
Real-time Detection, Isolation and Monitoring of
Elephant Flows using Commodity SDN System

Sharat Chandra Madanapalli∗, Minzhao Lyu†, Himal Kumar†, Hassan Habibi Gharakheili†, and Vijay Sivaraman†
∗BITS Pilani, India, †UNSW Sydney, Australia

Emails: f2014108@pilani.bits-pilani.ac.in, {m.lyu, himal.kumar}@student.unsw.edu.au, {h.habibi, vijay}@unsw.edu.au

Abstract—Operators of enterprise and carrier networks in-
creasingly require real-time visibility into traffic patterns in their
network, so they can do better resource management (congestion
detection, dynamic routing, capacity scheduling) and security
protection (detection of intrusions and volumetric attacks). Of
particular interest are elephant flows that transfer large volumes,
since they demand most resources and can inflict most damage.
Today’s techniques for detecting and monitoring elephant flows
are based on software-based packet analysis or hardware-based
inspection, which are either unscalable or expensive. In this
paper we design, implement, and evaluate an SDN-based solution
that is scalable (to tens of Gigabits-per-second) and inexpensive
(built using commodity OpenFlow switches). We first develop a
system architecture that judiciously combines software packet
inspection with hardware flow-table counters to identify and
monitor heavy flows. We then use real traffic traces taken from
a campus network to tune our algorithm parameters for desired
trade-off between software load and hardware table size. Finally,
we prototype our solution on a commodity OpenFlow hardware
switch together with open-source controller and packet inspection
software, and demonstrate operation at 10Gbps in a real campus
network.

I. INTRODUCTION

Elephant flows typically constitute only a small fraction (5-

10%) of flows by number, but account for a vast majority (60-

80%) of traffic by volume [1]. Detecting and isolating elephant

flows can therefore help an operator in a variety of ways: they

can bandwidth-limit elephant flows, or dynamically route them

along alternate paths, in order to protect performance for short

flows; they can classify traffic by application (e.g. video versus

peer-to-peer) for better capacity planning and provisioning;

they can bypass elephant transfers across middle-boxes (like

firewalls) so as to reduce the load on these expensive appli-

ances; and they can log such transfers for forensic purposes

in case security breaches or copyright violations need to be

investigated. Indeed, several carriers and enterprises we have

talked to have expressed a strong interest in some or all of the

capabilities mentioned above.

Existing solutions for detecting and isolating elephant flows

are software-based, and hence unscalable to high rates, or

hardware-based, and hence prohibitively expensive. Some op-

erators use NetFlow to periodically obtain aggregated IP flow

information from switches – this not only requires hardware

capability to decode, collate and export flow entries, which

entails a cost-premium, but also imposes a penalty in switch

CPU utilization in the range of 7-22% [2]. Statistical sampling

of traffic using sFlow reduces this overhead, but inevitably

leads to reduced accuracy. Moreover, NetFlow and sFlow can

only passively monitor elephant flows, they cannot actively

isolate or control them. Special-purpose hardware appliances,

often marketed as “deep packet inspection” (DPI) engines (e.g.

from Sandvine and Procera) are able to inspect, isolate, and

control elephant flows, but come at prohibitive cost, often

running into the hundreds of thousands of dollars for 10 Gbps

operation.

In this paper we explore the use of the Software Defined

Networking (SDN) paradigm for identifying, isolating, and

monitoring elephant flows. The use of Openflow, which allows

match-action rules at the flow-level, seems by its nature ideally

suited to provide flow-level visibility and control in a low-

cost and scalable manner. Indeed, prior works such as [3]–

[6] have used SDN (OpenFlow and/or P4) for elephant flow

monitoring, and as we will discuss in §II, they differ from our

work in their approach and trade-offs decisions. While the use

of per-flow rules in OpenFlow may seem conceptually trivial,

there are significant challenges to be overcome when trying to

implement these at high rates: flow-tables in switch hardware

are limited in size, and the switch agents cannot handle a

large number of interactions (additions or stats collections)

with flow-table entries. It therefore becomes necessary to limit

the number of hardware flow-table entries and the flow-mod

rate, by absorbing some of the load in software. Further, this

has to be done without overloading the controller, ensuring

soft resilience in the case of controller failures.

In this paper we design, implement, and evaluate an

OpenFlow-based method to detect, isolate, and monitor ele-

phant flows. Our method dynamically balances the load be-

tween software and hardware so that desired performance is

achieved within the constraints of hardware table size and

update rate. Our first contribution is to develop a system

architecture that judiciously partitions load between software-

based packet inspection and hardware-based flow-forwarding,

without imposing load on the controller. For our second contri-

bution, we conduct an offline evaluation of our scheme using

trace data from a campus network, and show how the critical

parameters can be tuned to achieve desired performance trade-

off. For our final contribution we implement our scheme using

a commodity OpenFlow switch and open-source software, and

demonstrate its ability to identify, isolate, and monitor elephant

flows at 10 Gbps in a live campus network.978-1-5386-3416-5/18/$31.00 © 2018 IEEE

Fig. 1. Architecture.

II. RELATED WORK

Detection and monitoring of elephant flows have been in-

vestigated by many researchers in legacy networks, SDNs and

the upcoming custom dataplane based solutions. In [1], authors

proposed a Bayes’ theorem based framework to find the

most efficient threshold towards number of per flow packets

in elephant flow detection. Empowered by machine learning

classification models, network traffic carrying elephant flows

can be identified with about 90% accuracy using sampled

packets [7]. NetFlow and sFlow are popular choices which

collect IP-based flow-level statistics using packet sampling on

legacy network devices. Approaches using NetFlow introduce

significant overheads towards CPU utilization on hardware

switch and may compromise network performance [8]. Also,

adopting sFlow-based solutions affects accuracy of elephant

flow detection due to low sampling rate resulting in delayed

detection and/or missing an elephant flow.

There are several solutions which leverage the flexibility

offered by SDN. However, Openflow agent in commodity SDN

suffers when a large number of flow-level statistics are queried

from the switch [9]. Many approaches have been taken to

address the issue of heavy periodic polling for elephant flow

detection ranging from dynamic change of thresholds [4] to

hierarchical approach [10]. Customizing the data plane seems

to help alleviate the scalability issues in Openflow agent. De-

voFlow [3] employs packet sampling, threshold-based trigger

and approximate counter to reduce polling overhead when

monitoring elephant flows. HashPipe [5] uses P4 to implement

and maintain heavy-hitters’ flow-level information entirely on

data plane with a low rate of false detection when enough

switch memory is available. However, modifying data plane is

not completely feasible in commodity SDN-enabled networks.

Also, the system’s capability is constrained by limited memory

size of hardware switches. Therfore, we propose a solution to

detect and isolate elephant flows on commodity SDN switch

without the need for customizing data plane, and minimize

polling overhead by only monitoring isolated heavy-hitters.

III. SYSTEM DESIGN AND ARCHITECTURE

In this section we describe our SDN-based architecture,

including the major architectural decisions, the functional

blocks and our Openflow table structure.

A. Architectural Decisions and Functional Blocks

Our solution is designed to be a “bump-in-the-wire” on the

link at which active monitoring of elephant flows is desired.

Our system is therefore transparent to the network, and does

(a) Duration versus volume of flows.

(b) CCDF of flow duration. (c) CCDF of flow volume.

Fig. 2. Distribution of flows during peak hour.

not modify packets in any way. Further, our SDN switch

does not send any data packets to the controller; instead, any

packets that need to be inspected in software are sent as copies

to a separate interface of the switch, to which a software

inspection engine is attached. This protects the controller from

overload from the data-plane, allowing it to service other

SDN applications. Fig. 1 shows the functional blocks in our

architecture applied to a typical carrier or enterprise network.

The operational flow of events is as follows: assume that traffic

enters (from the content provider) on port-1 and exits (towards

the users) on port-2; the switch is initially configured to mirror

all traffic to the packet processing software on port-3.

Our second architectural decision is in the judicious com-

bination of flexible software for packet-header processing and

scalable hardware for flow-counter monitoring. The software

tracks all the flows uniquely identified by 5-tuple. It maintains

its internal data structures that contain the duration and volume

of individual flows. Using a built-in event mechanism, the

software is able to detect an elephant flow, and makes a

request to the controller (through a REST API exposed by

an SDN application running on top of the controller) inserting

a reactive rule to isolate the elephant flow. The elephant flow

isolation serves two purposes. Firstly, the elephant flow is no

longer mirrored to the software and hence reduces the load on

the software. Secondly, the specific flow-entry enables fine-

grained monitoring of the isolated elephant flow.

Upon insertion of a reactive flow-entry, the SDN App starts

polling its counter periodically. The application dynamically

adjusts the polling frequency based on the number of existing

entries on the switch as well as flow-mod rate on the OpenFlow

agent. The collected counters are written into a time-series

database from which any other application can read and

perform desired operations such as traffic classification, rate

control, anomaly detection, etc.

0 4 8 12 16
Threshold (MB)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Nu
m

be
r o

f H
ar

dw
ar

e
flo

w-
en

tri
es

15

20

25

30

35

40

45

50

55

60

Fr
ac

tio
n

of
 to

ta
l lo

ad
 o

n
so

ftw
ar

e
(%

)

Fig. 3. Evaluation of elephant flow detection using various volume threshold.

0 15 30 45 60
Time (min)

5K

10K

15K

20K

25K

N
um

. o
f f

lo
w

 a
rr

iv
al

s
to

 s
of

tw
ar

e

(a) Flow arrival (software).

0 15 30 45 60
Time (min)

0

10

20

30

40

N
um

. o
f o

ff-
lo

ad
ed

 fl
ow

s
to

 h
ar

dw
ar

e

(b) Elephant-flow arrival (hardware).

Fig. 4. Flow arrival

B. OpenFlow Table Pipeline

The match and action paradigm of SDN is used to dy-

namically isolate elephant flows once they are detected by

the packet processing software. The Openflow pipeline on

the SDN switch consists of two tables. Table-0 consists of

the reactive rules which correspond to the detected elephant

flows. Reactive rules have an inactivity timeout of 60 sec

to minimize the active number of entries on the hardware.

The action corresponding to these rules is to forward the

packets without mirroring them. These reactive flow rules also

enable flow level telemetry to be carried out by the use of

OpenFlowStatsRequest messages on the OF-Channel. Table-0

is initialized with only one flow rule – packets which miss this

table are automatically processed by rules in Table-1.

Our Table-1 contains only two rules that forward and mirror

bidirectional traffic. Note that proactive rules ensure that no

PACKET_IN message is generated, reducing load on the

Openflow agent of the switch as well as the SDN controller.

The flow insertion happens when events occur in software.

IV. ELEPHANT-FLOW DETECTION METHOD

We aim to develop an efficient method which is able to

detect elephant flows quickly and accurately after their com-

mencement while keeping the load on the software tractable.

To perform such a detection, the software packet analyzer

can employ thresholds on flow volume and/or flow duration,

which need to be judiciously tuned to achieve our objective.

We use several packet traces obtained from a fraction of our

University campus network during peak hours (i.e. 2-5pm),

each one-hour trace comprising of over 500 million packets

from over 4 million flows. We believe that these uniformly

sampled short traces still represent the composition of flows

in our campus traffic. We describe the characteristics of trace

data, then quantify the benefits from our solution.

A. Trace Data

We collected a pcap trace data during peak hours from
the university wired network serving thousands of students

and staff – an ethics clearance was obtained (UNSW Human

Research Ethics Advisory Panel approval number HC16712)

in order to conduct this trial. We then log the time-stamp,

header (i.e 5-tuple), and length of individual packets in a file,

and use the log file to compute flow-level statistics.

We start examining the properties of flows in campus traffic

traces. Fig. 2 depicts the scatter plot of flow duration versus

flow volume, followed by distributions of flow duration and

flow volume. In Fig. 2(a), it can be seen that a large fraction

of flows are short in duration and small in volume – centered

around the origin. We also observe that the duration of mice

flows (i.e. those with small volume) spans the entire range

of [0, 2000] seconds in Fig. 2(a) – data points are scattered

across and close to the x-axis suggesting that the flow duration

can not be indicative of the flow type either elephant or mice.

Note that 99% of flows have duration less than 1000 seconds

as shown in Fig. 2(b). However, the CCDF plot of flow volume

in Fig. 2(c) shows that only 0.26% of all flows have volume

greater than 4 MB, suggesting potential elephant flows. This

small fraction of flows collectively contribute to 72% of total

volume of all flows seen in our dataset.

B. Simulation Methodology and Results

We wrote a native simulation that takes packet arrivals,

header, and size from the trace as input, and performs soft-

ware service (maintaining flow-level states, detecting elephant

flows, and offloading to hardware) and hardware service

(maintaining flow-table entries, updating per-flow counters

and aging-out inactive flows). Both software and hardware

modules maintain their internal states using separate data

structures. For each run, a threshold of flow volume is passed

to the simulation which is used to offload elephant flows from

the software module to the hardware module.

The number of flow-mod, hardware flow-entries, and the

load on the software is tracked in our simulation of each

one-hour trace data. Fig. 3 shows the evaluation results of

our simulation. Each data point shows the average value

of corresponding metric computed from a number of runs

with an error bar representing the standard deviation value.

Unsurprisingly, as volume threshold increases it results in less

flows being pushed into the hardware (as shown by solid blue

lines and left y-axis) and more load is offered to the software

(as shown by dotted black lines and right y-axis). For example,

increasing the threshold from 1 MB to 4 MB, the average

number of flows on the hardware is reduced by 55% (i.e. from
9000 to 4000), in exchange, the fraction of software load is

increased by 66% (i.e. from 18% to 30%). Since monitoring

of reactive flow-entries (i.e. counter collection request) causes

the SDN switch to return a multi-part reply (e.g. our Noviflow

switch returns usage statistics of 25 flows per each reply), this

imposes a significant delay to our SDN App to collect the

per-flow counter of all reactive entries. We therefore choose

to operate our system that maintains on average 4000 flow-

12am 6am 12pm 6pm 12am
Time

0

1

2

3

4

5

6

7

8

9

10

R
at

e
(G

bp
s)

Hardware
Software

(a) Hardware load vs. Software load.

12am 6am 12pm 6pm 12am
Time

0

2000

4000

6000

8000

N
um

be
r

of
 H

ar
dw

ar
e

flo
w

-e
nt

rie
s

0

25

50

75

100

S
of

tw
ar

e
C

P
U

 u
sa

ge
 (

%
)

Hardware flow numbers
Software CPU usage

(b) Hardware flow-entries vs. Software
CPU usage.

Fig. 5. Evaluation results of our prototype.

0 500 1000 1500 2000
Flow duration (sec)

0

200

400

600

800

1000

F
lo

w
 v

ol
um

e
(M

B
)

(a) Duration versus volume of flows

0 100 200 300 400
X: average flow rate (Mbps)

10-3

10-2

10-1

100

C
C

D
F

: P
ro

b
[r

at
e

>
x]

(b) CCDF of flow rate.

Fig. 6. Distribution of isolated flows.

entries on hardware which ensures a sustained polling period

of 5 seconds – this means that a 4 MB threshold would suit

our traffic and network setup. Further, since the average size

of a web-page as of 2017 is about 2.5 MB [11] the chosen 4

MB threshold would avoid isolating mice flows corresponding

to HTTP-based web traffic. Fig. 4 depicts the rate of new flow

arrival to software and hardware over one-hour period in our

simulation. We observe that all traffic flows are captured by

software at bootstrap thus a large number of flows per second

(more than 18000) are detected as new arrival (including

ongoing flows), this is stabilized to 12000 flow arrivals per

second in 90 seconds, and reaches to 10000 arrivals per second
on average after 15 minutes. Of this large number of new flow

arrivals to software, only 25 flows per second on average arrive

to hardware (i.e. detected elephant flows).

Note that among reactive flow-entires inserted into the hard-

ware, we find a fraction of flows that do not exhibit elephant

behavior. We deem hardware flow-entries with average rate of

greater than 300 Kbps (equivalent of rate required for the low-
est resolution video streaming [12]) as “actual” elephant flows.

We found that that the fraction of actual elephant flows rises

as the threshold increases and is stabilized at 5 MB threshold.

Therefore, we propose to consider a threshold of flow duration

in addition to primary threshold of flow volume, enhancing the

accuracy of elephant flow detection. We explored the impact

of the duration threshold for given thresholds of 4 MB on

our metrics of software load and number of hardware flow-

entries (the plot is omitted due to space constraints). We

therefore perform a duration check in the software module

once the flow volume hits the chosen threshold. Our results

show that offloading flows with the volume of 4 MB and the

duration of at most 300 seconds would significantly reduce the

number of hardware flow-entries (i.e. 10%) while incurring a
negligible increase in software load (i.e. 2.5%). We emphasize
that these threshold values should be chosen by the network

operator based on profiles of traffic, constraints of hardware,

and resources available to the software engine.

V. PROTOTYPE IMPLEMENTATION

We have implemented a fully functional prototype of our

system that uses our proposed solution. Our system includes

NoviSwitch 2116 hardware, Ryu SDN controller, NetBricks

[13] as packet processing software, and InfluxDB. Ryu con-

troller and InfluxDB are run in separate virtual machines

configured by 4-core CPU and 32 GB RAM on an enterprise

standard server. A physical server with 32GB RAM and 16-

core CPU that runs NetBricks framework over Data Plane

Development Kit (DPDK) [14] to perform software packet

processing of the mirrored campus traffic.

Fig. 5 depicts the evaluation results of our system prototype

for a period of 24 hours. The hardware load is shown by

solid red line in Fig. 5(a) and the software load is stacked

on top of it, shown by dotted blue line. As we can see the

total load (sum of software and hardware) of our campus

traffic peaks during afternoon hours exceeding 9 Gbps. We

note that only one third of total load on average is handled by

the software which slightly grows during peak hours reaching

to 43%. Considering performance constraints, we track the
number of hardware flow-entries and profile the average CPU

usage of software in Fig. 5(b) – the average CPU usage is

always below 100% and only exceeds 90% during the peak

hour (a negligible packet loss). It is also seen that the number

of flow-entries is capped to 4000 except for few minutes –

this results in dynamic reduction of the frequency of polling

per-flow counters during that period from our SDN App.

We now look at the elephant flows of our campus traffic

that are detected by software and isolated by hardware table

entries within 24 hours. Our SDN App periodically monitors

counters of individual reactive flow-entries from the hardware

and writes into a table of InfluxDB. Fig. 6 depicts the analysis

of reactive flow-entries present on the hardware. Fig. 6(a)

is visually insightful as data points in the scatter plot of

duration versus volume are grouped along the y-axis which

is completely orthogonal to the observation we had earlier

in Fig. 2(a) from all traffic flows – thus representing elephant

flows. Considering the flow average rate in Fig. 6(b), more than

90% of reactive hardware entries indeed represent elephant

flows, those that operate at the rate of more than 300 Kbps –
this corroborates with our simulation results with enhancement

due to additional duration check.

VI. CONCLUSION

Real-time visibility into elephant flows is increasingly be-

coming of high interest for network operators due to their

resource consumption. Existing tools of monitoring of elephant

flows are either costly hardware-based inspectors, or unscal-

able software-based analyzer. In this paper, we have proposed

our solution that combines the scalability of commodity SDN

hardware with the flexibility of packet processing software. We

have developed our method to detect elephant flows, tuned our

algorithm parameters using real traffic traces obtained from our

campus network, and implemented a prototype and evaluated

our solution operating at 10 Gbps in a real campus network.

REFERENCES

[1] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying
elephant flows through periodically sampled packets,” in Proc. ACM
IMC, Taormina, Sicily, Italy, 2004.

[2] “Network performance analysis,” Cisco Systems, Tech. Rep., 2005.
[3] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in Proc. ACM SIGCOMM, Toronto, Ontario, Canada, 2011.

[4] Z. Liu, D. Gao, Y. Liu, H. Zhang, and C. H. Foh, “An adaptive
approach for elephant flow detection with the rapidly changing
traffic in data center network,” International Journal of Network
Management, pp. e1987–n/a, e1987 nem.1987. [Online]. Available:
http://dx.doi.org/10.1002/nem.1987

[5] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’17. New
York, NY, USA: ACM, 2017, pp. 164–176.

[6] Y. Afek, A. Bremler-Barr, S. Landau Feibish, and L. Schiff, “Sampling
and large flow detection in sdn,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 345–346.

[7] D. Rossi and S. Valenti, “Fine-grained traffic classification with netflow
data,” in Proceedings of the 6th International Wireless Communications
and Mobile Computing Conference, ser. IWCMC ’10. New York, NY,
USA: ACM, 2010, pp. 479–483.

[8] “Network performance analysis,” Cisco Systems, Tech. Rep., 2005.
[9] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and

V. Maglaris, “Combining openflow and sflow for an effective and scal-
able anomaly detection and mitigation mechanism on sdn environments,”
Comput. Netw., vol. 62, pp. 122–136, Apr. 2014.

[10] L. Yang, B. Ng, and W. K. Seah, “Heavy hitter detection and identi-
fication in software defined networking,” in Computer Communication
and Networks (ICCCN), 2016 25th International Conference on. IEEE,
2016, pp. 1–10.

[11] T. Howe. (2017) Is web page bloat costing your site?
https://www.hallme.com/blog/the-cost-of-site-bandwidth/.

[12] Youtube, “Live encoder settings, bitrates, and resolutions,”
https://support.google.com/youtube/answer/2853702?hl=en, 2017.

[13] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of NFV,” in Proc. USENIX OSDI, Savan-
nah, GA, USA, 2016.

[14] D. Intel, “Data plane development kit,” http://dpdk.org/, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

