
Edge versus Host Pacing of TCP Traffic

in Small Buffer Networks

Hassan Habibi Gharakheili

School of Electrical Engineering

and Telecommunications

UNSW, Sydney, Australia

Email: h.habibi@student.unsw.edu.au

Arun Vishwanath

Centre for Energy-Efficient

Telecommunications

University of Melbourne, Australia

Email: arun.v@unimelb.edu.au

Vijay Sivaraman

School of Electrical Engineering

and Telecommunications

UNSW, Sydney, Australia

Email: vijay@unsw.edu.au

Abstract—As packet switching speeds scale to Terabits-per-
second and beyond, power considerations are increasingly forcing
core router manufacturers to adopt all-optical and hybrid opto-
electronic single-chip switching solutions. Such routers will have
small buffers, typically in the range of a few tens of Kilobytes,
causing potentially increased packet loss, with adverse impact
on end-to-end TCP performance. We recently proposed and
analysed the benefits of pacing traffic at the network edge for
open-loop real-time traffic in a small buffer network. However,
no detailed study of the efficacy of edge pacing on closed-loop
TCP performance has been undertaken for such a network.

In this paper, we consider two pacing methods - TCP pacing
at the end-hosts, and traffic pacing by the network edge - in the
context of small buffer networks, and undertake a comprehensive
comparison. Our contributions are three-fold: First, we show
via extensive simulations that under most scenarios (considering
bottleneck and non-bottleneck core links, low-speed and high-
speed access links, long- and short-lived TCP flows, and different
variants of TCP) edge pacing performs as well or better than
host pacing in terms of link utilisation (TCP throughputs) and
average per-flow goodputs. Second, we provide analytical insight
into the setting of the edge pacing delay parameter, showing how
the efficacy of pacing relates to bottleneck buffer size. Third,
we discuss incremental deployment of pacing, highlighting that
unlike host pacing that requires adoption by a critical mass of
users, edge pacing can be deployed relatively easily under service
provider control to facilitate rapid migration to core networks
with small buffers.

I. INTRODUCTION

As Internet traffic continues its inexorable growth, core

routers are struggling to keep pace with the required switching

capacity. Router scaling is primarily limited by power density

– a typical rack today with a throughput of a Terabit-per-

second consumes tens of KiloWatts, and at current trends,

scaling its capacity to Petabits-per-second would require hun-

dreds of KiloWatts of power, alongside complex cooling

mechanisms. To sustain capacity growth, router manufacturers

are therefore increasingly looking to photonics, including all-

optical packet switching solutions and integrated single-chip

systems employing hybrid optics and electronics. In order to

perform energy-efficient high-speed packet forwarding, such

architectures necessarily sacrifice many non-critical function-

alities, among them buffering of packets during periods of

congestion. Recent research studies on such architectures have

argued, based on theory, simulation, and experimentation, that

core router buffer size can safely be reduced from Gigabytes

down to Megabytes [1] or Kilobytes [2], and can even be

nearly eliminated [3], though with some loss in performance.

We refer the reader to our survey article [4] for a comprehen-

sive discussion on the router buffer sizing debate.

When router buffers in the network core are very small

(sub-50 KB), contention and congestion at the output link

can lead to high packet loss, significantly degrading end-to-

end traffic performance. We have shown in [5] that real-time

traffic streams can experience poor quality, and in [6] that TCP

flows can have reduced throughput. Several mechanisms have

been proposed for mitigating this problem, such as using wave-

length conversion [7] in the core to alleviate contentions, using

packet-level forward-error-correction (FEC) at edge nodes to

recover from core loss [3], and traffic pacing at the edge prior

to injection into the core [5], [8], [9]. While all these methods

have their relative merits, in this paper we focus on pacing,

since it is low-cost (compared to wavelength conversion), is

a well-known concept (studied under various names such as

rate-limiting, shaping, smoothing, etc.), and is yet relatively

unexplored in the context of small buffer networks.

Traffic can be paced in various parts of the network: by

end-hosts as part of their TCP stack (host pacing), by the

access link connecting the user to the network (link pacing),

or by the edge node that connects into the core network (edge

pacing). Host pacing (also known as TCP pacing) modifies

the end-user client TCP stack to spread the transmission of

packets from the TCP window over the round-trip-time (RTT)

of the connection. Many researchers have studied host pacing

over the past decade [10], [11], [12], and the general belief

is that host pacing can, under most circumstances, improve

overall TCP throughput. However, deploying host pacing has

been stymied by the fact that the network operator does not

have control over user devices to enforce pacing, and hosts

that pace their TCP transmissions can be unfairly penalised

over hosts that do not [11].

Link pacing relies on the access link being of much lower

capacity than links deeper in the network, ensuring that packets

belonging to any single flow are spaced apart when they

arrive at the core link. This has been leveraged by works

such as [2] to argue that neither can a single flow contribute

bursty traffic to the core node, nor are many flows likely



2

to synchronise to create bursts, and hence loss is contained.

Though this argument applies to typical home users, entities

such as enterprises, universities, and data centers are often

serviced with high-speed links capable of generating bursty

traffic that does not fit this assumption, necessitating explicit

mechanisms (at the host or edge) to reduce burstiness.

Edge pacing relies on explicit smoothing of traffic by edge

nodes prior to injection into the small buffer core network.

In [5] we proposed a method that adjusts traffic release rate

to maximise smoothness, subject to a given upper bound

on packet delay. We proved the optimality of our scheme,

analysed its burstiness and loss performance, and evaluated its

impact for open-loop real-time traffic, though not for closed-

loop TCP. A similar (though sub-optimal) pacing method was

proposed in [8] to vary the edge traffic release rate based on

queue backlog. However, the impact of edge pacing on TCP

performance was only cursorily studied, and no appropriate

guidelines on parameter settings were provided.

Our goal in this paper is to undertake a comprehensive

comparison between host and edge pacing in the context

of small buffer core networks, by evaluating their impact

on end-to-end TCP performance. We seek to gain insights

into the network and traffic characteristics that influence their

efficacy, the parameter settings that maximise their benefits,

and deployment strategy that make them practical in real

networks. Our specific contributions are:

• We show using extensive simulations of various sce-

narios, considering small-buffered bottleneck and non-

bottleneck links, low-speed and high-speed access links,

short- and long-lived flows, different number of flows,

and different variants of TCP, that edge pacing achieves

as good or better performance than host pacing in terms

of link throughput and per-flow goodput.

• We develop an analytical model that sheds light into

the selection of the edge pacing delay parameter that

maximises TCP throughput for different bottleneck link

buffer sizes.

• We argue that the benefits of edge pacing can be easily

realised under tight operator control in real networks,

unlike host pacing that requires a critical mass of uptake

by end-users for it to be effective.

Our intention is to show network operators that from a per-

formance, configuration and deployment point-of-view, edge

pacing presents an attractive alternative to host pacing as a

mechanism for enabling scalable and energy-efficient core

networks having small-buffers in the near future.

The rest of this paper is organised as follows: Section II

gives requisite background on traffic pacing studies. In Sec-

tion III we present comprehensive simulation studies compar-

ing the performance of host and edge pacing, and in Section IV

we develop analytical insights into appropriate parameter set-

tings. Section V discusses the deployment strategy for pacing,

and the paper is concluded in Section VI.

II. BACKGROUND AND RELATED WORK

It is well-known that TCP traffic is bursty at short-time

scales [13] because of its self-clocking mechanism and queue-

ing of packets at the bottleneck link. Bursty traffic is largely

undesirable since it causes large queueing delays, higher

packet loss, and degradation in end-to-end throughput. As

a result, several researchers have proposed to pace TCP at

the end-hosts, an idea initially suggested by [14], to reduce

burstiness. A comprehensive simulation study to evaluate the

benefits of end-host TCP (Reno) pacing is undertaken by [11],

who argue that pacing can result in lower throughput and

higher latencies for most realistic network settings. Since

packets across different TCP flows are evenly spaced, the

flows can become synchronised and experience simultaneous

losses at the bottleneck link, leading to lower throughput than

unpaced flows. They also point out that paced flows perform

poorly when coexisting with unpaced flows in the network.

However, as noted in a more recent study [10], there is

no consensus on whether end-hosts should pace TCP. The

paper evaluates via analysis and simulations the impact of

pacing not just TCP Reno, but also newer protocols such as

New Reno, SACK and FACK. The authors conclude that it

is indeed beneficial to pace TCP at the end-hosts, and that

the performance when all flows pace is better than when

no flows pace. Further, when the fraction of paced flows

exceeds a critical value, both the paced and unpaced flows gain

in performance. The experimental study using a high-speed

wide area network [15] showed that the overall throughput

of parallel TCP transfers improves substantially when pacing

is employed, while [16] found that pacing can improve the

aggregate TCP throughput of multiple Reno and FACK flows

in large bandwidth-delay product networks by 20%.

It must be mentioned that the above studies assume end-

host pacing and consider bottleneck link with large buffers

(i.e. at least an order of magnitude more than our study).

This study differs in two ways: (a) We consider pacing traffic

at the network edge and compare it to TCP pacing by end-

hosts, and (b) We consider small buffers (sub-50 KB) at the

bottleneck link, motivated by the move towards all-optical

and hybrid opto-electronic switching solutions. Our earlier

work [5] developed an edge pacing method (details described

next) for reducing traffic burstiness at the edge of the small

buffer core network, proved its optimality, and evaluated its

performance via native simulation for open-loop real-time

traffic. Parallel to our work, [8] also developed a similar

(though sub-optimal) edge pacing mechanism termed Queue

Length Based Pacing (QLBP). However, their method uses

three parameters (compared to one in our case), and does not

undertake a comprehensive study of TCP performance.

In contrast, our work in this paper is the first to undertake

a thorough evaluation of closed-loop TCP performance (by

implementation in ns-2) in the presence of edge and host

pacing in a small buffer network, under a variety of network

settings using both aggregate throughput and average per-flow

goodput as metrics.



3

τ1 τ2 τ3 τk0 T

delay bound

wo
rk

lo
ad

 (b
yt

es
)

arrival curve A(t)

deadline curve D(t)

a feasible exit curve S(t)

time

Fig. 1. Arrival, deadline and exit curves for an example workload

A. Edge pacing mechanism

The edge pacing mechanism used in this study is based on

the optimal algorithm we developed in [5]. Our pacer, unlike

a shaper that releases traffic at a given rate, accepts arbitrary

traffic with given delay constraints, and releases traffic that is

“smoothest” (i.e. has lowest maximum rate and rate variance)

subject to the time-constraints of the traffic. Fig. 1 depicts an

example traffic arrival curve A(t) (i.e. the cumulative arriving

workload in units of bytes), from which the deadline curve

D(t) (i.e. the cumulative workload that has to be served so as

not to violate any deadlines) is derived, based on configured

parameter d corresponding to the maximum delay that the

pacer is allowed to introduce. A feasible exit curve S(t) must

lie in the region bounded above by the arrival curve A(t), and

below by the deadline curve D(t). Amongst all feasible exit

curves, we have shown that the one which corresponds to the

smoothest output traffic is the shortest path between the origin

(0, 0) and (T,D(T )), as shown in Fig. 1. In our earlier work

we showed that an online implementation of optimal pacer

would compute the convex hull of the deadline curve, and use

the corresponding instantaneous slope as the rate at which to

release traffic. We also showed that the convex hull can be

computed in O(1) amortised time, and is amenable for high-

speed hardware implementation. The pacing delay bound d is

a critical parameter that determines the window of time over

which pacing is effective – when d = 0, pacing is in effect

disabled, since packets cannot be held back by the pacer. As

the delay bound d increases, the traffic becomes increasingly

smooth. Further details of the pacing mechanism, and an

analysis of its impact on traffic burstiness and loss performance

for open-loop real-time traffic, can be found in [5].

III. EFFICACY OF EDGE PACING FOR TCP TRAFFIC

The above mentioned pacer was implemented in version

2.33 of the ns-2 network simulator. We created a new link

type, by extending the drop-tail link, and incorporated the

computation of the convex hull as per the O(1) amortised time

algorithm. The patch for end-host TCP pacing was obtained

from [17] and runs in ns-2 version 2.28.

Using the implementation in ns-2, we conducted extensive

simulations to evaluate the effectiveness of pacing TCP traffic

at the network edge, and compared with the performance of

Fig. 2. ns-2 network topology

non-paced and host-paced flows using aggregate TCP through-

put and average per-flow goodput as metrics. We use goodput

as a metric since it has been argued to be the most important

measure for end-users [18], who want their transactions to

complete as fast as possible. All simulations in this section

use an edge pacer delay bound of 10ms; we will justify this

choice via analysis in the next section.

A. Small buffer link as the bottleneck

0 5 10 15 20 25 30
50

60

70

80

90

100

Buffer size (KB)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

 

 

Edge−paced

Host−paced

Unpaced

(a) Aggregate TCP throughput

0 5 10 15 20 25 30
0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)
A

v
e
ra

g
e
 p

e
rf

lo
w

 g
o
o
d
p
u
t 
(M

b
p
s
)

 

 

Edge−paced 

Host−paced 

Unpaced

(b) Average per-flow goodput

Fig. 3. TCP performance with small buffer link as the bottleneck

Our simulations were conducted on the single link dumbbell

topology shown in Fig. 2. Ten ingress edge links (ES1-ES10)

feed traffic into the core link C0-C1, with each edge link in

turn fed by hundred access links. Each end-host has one TCP

(Reno) agent, and the network therefore simulates 1000 long-

lived TCP flows (short-lived flows and different TCP versions

are discussed below). Similarly the TCP flows are sinked by

the 1000 end-hosts on the right, which are connected to ten

egress edge links (ED1-ED10) . The propagation delays on

the access and edge links are uniformly distributed between

[1, 5] ms and [5, 15] ms respectively, while the core link C0-

C1 has delay 100 ms. RTTs therefore vary between [224, 280]
ms. The access link speeds are uniformly distributed in [8, 12]
Mbps, all edge links operate at 100 Mbps, and the core link

also at 100 Mbps. For these simulation settings it can be seen

that the core link is the bottleneck. FIFO queue with drop-

tail queue management is employed at C0, and the queue size

is varied in terms of KB. Data and ACK packet sizes are

1000 and 40 Bytes respectively. The start time of the TCP

flows is uniformly distributed in the interval [0, 10] sec and the



4

simulation is run for 400 sec. Data in the interval [100, 400]
sec is used in all our calculations so as to capture the steady-

state behaviour of the network.

Fig. 3(a) shows the aggregate TCP throughput as a function

of core link buffer size. When buffers are very small (i.e 2-3

KB), packet loss rates at the core link were found to be in

excess of 15% for the three scenarios shown in the figure.

The benefit of pacing packets (at the host or the edge) is thus

outweighed by the high loss rates, and the aggregate TCP

throughput is no better than when all flows are unpaced. On

the other hand, the efficacy of pacing packets at the edges is

pronounced in the small buffer regime (i.e. 5-15 KB), reflected

in the aggregate TCP throughput shown in Fig. 3(a) as well

as the average per-flow goodput in Fig. 3(b). At 5 KB worth

of buffering, the per-flow goodput for host and unpaced flows

is ≈ 82 Kbps, while edge pacing achieves 93 Kbps. Edge

pacing therefore outperforms host pacing by over 13%. As

core buffers get larger (i.e. > 20 KB), the utilisation of the link

C0-C1 is near-100%, and therefore there is no room for pacing

to improve TCP performance, suggesting that edge pacing is

particularly beneficial in the region of 5-15 KB buffers.

B. Number of TCP flows

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

Buffer size (KB)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

 

 

Edge−paced (1000 flows)

Host−paced (1000 flows)

Unpaced (1000 flows)
Edge−paced (100 flows)

Host−paced (100 flows)

Unpaced (100 flows)

(a) Aggregate TCP throughput

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Buffer size (KB)

A
v
e
ra

g
e
 p

e
rf

lo
w

 g
o
o
d
p
u
t 
(M

b
p
s
)

 

 

Edge−paced (1000 flows)

Host−paced (1000 flows)

Unpaced (1000 flows)

Edge−paced (100 flows)

Host−paced (100 flows)

Unpaced (100 flows)

(b) Average per-flow goodput

Fig. 4. TCP performance with 100 and 1000 flows

We now study the efficacy of the pacer for varying number

of TCP flows. We use the same setup as before, but alter the

number of access links (10, 50, 100) feeding into the edge, to

simulate 100, 500 and 1000 flows respectively. The resulting

aggregate TCP throughput and average per-flow goodput are

shown in Fig. 4 (plots corresponding to 500 flows closely

follow that of 1000 flows, not plotted for the sake of clarity).

In contrast to the previous case of 1000 flows where edge

pacing consistently outperformed host pacing over the entire

buffer size range, when the number of flows is small (100)

and buffer sizes are in a certain region (10-30 KB), we find

that host pacing gives better performance than edge pacing.

We believe this is because of the following: burstiness at the

bottleneck buffers can arise in two ways – (1) an individual

flow itself can generate bursty traffic and contribute to in-

creased loss, or (2) packets from multiple sources might arrive

simultaneously to cause loss. When the number of flows is

small, the burstiness of an individual flow is greater as its TCP

window expands to a larger value, and this contributes more

to loss than the simultaneous arrival of packets from multiple

flows. This can be seen to be trivially true in the case of only

one flow in the network. Conversely when the number of flows

is large, loss is more likely to happen due to simultaneous

arrival of packets from several flows rather than due to many

packets from one flow being in the buffer. Host pacing is more

effective at reducing source burstiness (scenario 1) because

it spaces traffic over a larger window (i.e. a RTT), whereas

edge pacing deals better with the latter (scenario 2) since it

can space the release of packets arriving simultaneously from

multiple flows. This explains why pacing at the hosts is more

beneficial than pacing at the edge when the number of flows

is small. In practice however, core links typically have tens of

thousands of TCP flows traversing through them, suggesting

that it is better to pace the aggregate (at the edges) rather than

the individual (at the host) for improved TCP performance.

C. High-speed access links

0 5 10 15 20 25 30

50

60

70

80

90

100

Buffer size (KB)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

 

 

Edge−paced

Host−paced

Unpaced

(a) Aggregate TCP throughput

0 5 10 15 20 25 30

0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)

A
v
e

ra
g
e
 p

e
rf

lo
w

 g
o
o
d
p
u
t 
(M

b
p
s
)

 

 

Edge−paced

Host−paced

Unpaced

(b) Average per-flow goodput

Fig. 5. TCP performance with high-speed access links

We now investigate the merits of pacing TCP traffic in

the presence of high-speed access links arising from data

centres, enterprise and university networks, etc. We use the

setup discussed above for 1000 flows, the difference being

that access links now operate at 100 Mbps. The core link

still remains the bottleneck. The bottom curve in Fig. 5(a)

shows that at 5 KB of buffering, unpaced flows obtain an

aggregate throughput of 77 Mbps, host pacing (middle curve)

increases the throughput to 90 Mbps (better by 17%), and

edge pacing (top curve) further pushes the throughput to 98

Mbps (improvement of 27% compared to unpaced flows),

highlighting the efficacy of pacing traffic at the edge. Edge

pacing obtains higher TCP throughput than host pacing in the

small buffer regime (5-15 KB). Fig. 5(b) depicts the average

per-flow goodput for the 1000 TCP flows and demonstrates

that edge pacing is extremely effective. To obtain 90 Kbps

goodput (90% of 0.1 Mbps, the ideal goodput) the bottom

curve indicates that unpaced flows require 20 KB of buffering.

Pacing flows at the host (middle curve) halves the buffering

requirements to 10 KB, while edge pacing (top curve) achieves

90 Kbps with just under 5 KB buffers (half of that for host

pacing, and a fourth of that for unpaced flows). These results

highlight the efficacy of edge pacing for use with high-speed

access links.



5

0 5 10 15 20 25 30
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Buffer size (KB)

A
v
e
ra

g
e
 p

e
rf

lo
w

 g
o
o
d
p
u
t 
(M

b
p
s
)

 

 

Edge−paced

Host−paced

Unpaced

Fig. 6. Average per-flow goodput with short-lived TCP flows

D. Short-lived TCP flows

Our study thus far only considered long-lived TCP flows.

We now consider short-lived TCP flows (also known as mice),

wherein the number of active TCP flows is time-varying.

Measurement studies in the Internet core show that a large

number of TCP flows (e.g. HTTP requests) are short-lived.

They spend most of their time in the slow-start phase and

generate more bursty traffic than long-lived flows, that are

often in the congestion avoidance mode. To incorporate such

realistic TCP traffic we simulate the closed-loop flow arrival

model described in [19], operating as follows. A given number

of users perform successive file transfers to their respective

destination nodes. The size of the file to be transferred follows

a Pareto distribution with mean 100 KB and shape parameter

1.2. These chosen values are representative of Internet traffic,

and comparable with measurement data. After each file trans-

fer, the user transitions into an idle (“thinking period”) or off

state. The duration of the “thinking period” is exponentially

distributed with mean 1 sec. We implemented this model in

ns-2 and repeated our simulations on the dumbbell topology

with 1000 short-lived flows. Fig. 6 shows that pacing TCP at

the edge can improve the average per-flow goodput of short-

lived flows substantially, peaking at 155 Kbps with 10 KB

of buffering, which is nearly 17% larger than the goodput

obtained by pacing TCP at the end-hosts (133 Kbps). These

results with short-lived flows demonstrate that edge pacing is

very effective in combating short time-scale burstiness (typical

of short-lived TCP flows).

E. Different versions of TCP

0 5 10 15 20 25 30
40

50

60

70

80

90

100

Buffer size (KB)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

 

 

Reno; Edge−paced
Reno; Host−paced
New Reno; Edge−paced
New Reno; Host−paced
SACK; Edge−paced
SACK; Host−paced
FACK; Edge−paced
FACK; Host−paced

(a) Aggregate TCP throughput

0 5 10 15 20 25 30
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t 
(M

b
p

s
)

 

 

Reno; Edge−paced

Reno; Host−paced

New Reno; Edge−paced

New Reno; Host−paced

SACK; Edge−paced

SACK; Host−paced

FACK; Edge−paced

FACK; Host−paced

(b) Average per-flow goodput

Fig. 7. Performance with different TCP variants

We compared the performance of edge and host pacing

with three additional variants of TCP (New Reno, SACK and

FACK). Simulations in Section III-A were repeated with each

of these TCP versions. Overall, we observed that for all the

above variants of TCP, edge pacing offers better performance

than host pacing (typically by more than 10% in the region

5-15 KB) in terms of aggregate throughput as well as average

per-flow goodput, as depicted in Fig. 7.

F. Small buffer link not the bottleneck

0 5 10 15 20 25 30
80

100

120

140

160

180

200

Buffer size (KB)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

 

 

Edge−paced

Host−paced

Unpaced

(a) Aggregate TCP throughput

5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

Buffer size (KB)

C
o

re
 p

a
c
k
e

t 
lo

s
s
 r

a
te

 (
%

)

 

 

Edge−paced

Host−paced

Unpaced

(b) Packet loss rate at the core link

Fig. 8. TCP performance with small buffer link as non-bottleneck

All the previous scenarios considered the small buffer core

link as the bottleneck link. We analysed the impact of pacing

TCP traffic when the core link is not the bottleneck link. To

this end, we set the core and edge link rates to 200 Mbps and

40 Mbps, and access link rates are uniformly distributed in

[1, 2] Mbps respectively. 10 access links feed into each edge

link, with 10 edge links in turn feeding into the core. In all, the

network simulates 100 long-lived TCP flows. Since the access

network is the bottleneck, and 10 edge links feed into the core,

it is evident that the core link does not require more than 10

KB of buffering to guarantee zero packet loss. This can be

seen from Fig. 8(b), which plots the loss rate (on log-scale)

as a function of buffer size. The aggregate throughput curve

in Fig. 8(a) shows that pacing (both host and edge) achieves

approximately the same performance as unpaced, indicating

that TCP throughput is not sensitive to pacing when the small

buffer link is not the bottleneck.

The above results illustrate, under various network settings,

that pacing traffic at the edge of a small buffer network is

extremely effective in obtaining high TCP throughput and per-

flow goodputs, and can play an important role in the design of

future generation optical core networks with limited buffering

capability.

IV. ANALYSING THE IMPACT OF EDGE PACER DELAY

In this section we seek to develop insights into the impact

of pacing on TCP performance. Modeling TCP performance

is notoriously difficult due to its control feedback loops,

and indeed existing models of host pacing often resort to

(excessively conservative) worst-case approximations to bound

performance. We will resort to several simplifications and

approximations, with a view towards getting insight into the



6

0 10 20 30 40 50 60 70 80 90 100
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Pacer Delay (ms)

T
h

ro
u

g
h

p
u

t 
M

e
a

s
u

re

(a) Low load/Small buffer

0 10 20 30 40 50 60 70 80 90 100

0.08

0.09

0.1

0.11

0.12

0.13

Pacer Delay (ms)

T
h

ro
u

g
h

p
u

t 
M

e
a

s
u

re

(b) High load/Large buffer

Fig. 9. Throughput measure as a function of pacer delay from our analytical model for (a) Low load (small buffer), and (b) High load (large buffer)

shape of curves relating edge pacing delay parameter d with

TCP throughput, rather than their exact numbers.

We begin with the relatively well-known fact that through-

put of a TCP flow is inversely proportional to its RTT as well

as to the square root of the loss L it experiences:

T ∝
1

RTT
√
L

(1)

Pacing traffic at the network edge smoothens the aggregate

TCP traffic, reducing loss at bottleneck buffers. However,

pacing holds packets back in the pacer queue, which increases

the mean end-to-end RTT. In what follows we attempt to

quantify these two opposing forces, and show that the force

that dominates to determine the appropriate choice of pacing

delay parameter d depends on factors such as network buffer

size and traffic flow characteristics.

Quantifying the impact of edge pacing on RTT is relatively

easy: pacing with delay bound d adds roughly d/2 delay to

each packet on average in each direction, increasing mean

RTT to RTT0+d, where RTT0 is the round-trip-time without

pacing.

Quantifying loss at a buffer fed by several (paced) TCP

sources is however non-trivial. A worst-case assumption that

all TCP sources synchronise their bursts (to yield a giant

saw-tooth) is unrealistic (especially when thousands of TCP

sources share the link) and excessively conservative. We

instead resort to the observation (made in our earlier work

[20] and by others e.g., [21], [22]) that the aggregated traffic

from a large number of TCP flows sharing a small buffer (up

to 50 Kilobytes) is approximately Poisson. We have shown

buffer occupancy traces in [20] to substantiate that large

bottleneck buffers cause TCP flows to synchronise, whereas

small buffers break this synchrony, and aggregation therefore

allows application of the central limit theorem to allow Poisson

approximation. Hence, in what follows we assume that the

aggregate TCP traffic is Poisson-like with a certain (yet to be

determined) rate λ.

When Poisson traffic of rate λ is fed into an edge pacer

with delay parameter d, the egress traffic has burstiness (ratio

of standard deviation to mean rate) given by [5]:

β = 1/
√
2λd (2)

Further, the loss rate, derived using a bufferless fluid approx-

imation, is obtained from the Chernoff bound as [5]:

L ≤ (λe1−λ)2d (3)

This shows that loss falls monotonically as the pacer delay d
is increased. Moreover, since the above bound is derived under

a fluid approximation, it holds irrespective of the number of

edge nodes that pace traffic prior to aggregation at the core

node buffers, as long as the aggregate rate is λ.

With the above expressions for RTT and L, we can rewrite

the throughput of a TCP flow from (1) as:

T ∝
1

(RTT0 + d)(λe1−λ)d
(4)

We plot this in Fig. 9 for two cases: Fig. 9(a) considers

relatively light load and plots the above throughput measure

for a base round-trip-time RTT0 fixed at 200 ms, and the pacer

delay d is varied from 0 to 100 ms. We see that the curve is

monotonically increasing, suggesting that larger pacing delay

values are preferable, since the benefits of loss reduction from

smoothing outweigh the penalty due to increased RTT. In

Fig. 9(b) we consider the case of heavy load and plot the

above throughput measure for the same base round-trip-time

RTT0 of 200 ms, and the pacer delay d varied from 0 to 100
ms. In this case, we find that the per-flow TCP throughput

falls monotonically with pacing delay, suggesting that when

loads are higher, larger pacing delays are detrimental as the

effect of increased RTT outweighs the benefits of reduced loss

from smoothing.

Having argued that the net effect of pacing delay on TCP

throughput depends on the offered load λ, we argue that

the offered load directly depends on traffic characteristics



7

0 2 4 6 8 10 12 14 16 18 20
0.075

0.08

0.085

0.09

0.095

0.1
Buffer = 5KB

Pacer Delay (ms)

T
C

P
 T

h
ro

u
g
h
p
u
t 
(M

b
p
s
)

(a) Low load/Small buffer

0 50 100 150
0.0955

0.096

0.0965

0.097

0.0975

0.098

0.0985

0.099

0.0995

0.1
Buffer = 50KB

Pacer Delay (ms)

T
C

P
 T

h
ro

u
g
h
p
u
t 
(M

b
p
s
)

(b) High load/Large buffer

Fig. 10. Throughput measure as a function of pacer delay from simulations for (a) Low load (small buffer), and (b) High load (large buffer)

and bottleneck link buffers. When many TCP flows share

bottleneck link buffers, we have shown in [6] (and several

other researchers have corroborated [23]) that the empty buffer

probability 1−ρ falls exponentially with buffer size, and hence

the offered load is ρ = 1 − e−B/B∗

where B represents

bottleneck buffer size and B∗ is a constant (with same units

as B) dependent on system parameters such as link capacities,

number of flows and their durations, round-trip-times, etc (we

found B∗ to be in the range 2-10 KB). Thus, when buffer size

is small (say 5 KB), the offered load is lower ρ ≈ 90%, and

as buffer size increases (to say 50 KB), offered load increases

to over ρ ≈ 99.9%.

To validate that smaller bottleneck buffers favour a higher

pacing delay, we ran simulations using the same topology as

in the previous sections - 1000 TCP flows share a bottleneck

core link of 100 Mbps capacity. We set the core link buffers

to 5 KB, and plot in Fig. 10(a) the per-flow TCP throughput.

It shows that TCP throughput increases with pacing delay, as

predicted by our analysis in Fig. 9(a). We now set the core

link buffers to 50 KB, and plot in Fig. 10(b) the per-flow TCP

throughput obtained from simulation. We find that in this case

TCP throughput falls with pacing delay, as predicted by our

analysis in Fig. 9(b), since the offered load with larger buffers

is higher and the benefits of loss reduction are outweighed by

increase in RTT.

The above analysis provides valuable insight into the rela-

tionship between pacing delays and TCP performance, and we

do not claim to be able to accurately quantify TCP throughput.

Indeed, though our analysis and simulation both show a

monotonic rise in TCP throughput with pacing delay for low

load (small buffers), the analysis curve in Fig. 9(a) is convex

while the simulation curve in Fig. 10(a) is concave – this is

because our analysis assumed a fixed load λ, whereas when

the pacing delay is increased and loss reduces, TCP reacts by

increasing its offered load. This increase in load can offset

the loss reduction (it can be seen that the TCP throughput

curve saturates in simulation when the pacing delay reaches

10 ms), whereas we do not capture this effect in our analysis

(which is why the TCP throughput in our analysis continues to

increase). Capturing these feedback effects precisely in a finite

buffer system is notoriously hard, and is beyond the scope of

the current paper. What we have established is that pacing

delays need to be tuned to network and traffic conditions,

and our observations from simulation show that pacing with

larger delays is increasingly beneficial as the bottleneck buffers

become smaller, especially when they fall below 10 KB.

0 5 10 15 20 25 30 35 40 45 5050
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t 
(M

b
p

s
)

 

 

Edge−paced (d = 1ms)

Edge−paced (d = 10ms)

Edge−paced (d = 100ms)

Edge−paced (d = 200ms)

Host−paced

Unpaced

Fig. 11. Per-flow TCP goodput for various pacing delay values

In Fig. 11 we show the per-flow TCP goodput observed

in simulation as a function of buffer size for various pacing

delay values d = 1, 10, 100, 200 ms. It is observed that a small

pacing delay d = 1 ms is relatively ineffective at small buffer

sizes, while a large pacing delay such as d = 100 or 200 ms is

detrimental (i.e. reduced TCP goodput) as buffer sizes become

larger. Throughout our simulations we found that d = 10 ms

was a good compromise that works well across the entire range

of buffer sizes for all scenarios considered, and hence our

simulation studies presented in other sections of this paper

have used this delay value.



8

0 5 10 15 20 25 30
50

55

60

65

70

75

80

85

90

95

100

Buffer size (KB)

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

 

 

0% Host−Paced

30% Host−Paced

50% Host−Paced

100% Host−Paced

(a) Host pacing

0 5 10 15 20 25 30
50

55

60

65

70

75

80

85

90

95

100

Buffer size (KB)

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

 

 

0% Edge−Paced

30% Edge−Paced

50% Edge−Paced

100% Edge−Paced

(b) Edge pacing

Fig. 12. Aggregate bottleneck link throughput versus buffer size for varying fractions of pacing deployment at (a) Hosts and (b) Edge nodes

V. PRACTICAL DEPLOYMENT OF PACING

The previous sections have shown that in small buffer

networks edge pacing is as effective (or more) as host pacing

in improving link throughput and per-flow goodput. We now

argue that edge pacing is also more easily deployed in an

incremental way into operational networks. The first question

we address is the benefit of partial deployment of pacing,

namely when only a fraction of hosts (in the case of host

pacing) or edge nodes (in the case of edge pacing) perform

pacing. We conducted simulations under various scenarios

with fractional deployment of pacing, and measured the impact

on aggregate throughput improvement on the bottleneck link.

Fig. 12 depicts results from one setting in which 1000 TCP

flows multiplex at the bottleneck link, and shows the aggregate

throughput when pacing is 0%, 30%, 50%, and 100% deployed

at host and edge nodes respectively. Comparing host pacing in

Fig. 12(a) with edge pacing in Fig. 12(b), we note that in both

cases throughput rises gradually as the fraction of hosts/edges

that perform pacing increases, and therefore it would seem

the benefits of pacing can be realised incrementally with

progressive deployment.

Though fractional deployment of pacing leads to overall

throughput improvement for both host and edge pacing, the

way these benefits are shared is radically different in the two

cases. To illustrate this, consider the same scenario as before

(i.e. 1000 flows share the bottleneck link), and say pacing

is 30% deployed (namely, 300 out of 1000 flows perform

TCP pacing in the case of host pacing and 3 out of 10 edge

nodes perform pacing in the edge pacing case). In Fig. 13

we compare the average per-flow goodput of paced versus

unpaced flows. Fig. 13(a) shows that with host pacing, flows

that pace their TCP traffic actually obtain worse goodput (by

as much as 10%) than flows that do not pace their traffic.

This phenomenon has been identified in prior studies [11],

[10] which have shown that TCP pacing is effective only if

employed by a critical mass of users. Early adopters of host

pacing can therefore obtain worse performance than their non-

pacing peers, and this creates a substantial disincentive for

users to adopt host pacing. By contrast, Fig. 13(b) shows that

with the same fraction of flows being paced via edge pacing,

this problem does not arise, and paced flows experience

better performance than unpaced ones. This allows network

operators to focus their initial deployment of edge pacing at

sites connecting their most critical customers, confident that

performance for these customers will not degrade (as in the

case of host pacing).

Apart from the performance issues, there are also major

logistic differences between deploying host and edge pacing.

Host pacing requires changes to the TCP/IP protocol stack in

the end-user client devices. Given the myriad devices in use to-

day (PCs, laptops, tablets, smart-phones, Internet-enabled TVs,

etc.) and their heterogeneous operating systems (Windows,

Linux, iOS, Android, etc.), this is a daunting task. Further,

the kernel update required to incorporate pacing at the host

would need to be explicitly done by each user, which requires

motivation and skill, and is virtually impossible to achieve

at scale. Moreover, operating system vendors are reluctant

to incorporate pacing in the standard kernel distribution for

fear that initial adopters will get degraded performance. These

factors have stymied deployment of TCP pacing over the last

decade. By contrast, edge pacing has no such issues as it can

be easily deployed since it is entirely under operator control.

We have shown in our previous work [5] that our optimal edge

pacing algorithm is amenable for hardware implementation

at very high speeds, and operators can choose to employ it

incrementally or simultaneously around their small buffer core

network.

VI. CONCLUSIONS

Energy density concerns in modern high-speed routers are

driving the trend towards photonic integrated switching plat-

forms [24] with reduced buffering capability. In networks with



9

0 5 10 15 20 25 30
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t 
(M

b
p

s
)

 

 

Paced flows (30% Host−Paced)

Non−paced flows (30% Host−Paced)

(a) Host pacing

0 5 10 15 20 25 30
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Buffer size (KB)

A
v
e

ra
g

e
 p

e
rf

lo
w

 g
o

o
d

p
u

t 
(M

b
p

s
)

 

 

Paced flows (30% Edge−Paced)

Non−paced flows (30% Edge−Paced)

(b) Edge pacing

Fig. 13. Per-flow goodput versus bottleneck buffer size for paced and unpaced flows with fractional deployment of pacing at (a) Hosts and (b) Edge nodes

such small buffers, end-to-end performance of TCP can be

improved by traffic smoothing. In this paper, we compare

two mechanisms of pacing – at the edge and the host – and

undertake a comprehensive quantification of TCP throughput

and per-flow goodputs in various scenarios comprising bot-

tleneck and non-bottleneck links, short- and long-lived flows,

low- and high-capacity access links, different number of TCP

flows and various TCP variants. We showed that edge pacing

performs as good, if not better, than host pacing. Via analysis

and simulations we have provided insights into choosing the

delay parameter of the edge pacer. We argued that unlike host

pacing, there is a clear and safe path towards incremental

deployment of edge pacing in an operational network. We

offer edge pacing as an attractive solution for enhancing TCP

performance in emerging all-optical or hybrid-optical core

networks with small buffers.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,”
in Proc. ACM SIGCOMM 2004, USA, Aug-Sep 2004.

[2] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Routers with Very Small Buffers,” in Proc. IEEE INFOCOM, Spain,
Apr 2006.

[3] A. Vishwanath, V. Sivaraman, M. Thottan, and C. Dovrolis, “Enabling
a Bufferless Core Network using Edge-to-Edge Packet-Level FEC,” in
Proc. IEEE INFOCOM, USA, 2010.

[4] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on Router
Buffer Sizing: Recent Results and Open Problems,” ACM SIGCOMM

Computer Communication Review, vol. 39, no. 2, pp. 34–39, Apr 2009.

[5] V. Sivaraman, H. Elgindy, D. Moreland, and D. Ostry, “Packet Pacing
in Small Buffer Optical Packet Switched Networks,” IEEE/ACM Trans-

actions on Networking, vol. 17, no. 4, pp. 1066–1079, 2009.

[6] A. Vishwanath, V. Sivaraman, and G. N. Rouskas, “Anomalous Loss
Performance for Mixed Real-Time and TCP Traffic in Routers with
Very Small Buffers,” IEEE/ACM Transactions on Networking, vol. 19,
no. 4, pp. 933–946, Aug 2011.

[7] E. M. Wong et al., “Towards a Bufferless Optical Internet,” IEEE/OSA

Journal of Lightwave Technology, vol. 27, no. 4, pp. 2817–2833, Jul
2009.

[8] Y. Cai, T. Wolf, and W. Gong, “Delaying Transmissions in Data
Communication Networks to Improve Transport-Layer Performance,”

IEEE Journal on Selected Areas in Communications, vol. 29(5), pp.
916–927, 2011.

[9] B. Zhao, A. Vishwanath, and V. Sivaraman, “Performance of High-
Speed TCP Applications in Networks with Very Small Buffers,” in IEEE

Advanced Networks and Telecommunication Systems (ANTS), India,
2007.

[10] D. X. Wei, P. Cao, and S. H. Low. (2006) TCP
Pacing Revisited. [Online]. Available: http://www.cs.caltech.edu/
weixl/research/summary/infocom2006.pdf

[11] A. Aggarwal, S. Savage, and T. E. Anderson, “Understanding the
Performance of TCP Pacing,” in Proc. IEEE INFOCOM, Israel, 2000.

[12] C. Caini and R. Firrincieli, “Packet Spreading Techniques to Avoid
Bursty Traffic in Long RTT TCP Connections,” in Proc. IEEE VTC

Spring, Italy, 2004.
[13] H. Jiang and C. Dovrolis, “Why is the Internet Traffic Bursty in Short

Time Scales?” in Proc. ACM SIGMETRICS, Canada, 2005.
[14] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the Dynamics

of a Congestion Control Algorithm: The Effects of Two-Way Traffic,”
in Proc. ACM SIGCOMM, Switzerland, 1991.

[15] H. Kamezawa et al., “Inter-Layer Coordination for Parallel TCP Streams
on Long Fat Pipe Networks,” in IEEE/ACM Supercomputing, USA,
2004.

[16] J. Kulik et al., “A Simulation Study of Paced TCP,” Tech. Rep. BBN

Technical Memorandum No. 1218, 1999.
[17] D. X. Wei. (2006) A TCP Pacing Im-

plementation for NS2. [Online]. Available:
http://netlab.caltech.edu/projects/ns2tcplinux/ns2pacing/index.html

[18] N. Dukkipati and N. McKeown, “Why Flow-Completion Time is the
Right Metric for Congestion Control,” ACM SIGCOMM Computer

Communication Review, vol. 36, no. 1, pp. 59–62, 2006.
[19] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Closed Versus

Open: A Cautionary Tale,” in Proc. USENIX NSDI, USA, 2006.
[20] A. Vishwanath, V. Sivaraman, and D. Ostry, “How Poisson is TCP

Traffic at Short Time-Scales in a Small Buffer Core Network?” in Proc.

IEEE Advanced Networks and Telecommunication Systems (ANTS),
India, 2009.

[21] A. Lakshmikantha, C. Beck, and R. Srikant, “Impact of File Arrivals and
Departures on Buffer Sizing in Core Routers,” IEEE/ACM Transactions

on Networking, vol. 19, no. 2, pp. 347–358, 2011.
[22] D.Wischik, “Buffer Sizing Theory for Bursty (TCP) Flows,” in Proc.

2006 International Zurich Seminar on Communications, Switzerland,
2006.

[23] L. Andrew, T. Cui, J. Sun, M. Zukerman, K. Ho, and S. Chan, “Buffer
Sizing for Nonhomogeneous TCP Sources,” IEEE Communications

Letters, vol. 9, no. 6, pp. 567–569, Jun 2005.
[24] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard,

and N. McKeown, “Scaling Internet Routers Using Optics,” in Proc.

ACM SIGCOMM, Germany, 2003.


