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WTC-SIG “RISE” & other IEEE-COMSOC activities
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Current Wireless Networks: No Control of  Radio Waves

“Dumb” Wireless
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In conventional networks:
 We usually perceive the environment as an

“unintentional adversary” to communication

 We usually optimize only the end-points of the
communication network

 We have no control of the environment, which is
viewed as a passive spectator: we just adapt to it

… WHAT IF …



Smart Radio Environments

18



Smart Radio Environments

19

Smart Wireless



Smart Radio Environments

20

Smart Wireless



Smart Radio Environments

21

Smart Wireless

… from adaptation to …

Control & Programmability
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Control & Programmability: Joint Optimization
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Control & Programmability: Joint Optimization
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Reconfigurable Intelligent Surfaces (RISs)
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Without an RIS: From Reflections …
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With an RIS: To Smart Reflections …
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… RISs are more than just “smart reflections” …
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RISs for Wireless Communications
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RISs for Wireless Communications
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How To Construct an RIS ?

RISs can be built in different ways, which include:

 Implementations based on large arrays of inexpensive
antennas that are usually spaced half of the wavelength
apart

 Metamaterial-based planar or conformal large surfaces
whose scattering elements have sizes and inter-distances
much smaller than the wavelength



How Can We Design Smart Radio Environments ?

41

RISs: Tiny Antennas Spaced ~λ/2 (e.g., ScatterMIMO)
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Univ. California
San Diego

MobiCom 2020
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Aalto University
Physics Appl. 2017
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RISs: Metasurfaces Spaced < λ/2 
(e.g., Perfect Anomalous Reflection)

How, 
without active elements?

Preflection = Pincidence
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RISs: Metasurfaces Spaced < λ/2 
(local design vs. non-local design)

Relation between the incident and reflected EM fields:

 Incident vs. reflected power flow:

         reflected incide incident reflectent dex ,p1E E j      

   reflected incident 0P P 

locally passive implementation
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RISs: Metasurfaces Spaced < λ/2 
(local design vs. non-local design)

Relation between the incident and reflected EM fields:

 Incident vs. reflected power flow:
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RISs: Metasurfaces Spaced < λ/2 
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RISs: Metasurfaces Spaced < λ/2 
(local design vs. non-local design)

Relation between the incident and reflected EM fields:

 Incident vs. reflected power flow:

    reflected incident

Surface
0P P 

globally passive implementation
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RISs: Metasurfaces Spaced < λ/2 
(e.g., Perfect Anomalous Reflection  non-local design)

        reflected incident reflected incident

Surface
0 but 0P P P P  

without using active elements  surface waves
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RISs: Metasurfaces Spaced < λ/2 
(local design vs. non-local design: Net Power Flow)
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RISs: Metasurfaces Spaced < λ/2 
(local design vs. non-local design: Net Power Flow)
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RISs: Metasurfaces Spaced < λ/2 
(local design vs. non-local design: Net Power Flow)
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RISs: Metasurfaces Spaced < λ/2 
(local design vs. non-local design)
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A non-local design allows one to realize

Globally Passive Structures
(with) High Power Efficiency

(for) Large Angles of  Reflection

RISs: Metasurfaces Spaced < λ/2 
(local design vs. non-local design)
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Conceptual Structure
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Homogenizable
… from sub-wavelength scatterers …
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Homogenizable
… to a continuous sheet of  currents …
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Surface Susceptibilities / Impedances

Perfect Anomalous Reflection
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Surface Susceptibilities / Impedances: Applicability
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Passive vs. Nearly-Passive

Non-reconfigurable surfaces may be passive

Reconfigurable (or dynamic) surfaces cannot be passive
but may be nearly-passive

 An RIS is nearly-passive if the following three
conditions are fulfilled simultaneously:
 No power amplification is used after configuration (during

the normal operation phase)

 Minimal digital signal processing capabilities are needed only
to configure the surface (during the control and
programming phase)

 Minimal power is used only to configure the surface (during
the control and programming phase)
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Smart Radio Environments: RIS-Empowered Wireless
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Enhancing Coverage, EE, Rate Through RISs

119Y. Liu, M. Di Renzo, et al., “RISs: Principles & Opportunities”, arXiv:2007.03435
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Were Are We  ?

Professor Stefano Maci, Huawei Antenna Summit 2019
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These structures are often referred to as:

 Large intelligent surfaces (LISs)

 Intelligent reflecting surfaces (IRSs)

 Digitally controllable scatterers (DCSs)

 Software-controllable surfaces

 Reconfigurable intelligent surfaces (RISs)
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July 14, 2020
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Example of  Power Consumption

Compared with other transmission technologies, e.g.,
phased arrays, multi-antenna transmitters, and relays, RISs
require the largest number of scattering elements, but each
of them needs to be backed by the fewest and least costly
components. Also, no power amplifiers are usually needed.

RIS
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Example of  Power Consumption

… no free lunch rule …

Compared with other transmission technologies, e.g.,
phased arrays, multi-antenna transmitters, and relays, RISs
require the largest number of scattering elements, but each
of them needs to be backed by the fewest and least costly
components. Also, no power amplifiers are usually needed.

RIS
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Example: RIS vs. Relay



Nearly-Passive RISs: Advantages and Limitations

138

Example: RIS (1.5m = 140 ) vs. Relay (1-antenna)
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Further Information
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How Large/Big Can an RIS Be ?



Nearly-Passive RISs: Advantages and Limitations

141

“ Our prototype has 3,720 inexpensive antennas (at scale, each of the antenna elements is on
the order of a few cents or less) on a 6 square-meter surface. We believe this configuration
may be the largest number of antennas ever used to improve communication links ”

MIT
USENIX 2020

How Large/Big Can an RIS Be ?
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For these reasons, RISs may constitute an emerging and
promising software-defined architecture that can be realized
at reduced cost, size, weight, and power (C-SWaP design)

C-SWaP
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Sustainable wireless design (e.g., low EMF exposure) without 
generating new waves and possibly made of  physically & 

aesthetically unobtrusive and recyclable material

C-SWaP
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… from theory to simulations and experiments…

 Path-Loss – Physics-Based Foundation (SPAWC 2020 TWC)
 M. Di Renzo et al., Analytical Modeling of the Path-Loss for Reconfigurable

Intelligent Surfaces - Anomalous Mirror or Scatterer? (arXiv:2001.10862)

 Joint Encoding – Capacity-Optimal Design (ISIT 2020)
 M. Di Renzo et al., Beyond max-SNR: Joint Encoding for Reconfigurable

Intelligent Surfaces (arXiv:1911.09443)

 SNR Distribution – Improving Signal Reliability (WCL 2020)
 M. Di Renzo et al., Beamforming Through Reconfigurable Intelligent

Surfaces in Single-User MIMO Systems: SNR Distribution and Scaling Laws
in the Presence of Channel Fading and Phase Noise (arXiv:2005.07472)

 Overhead-Aware Design – SE & EE (TWC 2020)
 M. Di Renzo et al., Overhead-Aware Design of Reconfigurable Intelligent

Surfaces in Smart Radio Environments (arXiv:2003.02538)

 … and many others on channel modeling, performance analysis,
spectral & energy efficiency optimization, experiments…
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RISs: Metasurfaces Spaced < λ/2 
(DOCOMO & MetaWave, Jan. 2019)
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RISs: Metasurfaces Spaced < λ/2 
(transparent and dynamic, Jan. 2020)
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What is the Power Scattered by an RIS ?
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Tx
Rx

?
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System Model
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System Model (2D)
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Specular Reflec.     Anomalous Reflec.       Focusing Lens
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System Model (3D)
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Main Theorem (TWC, under submission)
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Main Theorem (TWC, under submission)
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Main Theorem (TWC, under submission)
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Electrically-Large (near-field) vs. Electrically-Small (far-field)
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Electrically-Large (near-field) vs. Electrically-Small (far-field)

dF = 4D2/λ Fraunhofer distance (dF)
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Electrically-Large (near-field) vs. Electrically-Small (far-field)

dF = 4D2/λ Fraunhofer distance (dF)

 0.1x0.1 m2 RIS @ 6 GHz 
 0.8 m

 1.0x1.0 m2 RIS @ 6 GHz   
 80 m

 6 m2 RIS @ 6 GHz        
 480 m
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Electrically-Large (near-field) vs. Electrically-Small (far-field)

dF = 4D2/λ Fraunhofer distance (dF)

 0.1x0.1 m2 RIS @ 6 GHz 
 0.8 m

 1.0x1.0 m2 RIS @ 6 GHz   
 80 m

 6 m2 RIS @ 6 GHz        
 480 m

 0.1x0.1 m2 RIS @ 60 GHz   
 8 m

 1.0x1.0 m2 RIS @ 60 GHz   
 800 m
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Electrically-Large vs. Electrically-Small
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Electrically-Large vs. Electrically-Small
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Electrically-Large vs. Electrically-Small
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Electrically-Large (4) vs. Electrically-Small (5)
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Electrically-Large (4) vs. Electrically-Small (5)
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Electrically-Large (4) vs. Electrically-Small (5)
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Electrically-Large (4) vs. Electrically-Small (5)
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1.5 m RIS @ 28 GHz

*  Exact Integral
○ Electrically-Large
◊ Electrically-Small

d0 d0
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… in submission …



Experimental Validation (joint with Southeast Univ.)

178arXiv:1911.05326
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… from theory to simulations and experiments…

 Path-Loss – Physics-Based Foundation (SPAWC 2020 TWC)
 M. Di Renzo et al., Analytical Modeling of the Path-Loss for Reconfigurable

Intelligent Surfaces - Anomalous Mirror or Scatterer? (arXiv:2001.10862)

 Joint Encoding – Capacity-Optimal Design (ISIT 2020)
 M. Di Renzo et al., Beyond max-SNR: Joint Encoding for Reconfigurable

Intelligent Surfaces (arXiv:1911.09443)

 SNR Distribution – Improving Signal Reliability (WCL 2020)
 M. Di Renzo et al., Beamforming Through Reconfigurable Intelligent

Surfaces in Single-User MIMO Systems: SNR Distribution and Scaling Laws
in the Presence of Channel Fading and Phase Noise (arXiv:2005.07472)

 Overhead-Aware Design – SE & EE (TWC 2020)
 M. Di Renzo et al., Overhead-Aware Design of Reconfigurable Intelligent

Surfaces in Smart Radio Environments (arXiv:2003.02538)

 … and many others on channel modeling, performance analysis,
spectral & energy efficiency optimization, experiments…
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Rethinking Communication-Theoretic Models
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Rethinking Communication-Theoretic Models
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Rethinking Communication-Theoretic Models
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Rethinking Communication-Theoretic Models



Joint Encoding for RISs (index-based modulation)
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Rethinking Communication-Theoretic Models

modulation symbol: s1

RIS phases: R1, …, R12
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Rethinking Communication-Theoretic Models

modulation symbol: s2

RIS phases: R1, …, R12



Joint Encoding for RISs (capacity achieving)
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… from theory to simulations and experiments…

 Path-Loss – Physics-Based Foundation (SPAWC 2020 TWC)
 M. Di Renzo et al., Analytical Modeling of the Path-Loss for Reconfigurable

Intelligent Surfaces - Anomalous Mirror or Scatterer? (arXiv:2001.10862)

 Joint Encoding – Capacity-Optimal Design (ISIT 2020)
 M. Di Renzo et al., Beyond max-SNR: Joint Encoding for Reconfigurable

Intelligent Surfaces (arXiv:1911.09443)

 SNR Distribution – Improving Signal Reliability (WCL 2020)
 M. Di Renzo et al., Beamforming Through Reconfigurable Intelligent

Surfaces in Single-User MIMO Systems: SNR Distribution and Scaling Laws
in the Presence of Channel Fading and Phase Noise (arXiv:2005.07472)

 Overhead-Aware Design – SE & EE (TWC 2020)
 M. Di Renzo et al., Overhead-Aware Design of Reconfigurable Intelligent

Surfaces in Smart Radio Environments (arXiv:2003.02538)

 … and many others on channel modeling, performance analysis,
spectral & energy efficiency optimization, experiments…
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Making Information Transmission More Reliable
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… Amount of  Fading (RMT) ~ 1/N …
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… from theory to simulations and experiments…

 Path-Loss – Physics-Based Foundation (SPAWC 2020 TWC)
 M. Di Renzo et al., Analytical Modeling of the Path-Loss for Reconfigurable

Intelligent Surfaces - Anomalous Mirror or Scatterer? (arXiv:2001.10862)

 Joint Encoding – Capacity-Optimal Design (ISIT 2020)
 M. Di Renzo et al., Beyond max-SNR: Joint Encoding for Reconfigurable

Intelligent Surfaces (arXiv:1911.09443)

 SNR Distribution – Improving Signal Reliability (WCL 2020)
 M. Di Renzo et al., Beamforming Through Reconfigurable Intelligent

Surfaces in Single-User MIMO Systems: SNR Distribution and Scaling Laws
in the Presence of Channel Fading and Phase Noise (arXiv:2005.07472)

 Overhead-Aware Design – SE & EE (TWC 2020)
 M. Di Renzo et al., Overhead-Aware Design of Reconfigurable Intelligent

Surfaces in Smart Radio Environments (arXiv:2003.02538)

 … and many others on channel modeling, performance analysis,
spectral & energy efficiency optimization, experiments…
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Active/Passive Beamforming, Power, Bandwidth
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Active/Passive Beamforming, Power, Bandwidth
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Active/Passive Beamforming, Power, Bandwidth



Overhead-Aware Optimization of  RISs
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Joint Active and Passive Beamforming Optimization



Overhead-Aware Optimization of  RISs
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Joint Spectral/Energy Efficiency Optimization
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EE – Nr = 1 and Nt = 1



Overhead-Aware Optimization of  RISs
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EE – Nr = 1 and Nt = 8



Overhead-Aware Optimization of  RISs
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EE – Nr = 8 and Nt = 8



Programming the Environment: Towards Wireless 2.0
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Wireless 2.0: 6G Wireless + 3G Metasurfaces (JSAC)
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arXiv:2004.09352 (76 pages)
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 H2020 ARIADNE (6 million Euro, Nov. 2019)
 Eurescom, Germany

 University of Piraeus Research Center, Greece

 Centre National de la Recherche Scientifique, France

 CentraleSupelec, France

 University of Oulu, Finland

 Intracom Telecom, Greece

 Fraunhofer Institute for Applied Solid State Physics, Germany

 Aalto University, Finland

 National Centre for Scientific Research Demokritos, Greece

 Telefónica Investigación y Desarrollo, Spain

 Nokia Solutions and Networks, Finland

 RapidMiner GmbH, Germany
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 H2020 PathFinder (185k Euro, May 2021)
 Centre National de la Recherche Scientifique, France

 CentraleSupelec, France

 Institut Langevin, France

 Greenerwave, France

 Pompeu Fabra University, Spain
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 H2020 5G-SmartFact (3.8 million Euro, March 2021)
 Universitat Politècnica de Catalunya, Spain

 I2CAT, Spain

 Aalborg University, Denmark

 Centre National de la Recherche Scientifique, France

 Université Paris-Saclay, France

 Siradel, France

 NEC Laboratories Europe, Germany

 Ingeniarius Lda., Portugal

 Roboception, Germany

 Robert Bosch, Germany

 ABB, Sweden

 Nokia, Denmark

 Universidade de Coimbra, Portugal

 Fundación ESADE, Spain
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 H2020 MetaWireless (4 million Euro, Nov. 2020)
 CNIT, Italy

 Aalto University, Finland

 Centre National de la Recherche Scientifique, France

 Université Paris-Saclay, France

 National Centre for Scientific Research Demokritos, Greece

 Greenerwave, France

 KTH Royal Institute of Technology, Sweden

 NEC Laboratories Europe GmbH, Germany

 Nokia Bell Labs, Finland

 Telefonica I+D, Spain

 Technical University Wien, Austria

 Universitat Pompeu Fabra, Spain

 Wave Up, Italy

 University of Cassino and Southern Lazio, Italy

 Southeast University, China

 EM Simulation Systems, Australia

 Ericsson AB, Sweden

 Paris Sciences et Lettres University, France

 University of Siena, Italy

 Tsinghua University, China

 University of Piraeus, Greece
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 EM-based circuital models

 Path-loss and channel modeling

 Fundamental performance limits

 Robust optimization and resource allocation

 Constrained system design and optimization

 EM-based communications: “Layer-0” networking

 Large-scale networks: Deployment, analysis, optimization

 Ray tracing and system-level simulators

 Beyond far-field communications

 Beyond communications

 Advantages and limitations
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 EM-based circuital models

 Path-loss and channel modeling

 Fundamental performance limits

 Robust optimization and resource allocation

 Constrained system design and optimization

 EM-based communications: “Layer-0” networking

 Large-scale networks: Deployment, analysis, optimization

 Ray tracing and system-level simulators

 Beyond far-field communications

 Beyond communications

 Advantages and limitations
… do RISs bring any (substantial) gains as compared with other 

well-established technologies in wireless networks ?



The Road Ahead: Reconciling COMM, SP, IT, EM, …
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G. Green, “An Essay on the Application of Mathematical Analysis to the
Theories of Electricity and Magnetism”, 1828.

J. C. Maxwell, “A Dynamical Theory of the Electromagnetic Field”, 1865.

C. E. Shannon, “A (The) Mathematical Theory of Communication”, 1948.
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Special Interest Group @ WTC: “RISE”
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Special Interest Group @ WTC: “RISE”
https://sites.google.com/view/ieee-comsoc-wtc-sig-rise
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Special Interest Group @ WTC: “RISE”

Officers

Chair – Marco Di Renzo, CNRS & Paris-Saclay University, France
Vice-Chair – Yuanwei Liu, Queen Mary University of London, UK
Vice-Chair – Chau Yuen, Singapore University Technology & Design, Singapore
Secretary – Alexios Aravanis, CentraleSupelec, France
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Best Readings “RIS” @ COMSOC (submitted)

Contributors

Marco Di Renzo, CNRS & Paris-Saclay University, France
Yuanwei Liu, Queen Mary University of London, UK
Chau Yuen, Singapore University of Technology and Design, Singapore
Alexios Aravanis, CentraleSupelec, France
Alessio Zappone, University of Cassino and Southern Lazio, Italy
Linglong Dai, Tsinghua University, China
Qingqing Wu, University of Macau, China
Vincenzo Sciancalepore, NEC Europe Labs, Germany
Ertugrul Basar, Koc University, Turkey
Merouane Debbah, Huawei France R&D, France
Mohamed-Slim Alouini, King Abdullah Univ. of Science & Technology, Saudi Arabia
Naofal Aldhahir, The University of Texas at Dallas, USA
Shi Jin, Southeast University, China
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Emerging Technology Initiative on “RIS” @ 
COMSOC (to be presented on 29 July – ETC meeting)

Chairs & Vice-Chairs (proposed, ad interim) + 20 Officers

Industrial Chair
Vincenzo Sciancalepore, NEC Laboratories Europe GmbH, Germany
Academic Chair
Ertugrul Basar, Koç University, Turkey

Vice-Chairs
Alessio Zappone, University of Cassino and Southern Lazio, Italy
Chau Yuen, Singapore University of Technology and Design, Singapore

Secretary
Alexios Aravanis, CentraleSupelec, France

ETC Liason Officer
Marco Di Renzo, CNRS & Paris-Saclay University, France
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Special Interest Group on “RIS” @ SPCC TC           
(to be presented on 28 July – TC meeting)

Title (proposed): REconFigurabLE Intelligent Surfaces for Signal Processing
and CommunicatIONS (REFLECTIONS)

Chairs, Vice-Chairs, Secretary (proposed, ad interim)

Chair:
Alessio Zappone, University of Cassino and Southern Lazio, Italy

Vice-Chairs:
Daniel Benevides da Costa, Federal University of Ceará, Brazil
Mark Flanagan, University College Dublin, Ireland

Secretary
Alexios Aravanis, CentraleSupelec, France

ETC Liaison and Best Readings Officer
Marco Di Renzo, CNRS & Paris-Saclay University, France
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Just Closed Special Issue (JSAC)
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Open Special Issues

Reconfigurable Intelligent Surface-Based Communications for 6G Wireless
Networks, IEEE Open Journal of the Communications Society, First Quarter
2021.
https://www.comsoc.org/publications/journals/ieee-
ojcoms/cfp/reconfigurable-intelligent-surface-based-communications-6g
Manuscript Submission Deadline: 1 September 2020

Intelligent Surfaces for Smart Wireless Communications, IEEE Transactions
on Cognitive Communications and Networking, Second Quarter 2021.
https://www.comsoc.org/publications/journals/ieee-tccn/cfp/intelligent-
surfaces-smart-wireless-communications
Manuscript Submission Deadline: 1 September 2020

Wireless Communications with Reconfigurable Intelligent Surfaces, China
Communications, Feature Topic, Vol.18, No.2, 2021.
Manuscript Submission Deadline: 15 August 2020
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Workshop @ IEEE GLOBECOM 2020

Workshop paper submission 
deadline: August 1, 2020
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WTC-SIG “RISE” & co.

Interested in joining? 

Please, send an email to:

ieee.comsoc.wtc.sig.rise@gmail.com



Thank You For Having Me… Appreciated…
 ICT-ARIADNE (H2020, 5G-PPP, grant 871464)

 November 1st, 2019 – October 31st, 2022

A collaborative research project on RISs & AI

Marco Di Renzo, Ph.D., H.D.R.
Directeur de Recherche CNRS (CNRS Professor)
Highly Cited Researcher, Web of  Science
IEEE Fellow, IEEE Communications Society
Editor-in-Chief, IEEE Communications Letters
Distinguished Lecturer, IEEE Communications Society
Distinguished Lecturer, IEEE Vehicular Technol. Society
Nokia Foundation Visiting Professor, Aalto Univ., Finland

Paris-Saclay University
Laboratory of  Signals and Systems (L2S)
CNRS and CentraleSupelec

E-Mail: marco.direnzo@centralesupelec.fr


