500},

 {-33.87470700, 151.21986200},

 {-33.87479600, 151.22034800},

 {-33.87490500, 151.22087100},

 {-33.87500300, 151.22131300},

 {-33.87515700, 151.22175300},

 {-33.87534200, 151.22213700},

 {-33.87551800, 151.22245100},

 {-33.87563800, 151.22283200},

 {-33.87573600, 151.22328000},

 {-33.87580000, 151.22376000},

 {-33.87588500, 151.22420000},

 {-33.87602800, 151.22456200},

 {-33.87613000, 151.22496100},

 {-33.876219,151.225519}

 };

 private double[][] MW1 = {

 {-33.88566900, 151.21824500},

 {-33.88529100, 151.21811400},

 {-33.88488100, 151.21797900},

 {-33.88458900, 151.21787500},

 {-33.88418200, 151.21771900},

 {-33.88372300, 151.21757700},

 {-33.88335800, 151.21742400},

 {-33.88302400, 151.21729300}

 };

 private double[][] Y1 = {

 {-33.87646400, 151.22492400},

 {-33.87641300, 151.22437900},

 {-33.87635700, 151.22378900},

 {-33.87629500, 151.22322100},

 {-33.87617700, 151.22264700},

 {-33.87602800, 151.22207800},

 {-33.87589800, 151.22166200},

 {-33.87570200, 151.22120900},

 {-33.87549500, 151.22075300},

 {-33.87525300, 151.22027300},

 {-33.87510300, 151.21979000},

 {-33.87500800, 151.21933400},

 {-33.87493000, 151.21880800}

 };

 private double[][] YV2 = {

107

 {-33.87499000, 151.21822400},

 {-33.87506100, 151.21775200},

 {-33.87505000, 151.21733300},

 {-33.87503000, 151.21689900},

 {-33.87498500, 151.21639700},

 {-33.87494300, 151.21593600},

 {-33.87477400, 151.21563800},

 {-33.87445500, 151.21551200},

 {-33.87410300, 151.21553100},

 {-33.87374500, 151.21561100},

 {-33.87334900, 151.21570000},

 {-33.87294800, 151.21579100},

 {-33.87254700, 151.21588500},

 {-33.87216200, 151.21598900},

 {-33.87179000, 151.21610700},

 {-33.87148500, 151.21641600},

 {-33.87120200, 151.21674000},

 {-33.87089000, 151.21704900},

 {-33.87066700, 151.21727100},

 {-33.870331,151.217679},

 };

 private double[][] YO2 = {

 {-33.87484500, 151.21824200},

 {-33.87469100, 151.21724200},

 {-33.87462200, 151.21679700},

 {-33.87454200, 151.21627600},

 {-33.87446900, 151.21578800},

 {-33.87438800, 151.21527000},

 {-33.87433700, 151.21494600}

 };

 private double[][] Z1 = {

 {-33.87200300, 151.21798500},

 {-33.87234400, 151.21792600},

 {-33.87276300, 151.21785100},

 {-33.87320800, 151.21780800},

 {-33.87352700, 151.21778400},

 {-33.87392500, 151.21774600},

 {-33.87434400, 151.21769800},

 {-33.87469600, 151.21765800},

 {-33.87503400, 151.21762000},

 {-33.87545300, 151.21756900},

 {-33.87586000, 151.21751800},

 {-33.87630100, 151.21746200},

 {-33.87666200, 151.21741900},

108

 {-33.87707600, 151.21736500},

 {-33.87747700, 151.21731200},

 {-33.87784700, 151.21726300},

 {-33.87821200, 151.21721000},

 {-33.87862000, 151.21716100},

 {-33.87901100, 151.21710200},

 {-33.87931400, 151.21705400},

 {-33.87969500, 151.21703300}

 };

 private double[][] Z2 = {

 {-33.87995100, 151.21708900},

 {-33.88027600, 151.21708900},

 {-33.88065300, 151.21709700},

 {-33.88102700, 151.21711000},

 {-33.88137200, 151.21718800},

 {-33.88180400, 151.21725500},

 {-33.88216500, 151.21731700},

 {-33.88257400, 151.21740000},

 {-33.88298000, 151.21749700},

 {-33.88336900, 151.21761700},

 {-33.88377000, 151.21777300},

 {-33.88412200, 151.21791200},

 {-33.88450700, 151.21804400},

 {-33.88489200, 151.21806500}

 };

 private double[][] ZT3 = {

 {-33.88523100, 151.21824200},

 {-33.88558300, 151.21840300},

 {-33.88591700, 151.21855600},

 {-33.88622800, 151.21869800},

 {-33.88648900, 151.21891300},

 {-33.88661100, 151.21935500},

 {-33.88668300, 151.21983300},

 {-33.88671100, 151.22031300},

 {-33.88674500, 151.22078500},

 {-33.88678300, 151.22117100},

 {-33.88683800, 151.22155800},

 {-33.886932,151.222199}

 };

 private double[][] ZS3 = {

 {-33.88521500, 151.21812200},

 {-33.88559800, 151.21826400},

109

 {-33.88591200, 151.21840100},

 {-33.88622800, 151.21858800},

 {-33.88650700, 151.21883200},

 {-33.88685800, 151.21907400},

 {-33.88719900, 151.21924800},

 {-33.88757300, 151.21944400},

 {-33.888005,151.219645}

 };

 private double[][] Z3 = {

 {-33.880256,151.21703}

 };

 private double[][] NR0 = {

 {-33.87433500, 151.21788000},

 {-33.87405400, 151.21793700},

 {-33.87403000, 151.21748300},

 {-33.87436400, 151.21734100}

 };

 private double[][] NR1 = {

 {-33.87410600, 151.21755000},

 {-33.87440900, 151.21740300}

 };

 private double[][] NR2 = {

 {-33.87466500, 151.21729000},

 {-33.87506500, 151.21725300},

 {-33.87541500, 151.21725000},

 {-33.87579600, 151.21730900},

 {-33.87612800, 151.21730100},

 {-33.87652900, 151.21727400},

 {-33.87694300, 151.21722800},

 {-33.87727000, 151.21718000},

 {-33.87758600, 151.21712900},

 {-33.87786200, 151.21708900},

 {-33.87820300, 151.21705700},

 {-33.87853500, 151.21701100},

 {-33.87887300, 151.21697900},

 {-33.87919400, 151.21695800},

 {-33.87949700, 151.21696600},

 {-33.87982000, 151.21698200},

 {-33.88012900, 151.21699500}

 };

110

 private double[][] NR3 = {

 {-33.88054600, 151.21703000},

 {-33.88087800, 151.21705400},

 {-33.88126500, 151.21707300},

 {-33.88161700, 151.21712100},

 {-33.88196200, 151.21718600},

 {-33.88228000, 151.21725000},

 {-33.88262600, 151.21732000},

 {-33.88298800, 151.21737100},

 {-33.88334300, 151.21738900},

 {-33.88368800, 151.21742200},

 {-33.88401700, 151.21749400},

 {-33.88434000, 151.21760900},

 {-33.88464700, 151.21771700},

 {-33.88498800, 151.21783500},

 {-33.88530400, 151.21793900},

 {-33.88563200, 151.21801400},

 {-33.88599700, 151.21804100},

 {-33.88632600, 151.21803800},

 {-33.88669400, 151.21803000},

 {-33.88699200, 151.21800400},

 {-33.88732800, 151.21797400},

 {-33.887802,151.217902}

 };

 private double[][] AADD = {

 {-33.87637900, 151.22494500},

 {-33.87631300, 151.22435500},

 {-33.87625200, 151.22386200},

 {-33.87617900, 151.22326100},

 {-33.87604100, 151.22271600},

 {-33.87583800, 151.22225000},

 {-33.87561800, 151.22189000},

 {-33.87539100, 151.22144000},

 {-33.87521900, 151.22096500},

 {-33.87507700, 151.22051700},

 {-33.874932,151.219865}

 };

 private double[][] BBCC = {

 {-33.87497900, 151.22048200},

 {-33.87510600, 151.22098900},

 {-33.87526100, 151.22141800},

 {-33.87548400, 151.22182600},

 {-33.87568000, 151.22220700},

111

 {-33.87587600, 151.22268700},

 {-33.87599900, 151.22310500},

 {-33.87605900, 151.22362600},

 {-33.87612500, 151.22416500},

 {-33.87624100, 151.22495600},

 {-33.876306,151.225538}

 };

 //harbour tunnel

 private double[][] FFHH1 = {

 {-33.84160800, 151.21071900},

 {-33.84203400, 151.21083100},

 {-33.84246800, 151.21093100},

 {-33.84287800, 151.21104300},

 {-33.84334200, 151.21122300},

 {-33.84381200, 151.21146400},

 {-33.84426800, 151.21164100},

 {-33.84473200, 151.21184000},

 {-33.84518800, 151.21205200},

 {-33.84566100, 151.21226900},

 {-33.84607100, 151.21245700},

 {-33.84648300, 151.21259600},

 {-33.84681000, 151.21270600},

 {-33.84719300, 151.21285100},

 {-33.84756800, 151.21300100},

 {-33.84796200, 151.21317000},

 {-33.84835800, 151.21329600},

 {-33.84877500, 151.21336300},

 {-33.84920500, 151.21341700},

 {-33.84958600, 151.21344700},

 {-33.84996700, 151.21349200},

 {-33.85036800, 151.21349800},

 {-33.85071100, 151.21350600},

 {-33.85107200, 151.21350600},

 {-33.85152100, 151.21351100},

 {-33.85189800, 151.21351400},

 {-33.85228100, 151.21351900},

 {-33.85264600, 151.21352400},

 {-33.85306500, 151.21352700},

 {-33.85345100, 151.21353200},

 {-33.85383800, 151.21354800},

 {-33.85425700, 151.21357300},

 {-33.85470900, 151.21358900},

 {-33.85514600, 151.21360700},

 {-33.85553500, 151.21362900},

112

 {-33.85592100, 151.21364500},

 {-33.85627900, 151.21365600},

 {-33.85670300, 151.21367700},

 {-33.85708300, 151.21369600},

 {-33.85742200, 151.21370700},

 {-33.85785400, 151.21372300},

 {-33.85824200, 151.21374400},

 {-33.85866300, 151.21379500},

 {-33.85904800, 151.21384900},

 {-33.85939800, 151.21387300},

 {-33.85980300, 151.21389400},

 {-33.86016600, 151.21389200},

 {-33.86053800, 151.21387300},

 {-33.86091200, 151.21385200},

 {-33.86131100, 151.21381900},

 {-33.86172100, 151.21379000},

 {-33.86207900, 151.21380600},

 {-33.86245600, 151.21378200},

 {-33.86292800, 151.21360700},

 {-33.86329300, 151.21343900}

 };

 private double[][] GG1 = {

 {-33.86297200, 151.21366100},

 {-33.86332000, 151.21349200}

 };

 private double[][] FFHH2 = {

 {-33.86373400, 151.21327200},

 {-33.86411100, 151.21313000},

 {-33.86452000, 151.21308200},

 {-33.86491000, 151.21315700},

 {-33.86526900, 151.21334200},

 {-33.86560900, 151.21358900},

 {-33.86594600, 151.21399100},

 {-33.866249,151.214557}

 };

 private double[][] EEII = {

 {-33.86606200, 151.21389400},

 {-33.86576100, 151.21350800},

 {-33.86536000, 151.21321100},

 {-33.86493500, 151.21300400},

 {-33.86442200, 151.21296100},

 {-33.86396800, 151.21306600},

113

 {-33.86355400, 151.21324300},

 {-33.86309900, 151.21346800},

 {-33.86260500, 151.21366400},

 {-33.86210400, 151.21371700},

 {-33.86162900, 151.21371200},

 {-33.86112400, 151.21371700},

 {-33.86057800, 151.21372600},

 {-33.86001700, 151.21372600},

 {-33.85950700, 151.21372000},

 {-33.85902100, 151.21369100},

 {-33.85851600, 151.21362600},

 {-33.85800100, 151.21357800},

 {-33.85746700, 151.21354600},

 {-33.85697900, 151.21351600},

 {-33.85644900, 151.21347600},

 {-33.85595900, 151.21346300},

 {-33.85545700, 151.21344400},

 {-33.85490100, 151.21342500},

 {-33.85437700, 151.21340400},

 {-33.85386700, 151.21338000},

 {-33.85335700, 151.21336300},

 {-33.85282500, 151.21334700},

 {-33.85232100, 151.21332600},

 {-33.85176000, 151.21329600},

 {-33.85126300, 151.21328000},

 {-33.85073700, 151.21325100},

 {-33.85023800, 151.21322900},

 {-33.84977300, 151.21320500},

 {-33.84927800, 151.21315700},

 {-33.84879500, 151.21310600},

 {-33.84831200, 151.21302800},

 {-33.84785700, 151.21289700},

 {-33.84745400, 151.21270900},

 {-33.84700400, 151.21254800},

 {-33.84657400, 151.21239800},

 {-33.84608800, 151.21222600},

 {-33.84559200, 151.21205400},

 {-33.84509000, 151.21186900},

 {-33.84466900, 151.21166000},

 {-33.84421700, 151.21144000},

 {-33.84373100, 151.21121800},

 {-33.84322600, 151.21103500},

 {-33.84272000, 151.21085300},

 {-33.84227200, 151.21067000},

114

 {-33.84189400, 151.21046700},

 {-33.84159100, 151.21031900},

 {-33.841107,151.210185}

 };

 //lane cove

 private double[][] JJNN1 = {

 {-33.80124200, 151.14465100},

 {-33.80156600, 151.14510400},

 {-33.80185800, 151.14550600},

 {-33.80215200, 151.14586000},

 {-33.80248600, 151.14626300},

 {-33.80281200, 151.14665700},

 {-33.80315300, 151.14709400},

 {-33.80344000, 151.14749400},

 {-33.80374300, 151.14795000},

 {-33.80404000, 151.14843800},

 {-33.80434500, 151.14900400},

 {-33.80459500, 151.14953800},

 {-33.80482600, 151.15005800},

 {-33.80504300, 151.15058400},

 {-33.80525900, 151.15110700},

 {-33.80546200, 151.15166500},

 {-33.80566000, 151.15215500},

 {-33.80590300, 151.15264400},

 {-33.80617300, 151.15308300},

 {-33.80647100, 151.15352100},

 {-33.80679400, 151.15398500},

 {-33.80708000, 151.15435200},

 {-33.80739600, 151.15477900},

 {-33.80766600, 151.15516800},

 {-33.80793500, 151.15555900},

 {-33.80819800, 151.15599600},

 {-33.80847000, 151.15647900},

 {-33.80870000, 151.15694000},

 {-33.80893600, 151.15744200},

 {-33.80916300, 151.15797000},

 {-33.80937500, 151.15853400},

 {-33.80958200, 151.15915600},

 {-33.80973200, 151.15968400},

 {-33.80988100, 151.16028500},

 {-33.81000800, 151.16086700},

 {-33.81011900, 151.16140900},

115

 {-33.81024000, 151.16205000},

 {-33.81035300, 151.16262700},

 {-33.81045600, 151.16325700},

 {-33.81054500, 151.16383400},

 {-33.81063000, 151.16438400},

 {-33.81071700, 151.16499000},

 {-33.81079900, 151.16551000},

 {-33.81089700, 151.16603900},

 {-33.81102700, 151.16662600},

 {-33.81114000, 151.16715400},

 {-33.81130300, 151.16765900},

 {-33.81148600, 151.16827300},

 {-33.81166600, 151.16884100},

 {-33.81182000, 151.16932200}

 };

 private double[][] OO2 = {

 {-33.81192900, 151.16991400},

 {-33.81203400, 151.17047200},

 {-33.81214100, 151.17101700},

 {-33.81218100, 151.17159900},

 {-33.81220100, 151.17214600},

 {-33.81223000, 151.17277900},

 {-33.81225000, 151.17338500},

 {-33.81227200, 151.17399900},

 {-33.81229500, 151.17461400},

 {-33.81224100, 151.17519300},

 {-33.81218300, 151.17574000},

 {-33.81213200, 151.17617700}

 };

 private double[][] JJNN2 = {

 {-33.81201400, 151.17004000},

 {-33.81211600, 151.17059800},

 {-33.81219900, 151.17125000},

 {-33.81224100, 151.17182700},

 {-33.81227900, 151.17252400},

 {-33.81233000, 151.17319500},

 {-33.81237000, 151.17375800},

 {-33.81237700, 151.17431300},

 {-33.81235900, 151.17495400},

 {-33.81228600, 151.17553600},

 {-33.81223400, 151.17609900},

 {-33.81219000, 151.17667900},

116

 {-33.81215900, 151.17729600},

 {-33.81216500, 151.17794200},

 {-33.81219200, 151.17848900},

 {-33.81225200, 151.17908700},

 {-33.81233500, 151.17962900},

 {-33.81244800, 151.18020300},

 {-33.81256600, 151.18070500},

 {-33.81268200, 151.18120600},

 {-33.812845,151.181845}

 };

 private double[][] KKMM1 = {

 {-33.81284300, 151.18148300},

 {-33.81271100, 151.18086600},

 {-33.81258900, 151.18025400},

 {-33.81249300, 151.17969400},

 {-33.81241700, 151.17912000},

 {-33.81233000, 151.17848100},

 {-33.81233500, 151.17786200},

 {-33.81235000, 151.17723100},

 {-33.81241300, 151.17649900},

 {-33.81248200, 151.17592800},

 {-33.81257100, 151.17533000},

 {-33.81262400, 151.17480400},

 {-33.81265300, 151.17424100},

 {-33.81266200, 151.17363200},

 {-33.81265100, 151.17300700},

 {-33.81260700, 151.17249500},

 {-33.81252000, 151.17189600}

 };

 private double[][] LL1 = {

 {-33.81334600, 151.17621500},

 {-33.81293200, 151.17595700},

 {-33.81256900, 151.17624400},

 {-33.81240800, 151.17678300},

 {-33.81267100, 151.17715100},

 {-33.81306300, 151.17705200},

 {-33.81331700, 151.17673000},

 {-33.81345600, 151.17622000},

 {-33.81339800, 151.17565700},

 {-33.81320800, 151.17509900},

 {-33.81299900, 151.17443400},

 {-33.81288100, 151.17387100},

 {-33.81281800, 151.17327200},

117

 {-33.81275600, 151.17268200},

 {-33.81263600, 151.17202800}

 };

 private double[][] KKMM2 = {

 {-33.81241500, 151.17129600},

 {-33.81230800, 151.17070300},

 {-33.81218300, 151.17009900},

 {-33.81201600, 151.16949900},

 {-33.81184200, 151.16888700},

 {-33.81164200, 151.16816300},

 {-33.81147400, 151.16743900},

 {-33.81138800, 151.16682400},

 {-33.81124900, 151.16613500},

 {-33.81112000, 151.16551500},

 {-33.81099300, 151.16489100},

 {-33.81085500, 151.16423900},

 {-33.81075200, 151.16359200},

 {-33.81065700, 151.16295100},

 {-33.81055900, 151.16236700},

 {-33.81044900, 151.16171700},

 {-33.81034500, 151.16107400},

 {-33.81022400, 151.16041900},

 {-33.81006800, 151.15973500},

 {-33.80984300, 151.15906700},

 {-33.80955300, 151.15842100},

 {-33.80933100, 151.15781200},

 {-33.80908300, 151.15721400},

 {-33.80880200, 151.15661900},

 {-33.80850800, 151.15605500},

 {-33.80819400, 151.15550800},

 {-33.80782800, 151.15495300},

 {-33.80751400, 151.15446500},

 {-33.80715300, 151.15395200},

 {-33.80679000, 151.15347200},

 {-33.80645100, 151.15296000},

 {-33.80615700, 151.15243700},

 {-33.80586700, 151.15186000},

 {-33.80562000, 151.15127800},

 {-33.80537700, 151.15067500},

 {-33.80514700, 151.15009500},

 {-33.80490400, 151.14954600},

 {-33.80462600, 151.14899600},

 {-33.80433600, 151.14845700},

 {-33.80403700, 151.14794200},

118

 {-33.80370100, 151.14743700},

 {-33.80336400, 151.14695500},

 {-33.80295600, 151.14645800},

 {-33.80253100, 151.14597600},

 {-33.80210500, 151.14550900},

 {-33.80173900, 151.14510700},

 {-33.80138300, 151.14468500},

 {-33.801024,151.144165}

 };

 }

