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Abstract—Universities worldwide are experiencing a surge
in enrolments, therefore campus estate managers are seeking
continuous data on attendance patterns so as to optimize the
usage of classroom space. While prior works have measured
room occupancy via hardware sensor instrumentation, in this
paper we explore the use of pervasive WiFi infrastructure for
estimating attendance. In a dense campus environment, WiFi
connectivity counts are poor estimators of room occupancy since
they are polluted by adjoining rooms, outdoor walkways, and
network load balancing. The main contribution of this work is
to develop new ways to distinguish and filter out WiFi-connected
users outside of the lecture room of interest, and feed such
data to a regression analyser to estimate room occupancy. We
evaluate our technique across lecture theatres of varying size in
our campus, and show that their accuracy approaches that of
hardware sensors without incurring cost and effort of installing
and maintaining them.

Index Terms—WiFi, people counting, rooms, hardware sensors,
machine learning

I. INTRODUCTION

In a modern day university, class attendance can vary widely
depending on factors like time-of-day, lecturer engagement,
and availability of online content. However, classrooms to
which courses are allocated in a university is based on the
enrolment while there is ample anecdotal evidence that enrol-
ment may differ from the number of students attending a class.
It is, therefore, useful for building management and control
systems in a university campus to be able to determine how the
classroom spaces are occupied and occupancy sensing plays
an important role in allocating classrooms to courses based on
attendance levels rather than enrolment.

There are predictions of the growth of global occupancy
sensors [1], but special-purpose hardware sensors have a
high upfront cost and require efforts in deployment and
maintenance whereby limiting their adoption only to large
commercial buildings. To this end, there is an emerging
need for affordable, reliable, low-cost occupancy sensors. As
the wireless infrastructure pervades modern campuses and
usage of mobile devices is growing rapidly, WiFi can act as
an explicit occupancy sensor in many university campuses.
Although WiFi infrastructure has been used to determine oc-
cupancy for coarse spatial resolutions (e.g., floors of buildings)
and in smaller office spaces with few occupants, it has not yet
been successfully used to count large numbers (e.g., hundreds)
of occupants in rooms such as lecture theatres in a university.

WiFi signals crossing rooms is the major challenge in using
WiFi data in estimating occupancy in a heavily populated mod-
ern campus. As WiFi signals cross rooms, devices connecting
to APs in a room, but carried by WiFi users in nearby rooms
or outside walkways corrupt the occupancy estimations. On
the other hand, students connect to university network with
multiple devices lead to overestimating occupancy while actual
room occupants who connect to APs outside the room of
interest and occupants who do not have any wireless device
connected lead to underestimating the number of occupants
estimated based on the WiFi connectivity data.

This paper1 presents our study to estimate room occupancy
using existing wireless infrastructure in a university campus, as
might be useful to facilities managers at a university to allocate
teaching spaces to courses based on attendance rather than
enrolment, thereby leading to optimum utilization of limited
available space. We assume that the exam conditions which
occur in rooms are considered by schedulers when deciding
which room to use for a class since they would be aware
of that variation. Throughout the paper WiFi connected user
from outside the room of interest is termed as a ‘bystander’
and the WiFi connected user inside the room is termed as
an ‘occupant’. We begin by collecting WiFi connectivity data
for 790 different classes held across nearly 70 courses from
7 rooms of varying size on UNSW campus over a period
of 12 weeks. Our first contribution is the proposal of a rich
set of features from WiFi connectivity data that distinguishes
occupants from bystanders. The second contribution is the
development of classification and regression analysis based
supervised learning approach to estimate room occupancy
using the proposed features.

The paper begins by reviewing relevant related work in
Section II and then describes in Section III, the collection
of WiFi connectivity data and the effect of bystanders when
estimating room occupancy with WiFi connectivity data. Sec-
tion IV presents the extraction of features that distinguish the
WiFi users as occupants and bystanders and then in Section
V we present our approach based on classification and regres-
sion to estimate room occupancy. Section VI evaluates the
performance of our approach and we present our conclusions

1Funding for this project was provided by the Australian Research
Council (ARC) Linkage Grant LP150100666.



in Section VII.

II. RELATED WORK

There are studies that use specialized occupancy detection
hardware while there are other approaches that require new
hardware or modification to existing hardware (e.g. new soft-
ware installed). Also, there are approaches that uses existing
building infrastructure (some rooms may already have CO2
sensors, cameras for security, or WiFi coverage). This section
covers the categories aforementioned.

Many approaches to occupancy estimation have been based
on data collected from explicitly installed hardware sensors
such as infrared (IR), RFID, and camera sensors. In [2]
researchers used machine learning techniques such as Support
Vector Machine (SVM), Neural Networks (NN) and Hidden
Markov Models (HMM) to process the data collected from
a network of sensors consisting CO2 monitors and ambient
sensors. HMM gave the most realistic results in predicting the
number of occupants in offices with 73% accuracy, however
it was only tested in small rooms with less than 10 occupants.
In their approach to determine occupancy using single passive
infrared sensor combined with machine learning techniques
Raykov et. al. [3] proposed a low-cost occupancy estimation
solution that produced a mean absolute error (MAE) of 1, but
was tested only in rooms with 14 or less occupants.

Sgouropoulos et. al. in [4] achieved a MAE of 1.15 by
employing camera image processing techniques. However, the
complex image processing algorithms require heavy com-
putational resources. Paci et al. [5] utilized camera sensors
and thermal comfort sensors combined with Support Vector
Regression (SVR) to successfully count number of people
inside large lecture rooms. Their approach produced a MAE
of 7 people in rooms with 0-150 occupants, but worked well
only when there is less movement. Nevertheless, if explicit
consent is not obtained, privacy remains an issue for camera
image processing based approaches. All the approaches based
on special-purpose hardware sensors have the disadvantage of
associated costs in deployment and maintenance.

Among the approaches that require both hardware and
software, [6] installed mobile phone application to collect
Received Signal Strength Indication (RSSI) data from beacons
transmitted from Apples iBeacons. The approach in [7] pro-
poses to estimate room occupancy by modifying the iBeacon
protocol. Both [6] and [7] displayed near 100% accuracy but
they require the cooperation of the occupants. Yoshida et.
al. [8] employed a number of WiFi devices (e.g., Raspberry Pi)
in a room to collect RSSI from WiFi networks. They related
occupancy of a room with changes in signal propagation
between APs and devices using linear regression (LR) and
SVR to achieve a MAE of 0.471 in estimating occupancy in
indoor environments with maximum 8 people.

Most light weight approaches for occupancy estimation
use existing infrastructure as soft occupancy sensors. In [9]
and [10] authors localize a set of people with high reliability
and accuracy using WiFi fingerprints, however required the

cooperation of occupants. Melfi et. al. [11] employed occu-
pancy sensing methods such as monitoring of MAC and IP
addresses in routers and WiFi APs. Although accuracy was
within a 10% confidence interval around the ground truth
occupancy for whole buildings, it was inaccurate at floor
or room granularity due to the overlap of AP coverage and
inconsistent wireless connectivity of devices. Balaji et al. [12]
attempted to improve the accuracy issues identified in [11]
by using occupant identity. They used WiFi MAC address
and AP location from WiFi logs and achieved 86% accuracy
in determining occupancy in office spaces in a commercial
building.

The closest match to our work is by Redondi et al. [13]
where they analysed WiFi activity data from APs inside a
room to predict on the presence of people in a room. The
study extracted sets of WiFi attributes (e.g., average signal
quality, number of connections, etc.) during different time slots
of the day to determine the presence using classification-based
techniques (e.g., logistic regression, and Linear Discriminant
Analysis (LDA). LDA produced best performance with 92%
accuracy in predicting the presence of people in a room
(empty or non-empty). They encountered the problem of
bystanders and made an attempt to filter them out by using a
threshold RSSI, without measuring the effectiveness of RSSI
or determining if better approaches existed.

In [14], Akkaya et. al highlighted the growing trend to
employ implicit sensing infrastructure (e.g., WiFi) to estimate
occupancy due to the associated high costs in deployment and
maintenance of special purpose hardware sensors. They also
emphasized the challenges in estimating room occupancy with
WiFi soft sensors, especially in areas such as lecture theatres
in a university. To the best of our knowledge, our work is the
first to use metadata in WiFi activity combined with intelligent
machine learning techniques to address the challenges in using
WiFi connectivity data to estimate occupancy in classrooms
with large number of occupants in a university campus.

III. DATA COLLECTION AND NEED TO FILTER - CAMPUS
TESTBED

A. Collection of WiFi data and ground-truth

We received daily dumps of WiFi sessions from UNSW
IT department for 41 APs located in 7 lecture rooms on
UNSW campus. A sample format of the WiFi activity data
we received, is shown in Table I. The logs provide a unique
identifier for each user, the address or addresses of device of
devices that they used, the time when the device or devices
associated or disassociated, which AP they associated with,
and performance information such as the signal strength,
number of retries, and quantity of information sent.

The unique user identifier shown in the first column of
Table I is the UNSW student or employee identifier with
which the WiFi user logged in to the university WiFi network.
We have anonymised the user identifiers as we do not need
to identify the user but only needs to find the users with
multiple devices which otherwise over count the number of
people in the room of our interest. As shown in the Table I,



TABLE I
EXAMPLE OF WIFI DATA LOG

Student ID MAC address Association Time Disassociation Time Session Duration AP Name Bytes Tx Bytes Rcv Pkts Tx Pkts Rcv SNR RSSI Status Retries

1234567 00:08:22:60:fb:fe 27/06/2017 10:40 27/06/2017 11:15 35 min mattap1 2717397 1717397 16536 24665 31 -63 Disass 1267

1234567 00:1e:64:d5:43:e6 27/06/2017 10:55 27/06/2017 11:20 25 min mattap14 473749 2456743 2987 16041 27 -68 Disass 574

1235678 00:34:5c:fb:8d:2b 27/06/2017 11:15 27/06/2017 11:20 5 min mattap13 1465373 6293826 4692 7832 35 -61 Disass 237

1235290 00:3b:21:5d:fb:80 28/06/2017 06:40 - 20 min clb1ap17 156318 3462431 3689 2860 49 -45 Ass 453

the data in the first two rows belong to the same user with
student identifier 1234567. The specific WiFi user had been
connected to WiFi with two different devices during 27 th
June 2017 as seen in the second column which specifies the
device MAC address. For each session, WiFi logs consist of
the associated time and the disassociated time and additionally
the session duration ‘Session Duration’ which could also
be computed using the association and disassociation times
related to each session recorded in the WiFi logs. The UNSW
IT department uses a naming convention for the APs where
the APs are identified with relation to their location rather
than using the MAC address of the APs and it is shown in
‘AP Name’ column. Furthermore, the WiFi report includes
bytes and packets exchanged between the WiFi user and AP
during each session. The ‘RSSI’ column shows the average
of the received signal strength values during the session while
average signal to noise ratio is recorded in ‘SNR’ column.
In ‘Status’ column, Disass indicates a disassociation if the
session has been disconnected at the time of generating the
report while Ass is possible for any ongoing sessions at the
time of report generation. Since the WiFi reports are generated
at a fixed time everyday (at 7am) majority of the sessions are
recorded as Disass. An example with Ass status is shown in
the fifth row of the Table I. For such records ‘Disassociation
Time’ is not applicable and session duration is computed as the
duration of time between the association time and the report
generation time. The column ‘Retries’ indicates the number
of times data frames has been resent to the receiver till the
AP received ACK (acknowledgement) during the session. The
large values seen in the WiFi logs for retries are desirable due
to the interference and multipath fading which are common to
WiFi.

As we noted that the WiFi logs provide us the personal
information such as unique identifier for each user and the ad-
dress of their devices, we therefore obtained ethical clearance
(UNSW Human Research Ethics Advisory Panel approval
number HC17140) to use that information in our research.
Our application to the Ethics panel mentioned that one of the
terms of use of our WiFi network is that ”All activity on the
wireless network is monitored” and by agreeing to that term
the users grant explicit permission to monitor their activity in
university network. The availability of unique user identifiers
gave us the opportunity to remove multiple devices of a single
user that causes overestimation of occupancy, when using WiFi
as an occupancy sensor [15]. The list of enrolled students
(class list) for a set of classes are collected as the ground
truth for classification while we obtain ground-truth for actual
occupancy by employing volunteers to collect head-counts.

B. Motivation of the study

We collected attendance for 40 classes on our campus and
graphed class attendance against enrolment as shown in Figure
1. For most of the classes the actual attendance was well below
the enrolment. For example, class shown by A in Figure 1
has an enrolment of 247 while the attendance was only 81
students. This presents the opportunity to optimize the usage
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Fig. 1. Observed class attendance is often smaller than enrolments.

of classroom spaces in a university campus by understanding
attendance patterns.

C. Necessity of filtering WiFi data

We analysed how effective ‘WiFi connectivity counts’ (the
number of unique identifiers in WiFi data) as estimators of
room occupancy in a dense campus environment, so as to
determine the necessity of filtering the WiFi data. For the
analysis we collected WiFi connectivity data, actual occupancy
(ground-truth) and class lists across 40 classes in UNSW
campus whereby the samples came from different courses,
locations and during different days and times of the day.
The WiFi connectivity data for a particular class consists of
the WiFi users connected to APs in the room during the
class. With the help of class lists for the classes of interest
we filter bystanders by assuming, WiFi users who appear
in both WiFi connectivity data and in class list are room
occupants. We define ‘WiFi Occupancy’ (OccupancyWiFi)
as the number of people who get connected to WiFi APs
of interest during the class while ‘Enrolled WiFi Occupancy’
(OccupancyEnrolledWiFi) as the number of enrolled students
among the OccupancyWiFi . In Figure 2, we have illus-
trated the students enrolled in a class (in class list) as A,



OccupancyWiFi as B and OccupancyEnrolledWiFi as the
intersection of A and B.

A C B

Class List WiFi Connectivity 

Data

Fig. 2. Definition of Occupancy types for a class

As shown in Figure 3, all the data points lie below the 45
degree trendline showing that OccupancyWiFi was always
higher than the OccupancyEnrolledWiFi. This indicates that
the OccupancyWiFi include both the students enrolled in the
class and students in adjoining rooms or outside walkways.
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Fig. 3. OccupancyWiFi is higher than the OccupancyEnrolledWiFi

Furthermore, we graphed OccupancyEnrolledWiFi with ac-
tual occupancy to find out that OccupancyEnrolledWiFi was
lower than the observed actual occupancy for many classes
(Figure 4). This is due to the actual room occupants who
do not have any device connected to university network
(e.g.,connected with private high-speed internet connections
or turned off devices during lectures). We also identified few
odd data points (A,B in Figure 4), where the actual occupancy
is less than the OccupancyEnrolledWiFi. The reason would
be the rare cases of WiFi connections of enrolled students
who do not actually attending the class but staying around the
particular room.

A visual comparison between Figure 4 and Figure 5 shows
that the actual occupancy shows a lower variability with
Enrolled WiFi Occupancy than with WiFi Occupancy. The
Pearsons correlation coefficient between the actual occupancy
and the OccupancyEnrolledWiFi was 0.77 and actual oc-
cupancy and the OccupancyWiFi was 0.35, showing that
a higher correlation is achieved when the bystanders are
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Fig. 4. Actual Occupancy is not an exact match to
OccupancyEnrolledWiFi
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Fig. 5. Actual Occupancy correlates better to OccupancyEnrolledWiFi

than to OccupancyWiFi

filtered out with class lists. Our analysis, therefore provides
insights that filtering WiFi connectivity data would better
relate the WiFi estimated room occupancy with the actual
room occupancy. Even though using class lists to remove
bystanders from WiFi data seems a good solution, it faces
the difficulty in manually combining class list information
every semester and also such approach is not generalizable to
scheduled events such as meetings and seminars where class
lists do not exist. In our approach we propose a generalizable
approach to filter bystanders in estimating room occupancy in
a campus environment. We use timetabling information which
is available to access to general public but get rid of the need
to access class lists.

IV. FEATURE EXTRACTION

In general, the bystanders would often differ from occupants
in the way they use WiFi. This section covers the set of
features (extract from WiFi connectivity data) that is helpful
to distinguish occupants and bystanders.
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Fig. 6. WiFi activity of students

1) RSSI - Average of RSSI values across number of ses-
sions associated with a user during the class of interest.
Bystanders in general are expected to receive less signal
strength than occupants.

2) Arrival delay - Time difference between the class start
time and the WiFi user’s first appearance in WiFi during
the class of interest. A student who is attending the
lecture is more likely to come to the classroom around
the start time of the class, hence expected to have low
arrival delays.

3) Number of sessions - Number of associations during the
class of interest. There is a high chance for a student
attending a lecture to have multiple associations during
the class due to inconsistent WiFi connectivity of mobile
devices as highlighted in [11].

4) Number of devices - Number of devices used to connect
to WiFi during the class of interest. A bystander, walking
past by is highly likely to get connected only with the
mobile phone while student attending a class has a high
probability of using multiple devices (mobile phone,
tablet and laptop) to connect to WiFi.

Also, we derive two other time related features from WiFi
activity data as explained below.

5) Percentage of ‘in time’ (tin) - Percentage of a user’s
WiFi access that occurred inside the class time during
the class of interest. Bystander who is walking past by
the room may have less connected time to WiFi.

6) Percentage of ‘out time’ (tout) - Percentage of user’s
WiFi access that occurred outside the class of interest.
This is normalised by subtracting the class duration from
the time in which the lectures are usually scheduled
during the day (9am - 9pm) on our campus. Bystanders
who connect to APs in a room who are working in
nearby offices or study spaces typically have high tout
values.

To better understand these features, consider the activity of
students S1 to S4 shown in Figure 6 which gives an example of
a class timetable for one room with the timing of some user
associations (shown in coloured boxes). The corresponding
features are computed and summarized in Table II. S1 is
a user who connects to WiFi with multiple devices, having
overlapping sessions and maintains the connection for a short
time even after the class. S2 probably has two classes in the

same room on that day. S3 has only connected with one device
during a class while S4 is seen throughout the day, hence likely
to be someone who is working in the area, but may not be
inside the room. During class 1 which lasted one hour, user
S1 has two connections: One from 9.20am 9.40am and the
other from 9.30am 10.00pm. We compute the non-overlapping
connected time during class to be 40 minutes. S1 has spent 10
minutes out of the class during the day. Similarly, during class
3 which lasted for three hours, user S2 has two sessions having
spent 50 minutes in class and he has a out time of 30 minutes.
Another user S3 has spent 45 minutes in class 3, however has
a (tout) of 0 since he does not have any connection out of the
class time of class 3 . However, S4 during class 3, has spent
40 minutes with a out time of 85 minutes displaying higher
outside class presence.

TABLE II
FEATURES CALCULATED FOR EXAMPLE USERS

User Class Duration tin tout RSSI (dB)

S1 1-hour 40/60 = 67% 10/660 = 1.4% 61.5

S2 3-hour 50/180 = 27.8% 30/540 = 5.6% 66

S3 3-hour 45/180 = 25% 0 60

S4 3-hour 40/180 = 22.2% 85/540 = 15.8% 62

For the WiFi user groups namely occupants and bystanders,
we plot the distributions of proposed features as shown in
Figure 7 and compare the mean values of the two distributions
of each feature; tin, tout, arrival delay, number of devices,
number of sessions and average RSSI to understand how well
the features would distinguish the different behaviours of the
two user groups.

The analysis showed that the occupants in a room can be
characterized by higher tin, (67.9% vs. 27.3%), lower tout,
(3% Vs 25.1%), and lower ‘arrival delay’ (13.1 vs. 29.1
minutes). Furthermore, occupants used multiple devices to
connect to WiFi (1.47 vs.1.08) and connected multiple times
(more number of sessions) during a class (2.19 vs. 1.34).
Although we expect RSSI to be one of the key features
to identify user’s presence in a room, we discovered that
average RSSI of a user across the number of sessions he or
she connected during the considered class does not exhibit
much differentiation between the distribution of occupants and
bystanders (59.4 vs. 66.4). This is due to the fact that devices
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Fig. 7. Histogram of features for Occupants and Bystanders

in general get connected to the strongest AP regardless of its
location and the received signal strength vary based on number
of factors such as the type (e.g., laptop, mobile phone) and the
vendor of the device. In addition, the session RSSI recorded
in WiFi report is an average across the whole session which
limits the insights to variations of RSSI.

V. APPROACH - MODELLING OF ROOM OCCUPANCY

Our approach is two-fold. First, we detail how the features
defined in Section IV, are used for classification to filter out
bystanders. We then explain the use of regression algorithms
to predict the room occupancy which compensate for the room
occupants who are not captured by WiFi soft sensors. Figure
8 illustrates an overview of the proposed approach.

Fig. 8. Overview of the approach

A. Classification of WiFi users

We collected a data set of 10000 WiFi users across number
of classes and compare the performance of logistic regression,
SVM and LDA, which are widely used methods in binary data
classification and compare their performance in the Section VI.
We have shown in Figure 4 and Figure 5 that WiFi occupancy
would better relate to the actual occupancy when bystanders
are removed.

For each WiFi user (unique identifier appears in WiFi data)
we extracted the features mentioned in Section IV;

1) Percentage of ‘in time’ (tin)
2) Percentage of ‘out time’ (tout)
3) Arrival delay
4) Number of sessions
5) Number of devices
6) RSSI
The above features are fed as inputs to the model that

classifies a WiFi user as an occupant or a bystander. Based
on the assumption that students who appear in both WiFi
connectivity data and class list are in fact inside the room,
we labelled such WiFi users as occupants and others as
bystanders.

B. Regression Analysis

There are room occupants who have no connectivity to
university network (students who do not have a connected
device or students who have their own high-speed internet
connections) as shown in the analysis in Section III, hence
the occupancy obtained using the classification alone is not
sufficient to estimate the room occupancy. Therefore, we
employ a regression stage to better relate the output of the
classifier to the actual room occupancy.

During 12 weeks of our study, we extracted 790 classes
spanning different courses and 7 classrooms on the UNSW
campus. In the sample, 46% of classes lasted one hour, 43%
lasted two hours, 8% lasted three hours, 2% lasted one and a
half hours, and 1% lasted four hours. The rooms are scheduled
for lectures most of the time while paper-based exams are
also occasionally possible, therefore we expected anomalous
periods with little WiFi use. However, we omitted the data
from weeks when classes were not held (e.g., mid-semester
break). For each class, we predicted individual WiFi user’s



presence in the room through classification and computed the
number of occupants to be fed to regression analyser as the
input variable. The training set was labelled using the actual
occupancy of the room.

Linear Regression establishes a relationship between single
or multiple independent variables with a dependent variable by
fitting a best line, while SVR is another widely used regression
method. We identified that both LR and SVR are commonly
used in literature ( [5], [8]), hence evaluate their performance
in predicting room occupancy in Section VI.

VI. EVALUATION OF PROPOSED APPROACH

In this section, we first present the performance of classifica-
tion and regression algorithms and then compare our approach
with related work. Lastly, we compare the accuracy of different
occupancy estimation methods and show how the accuracy
vary across rooms with different capacities and classes with
different enrolments, and classes held during different times
of the day.

A. Performance of classification models

To evaluate the performance of the different classification
algorithms, we used a test set that included 1500 WiFi
users and determined the accuracy of them being predicted
bystanders or occupants. Among the classifiers, LDA exhibits
the best performance. For the WiFi users who were actual
occupants, the model correctly classified them 84% of the time
while this accuracy dropped to 81% in bystander prediction.
Table III provides a comparison of different classifiers and the
confusion matrix in Table IV shows the performance of LDA.

TABLE III
COMPARISON OF CLASSIFICATION METHODS

Predicted Occupant Predicted Bystander

Logistic Regression 79% 76%

SVM 83% 70%

LDA 84% 81%

TABLE IV
CONFUSION MATRIX FOR LDA CLASSIFICATION

Predicted Occupant Predicted Bystander

Actual Occupant 84% 16%

Actual Bystander 19% 81%

B. Performance of Regression models

We used the samples of actual occupancy collected for the
analysis in Section III, to evaluate performance of regression
methods. Root Mean Squared Error (RMSE) (1) and Mean
Absolute Error (MAE) (2) were used as relative measures of
accuracy. According to RMSE and MAE criteria, the smaller
the error, the better the forecasting ability of the method.

RMSE =

√∑n
i=1(Fi −Ai)2

n
(1)

MAE =

∑n
i=1 | Fi −Ai |

n
(2)

where Ai is the actual observed value and Fi is forecasted
value for ith regression input of n inputs.

Table V shows a comparison of LR and SVR where MAE
and RMSE values computed for the two models indicate
that both of them would display nearly the same forecasting
performance. We only show the results from LDA classifica-
tion based LR in the evaluations in subsections C, D and E,
however emphasize that SVR is another potential regression
method for our approach.

TABLE V
COMPARISON OF REGRESSION METHODS

RMSE MAE

Support Vector Regression (SVR) 25.5 17.8

Linear Regression (LR) 25.4 17.5

The Linear Regression equation obtained for our training
dataset is shown in Equation 3.

Y = 10.3 + 1.25×X (3)

where Y is Room Occupancy and X is occupancy computed
by LDA classification. According to the obtained equation,
occupancy predictions by LR model inflate the occupancy
computed based on LDA classification so as to predict an
occupancy value closer to the actual occupancy value. This can
also be explained by the observations in Section III (Figure
4) where for most cases actual occupancy was higher than the
WiFi occupancy filtered using class lists.

C. Performance Comparison with related work

We compare the performance of our method with the
existing studies in which errors were computed and presented
in terms of mean absolute error (MAE) by computing the nor-
malized mean absolute error as shown in Table VI. In the table,
we have also shown the level of cost requirement in terms of
deployment, maintenance and computational complexity.

TABLE VI
COMPARISON OF ERRORS WITH RELATED WORK

Study Occupants Normalized MAE Sensor Cost

[4] 0 - 8 0.29 Camera High

[8] 0 - 8 0.12 Raspberry Pi + WiFi Low

[3] 0 - 14 0.14 PIR Medium

[5] 0 - 150 0.09 Camera + Ambient High

Our Method 0 - 250 0.14 WiFi Zero

Many of the related work were tested only for fewer number
of occupants in rooms and also require additional efforts and
costs of installation and maintenance. The performance of
our method which can be deployed at zero cost and has
been tested in rooms with occupants range from 0 to 250 is
therefore appealing as it displays a similar normalized MAE
with existing studies.



D. Performance Comparison of different methods

In a parallel research to our work [16], the same rooms
considered in our study were instrumented with EvolvePlus
wireless beam counters to count the room occupancy. We
compare the accuracy of the occupancy output by LDA
classification, LDA classification based linear regression, raw
WiFi connectivity counts (unique student identifiers appeared
in WiFi data during class of interest) and the beam counters.
We compute the occupancy output of LDA classification by
summing up the number of WiFi users predicted as occupants
while occupancy output by regression is computed by using
the output of the LDA classification as the input to linear
regression. Since it is intuitive to interpret results in percentage
terms we used the symmetric mean absolute percentage error
(sMAPE)(4) in our comparison.

sMAPE =
100%

n

n∑
i=1

| Fi −Ai |
| Fi | + | Ai |

(4)

where Ai is the actual value, Fi is the forecasted value for
ith regression input of n inputs.

The sMAPE computed for different approaches are shown
in the Table VII.

TABLE VII
ERROR RATES (SMAPE) OF DIFFERENT OCCUPANCY ESTIMATION

METHODS ACROSS ALL ROOMS

WiFi Counts LDA Our method Beam Counters

sMAPE 26.3% 20.15% 13.3% 13%

The objective of the classification is to remove the by-
standers which corrupts the WiFi connectivity counts in es-
timating room occupancy in a dense campus environment.
To compensate for room occupants who are not captured by
WiFi we proposed employing a regression step. Regression
after classification yielded better accuracy displaying the im-
portance of having a two-stage approach so as to remove
bystanders and also to capture the actual room occupants
who are not captured by WiFi soft sensors. A closer look
at the predictions of regression showed that it inflates the
result of classification such that it gets closer to the actual
occupancy. The lowest percentage error was obtained with
beam counters which was approximately half that of the
error produced by raw WiFi counts and followed by our
WiFi estimators, while raw WiFi counts showed the highest
error. However, our approach reduced the error rates of raw
WiFi counts approaching to that of the accuracy achieved
by hardware beam counter sensors. Figure 9 illustrates the
estimated number of people using our approach with the actual
number of people for the test set.

E. Generalization ability of the approach

In Table VIII, we have shown how percentage error
(sMAPE) varied across rooms in our test set. Similarly, Figure
10 shows the percentage error (sMAPE) for the estimations of
our test set across different enrolment values range from 0
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Fig. 9. Actual and Estimated occupancy by LDA based LR

to 500. The slight variations of error rates across rooms of
varying size and classes with varying enrolment indicates that
our approach is generalizable to the whole campus.

TABLE VIII
PERCENTAGE ERROR (SMAPE) VARIED SLIGHTLY ACROSS ROOMS

Capacity LDA based LR

Room 1 (MAT 227) 42 9.1%

Room 2 (MAT 228) 42 8.6%

Room 3 (MAT C) 110 9.7%

Room 4 (CLB 8) 231 15.4%

Room 5 (MAT B) 246 16.1%

Room 6 (MAT A) 472 9%

Room 7 (CLB 7) 497 12.5%
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Fig. 10. Distribution of Percentage Error (sMAPE) across Enrolment

Furthermore, it is possible that afternoon and evening
classes may have more students whose battery is low, hence do
not connect to WiFi. We computed the sMAPE for classes held
in the morning, afternoon and evening classes. In Table IX,



we have shown how percentage error (sMAPE) varied across
classes held in the morning (9am - 12pm), afternoon (12pm -
4pm) and evening (4pm - 9pm). There is only a small variation
of sMAPE for classes held in morning and afternoon while
we see the error rate has reduced to that of half during the
evening classes. The reduced error for evening classes could
be explained as majority of the classes held in the evening are
postgraduate classes where occupants may have not been in
the university from the morning but arrived for the evening
classes only. The spatial distribution of WiFi access points is
another factor that affects accuracy at scenarios where there is
no access points in the room. While this could be an issue for
other venues, it did not arise on our campus since we have a
high density of APs and classrooms are usually equipped with
multiple APs. However, with the growing popularity of wifi
networks in the world, our approach is applicable to majority
of the venues.

TABLE IX
EVENING CLASSES SHOW LOWER PERCENTAGE ERROR (SMAPE) THAN

MORNING AND AFTERNOON CLASSES

Duration sMAPE

Morning 9am - 12am 13.6%

Afternoon 12pm - 4pm 14.1%

Evening 4pm - 9pm 7.1%

VII. CONCLUSION

In this paper, we have proposed and evaluated a novel
approach to estimate room occupancy using pervasive wireless
infrastructure in a university campus. We propose a set of
features extracted from WiFi connectivity data to distinguish
bystanders and filter them out using classification-based al-
gorithms. LDA showed the best classification performance
having 84% accuracy in predicting actual room occupants and
81% accuracy in predicting bystanders. The percentage error in
estimating room occupancy based on standalone classification
was 20.15%. Then we feed the LDA classification output to a
regression model to compensate for the occupants who are not
captured by WiFi. Out of the regression methods we employed,
both LR and SVR displayed similar forecasting performance
having a percentage error of 13.3%. The comparison of fore-
casting performance between raw WiFi connectivity counts,
our LDA based LR estimator and hardware beam counter sen-
sors indicated that our approach estimates occupancy in rooms
with hundreds of occupants with an accuracy approaching the
accuracy obtained by special-purpose sensors such as beam
counter sensors. There was only a slight variation in sMAPE
observed across classes with different enrolment and rooms
with different capacities, therefore displaying the possibility
of generalizing our approach. The study demonstrated our
hypothesis that WiFi activity could be a non-intrusive, reli-
able soft sensor to estimate occupancy in rooms with large
number of occupants in a university campus, hence proving
the rooms can be dynamically allocated to courses based on
the attendance rather than enrolment. The obvious variation in

attendance which occur during exams can be considered by
schedulers when deciding which room to use for a class since
they would be aware of that variation. We intend to address
the variation, more generally, by determining how wifi use
and occupancy may vary by the type of class (lecture, tutorial
and lab) in future work. Although our approach is intuitive
in institutional buildings where there is timetable information,
there is good scope to apply it to other buildings with office,
meeting and open spaces by adjusting the identified features
further in future work.
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