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Abstract—Netflix is the largest video-streaming provider in the
world today, with over 148 million subscribers and accounting
for over 20% of broadband traffic in most developed countries.
Internet Service Providers (ISPs) are acutely aware of the need
to provide good video streaming experience to viewers, but are
poorly equipped to measure and monitor per-stream quality. In
this paper, we measure and analyze Netflix playback data from
multiple households, develop a practical and scalable method
to correlate network activity with client playback behavior, and
provide a means for ISPs to infer per-stream Netflix experience
from broadband traffic patterns. Our specific contributions are:
(1) We develop a measurement tool for collecting network flow
activity and client playback metrics, deploy it in 9 households and
our lab to gather data for about 8000 Netflix video streams under
various network conditions, and release the data to the public;
(2) We analyze our data to highlight correlation between active
flows and video playback phase, and between network chunk
transfers and playback buffer health, during both regular-play
and trick-play of video; (3) We develop a method for the ISP to
infer Netflix user experience in terms of buffer fill-time, video
bitrate and throughput, and detect playback buffer depletion and
quality degradation events. ISPs can use our methods to measure,
monitor, and manage Netflix user experience in real-time.

I. INTRODUCTION

Streaming video continues to grow, accounting for about
58% of downstream traffic on the Internet according to the
Sandvine 2018 report [1]. Further, Netflix is the top web
application used in the Americas, and in the top-10 in every
region of the world, generating 15% of global Internet traffic
to serve over 148 million subscribers world-wide. With this
kind of reach and scale, it is no wonder that ISPs are keen to
ensure that their subscribers experience good Netflix streaming
quality over their broadband networks, so they can better retain
existing customers and attract new ones.

However, ISPs are operating blind on Netflix user experi-
ence. Netflix publishes a per-country monthly ranking of ISPs
by prime-time Netflix speeds, but this is of limited value to
ISPs since: (a) it is averaged across (a potentially large) user-
base and does not give information on specific subscribers or
streams; (b) it is retrospective and therefore not rectifiable by
immediate action; and (c) it is at best an indicator of video
resolution (bit-rate), with no insights into variation of quality
during playback or video start-up delays that are central to user
experience. With such limited knowledge, ISPs may attempt to
install CDN servers, or as the last resort increase their network
capacity with the hope for a better user experience. However
these instrumentations can not only be prohibitively expensive,
but also do not quantify the improved user experience.

Existing methods for inferring streaming video experience
are not usable by ISPs for Netflix. These methods either
require to extract statistics from the packet traces and/or HTTP
logs, or visibility into encrypted traffic (that carry URLs and
manifest files), neither of which are easy for an ISP to achieve
for Netflix. While some prior works have studied video stream-
ing in the mobile context, the behavior in broadband networks
is different, and moreover mechanisms employed by Netflix
in terms of using HTTPS, non-discretized bitrates, encrypted
manifest files and urls, render earlier studies obsolete. Our
aim in this work is to develop a method that an ISP can easily
deploy into their existing network infrastructure to gain real-
time visibility into per-stream Netflix user experience at scale.

In this paper, we collect Netflix data from multiple house-
holds, build models that deduce client playback behavior
using just network flow activity, and evaluate the ability
of our models to determine user experience from network
measurements obtained by ISPs. Our specific contributions are
as follows: (a) We build a tool that collects client playback
metrics (like buffer health and bitrate) and flow-level network
activity (byte counts and packet counts), deploy it in real
households, and make public our dataset comprising over
750 hours of video playback with 8000 streaming sessions;
(b) We analyze our dataset to understand different phases of
video streaming, audio and video content transfer mechanisms,
correlation between network activity (chunks transfers, number
of active flows) and corresponding client behavior (buffer state,
bitrate switches, trickplay), and the challenges posed by the
sophisticated Netflix video client; and (c) We develop machine
learning and statistical methods to infer user experience in
terms of video quality, buffer fill time, and available band-
width, and additionally deduce per-stream events like max-
bitrate playback, buffer depletion, and quality degradation
during both regular play and trickplay of the video.

II. RELATED WORK

Prior works on measurement of Netflix video streaming
studied bitrate adaptation models [2], [3], content distribu-
tion strategies and methods [4], bandwidth consumption and
congestion control mechanisms [5], and prediction of the
movie/title using fine-grained traffic patterns [6]. To our best
knowledge, we are the first to analyze the behavior of Neflix
video streaming to infer the user experience from network
measurements for broadband ISPs who cater to home net-
works. Existing approaches for estimating streaming video
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Fig. 1: Architecture of FlixMon.

experience are either statistical modeling-based or machine
learning-based. Recent attempts such as eMIMIC [7] and
BUFFEST [8] employ statistical models, using packet traces
and HTTP requests respectively, to quantify users quality of
experience (QoE). Machine Learning (ML) approaches [9]–
[11] used recently, attempt at measuring QoE by predicting
categorical estimates of experience metrics like low, med, high
bitrates [10], [11] or low, high probabilty of bitrate switches
and rebuffering [10], [11]. To collect the ground-truth, both [9]
and [11] used client-side instrumentation on mobile devices
and, [10] used HTTP logs and metrics exported to content
provider. However, all of them used packet traces to derive
fine-grained attributes such as RTT, packet losses, ACKs,
retransmissions which are expensive to compute. Further,
study in [9] was limited to progressive video streaming and
did not consider HTTP-based Adaptive Streaming (HAS).
None of the these methods can be directly used for Netflix
because: first, it uses adaptive streaming over HTTPS to stream
video traffic which makes HTTP logging infeasible and it
encodes its URL requests and manifest files thus collection
of parameters such as bitrate and content type from request
logs becomes infeasible (even if MITM proxies were used).
Further, existing works perform a post-facto estimation of QoE
by deriving features from packet traces or logs. We account
these characteristics of Netflix and propose a methodology to
compute the metrics in real-time and being independent of
existing logging mechanisms or tools used by the ISP.

In a parallel work [12], authors attempt to classify buffer
states (i.e., filling, maintaining, depleting) for Youtube videos
using attributes derived from aggregate network profile. In
[13], authors use low-level packet features to detect startup
delay and re-buffering events in real-time for Youtube traffic
but do not report the quality of video playback or its variation.
We instead analyze network activity of a set of TCP flows,
compute per-flow attributes, correlate them with client behav-
ior of Netflix, and infer quality of video playback in addition
to classifying the phase of video playback. Further, most of the
works which measure metrics like stalls, initial delay consider
mobile network scenarios. We argue that these are not enough
to comment on the experience of broadband users as they fail
to quantitatively compare the experiences among users with
no stalls and minimal delay. We thus introduce new metrics
to infer experience of Netflix users on broadband network,
and offer a method to ISPs for measuring users experience of
Netflix on a per-stream basis in real-time.

III. FLIXMON: OUR TOOL FOR MEASURING
NETFLIX PLAYBACK PERFORMANCE

To construct an accurate profile of Netflix video streams,
we have developed a tool – FlixMon – which automatically
plays videos, measures their network activity profile along
with client playback metrics, and stores measured records into
a pair of CSV files.

A. FlixMon Architecture:

FlixMon has three main components, each packaged into
a separate docker container: a custom-built network measure-
ment app called FlowFetch, a selenium browser instance, and
a video orchestrator application which signals the browser to
play videos. There is also an optional network conditioner
which uses tc linux tool to shape traffic by synthetically
changing network conditions in software. Containerizing ap-
plications eases deployment of the FlixMon. A shared virtual
network interface among the containers ensures that packets
flowing through FlowFetch originate solely from the browser,
eliminating other traffic on the machine where FlixMon runs.

FlowFetch is a tool that we built in Golang to record flow-
level activity by capturing packets from a network interface.
By a flow, we mean a transport-level TCP connection or UDP
stream identified by a unique 5-tuple consisting of source
IP, source port, destination IP, destination port and protocol.
For a TCP/UDP flow, the tool records (at a configurable
granularity) cumulative byte and packet counts (more practical
and storage-friendly than packet traces) into a CSV. FlowFetch
is also able to filter flows of interest DNS queries specific
to certain providers (e.g., Netflix). In this work, the tool is
configured to log flow records every 100ms and a DNS-
based filter is employed to isolate network activity of flows
from nflxvideo.net – the primary domain responsible for
delivery of Netflix video content.

For the video orchestrator, we have used Selenium client
library in Python to interact with a remote Selenium browser
instance (i.e., server) for loading and playing Netflix videos.
At the beginning of each measurement session, a browser
instance (i.e., Firefox or Chrome) is spawned with no cache
or cookies saved which loads the Netflix web-page and logs
in to the user account by entering credentials (shown by
step 1 in Fig. 1). The tool can be configured in either of
two ways to generate a video list: (a) from a fixed set of
Netflix videos specified in a config file, or (b) by fetching the
URLs of recommended videos on the Netflix homepage that
are updated regularly. Given the list, FlixMon starts playing
videos sequentially. Prior to playback of each video, the player
module signals the FlowFetch to start measuring network
activity (shown by step 2 in Fig. 1). Then, the orchestrator
signals the browser to load the video and collects the playback
metrics (shown by step 3 and 4.1 respectively in Fig. 1) –
Netflix player offers a series of hidden menus that allow us to
view our streaming quality stats, and diagnose any potential
issues. The real-time metrics (refresh every second) for audio
and video media include the buffering/playing bitrates, buffer
health (in seconds and bytes), and the CDN from which the



TABLE I: Summary of instances in our dataset.
List # streams # titles Stream dur. Data resol.

Households
Rec. 1720 787 5-min 100 ms
Fix. 919 11 5-min 100 ms

Lab
Rec. 5408 1842 2-min 500 ms
Fix. 30 10 5-min 100 ms

stream is sourced. Additionally, position and duration of the
playback, frame statistics (e.g., frame rate and frame drops),
and throughput are also provided. The orchestrator stores client
playback metrics (every second) into a CSV file (step 4.2 ) that
exists in storage – a shared volume among the orchestrator
and Flowfetch containers. Simultaneously, Flowfetch stores
the network activity (byte and packet count measured every
100ms) into another co-located CSV (step 4.3 ) when the total
volume of a TCP/UDP flow crosses an export threshold (e.g.,
2MB) since last export.

We deployed the FlixMon both in our university lab and
home networks (of 9 members of our research group). For
home networks, we deployed our tool without the network
conditioning module and played both fixed set and recom-
mended set of videos. In our lab, given the high bandwidth
available in our university campus network we enabled the
network conditioner to synthetically impose bandwidth caps
ranging from 500Kbps to 100Mbps. We would like to empha-
size that the tool is needed to collect data for training models
in the lab (as described in §5). Subsequently in the field, ISPs
will deploy just the Flowfetch component to obtain real-time
in-network flow-level measurements, and derive QoE metrics
using trained models.

B. Dataset:

We collected a total of 8077 data instances for Netflix
video streams. Each instance consists of a pair of CSV files
(i.e., one for network activity and one for client playback
behavior). A summary of our dataset is shown in Table I.
For households, our data includes profiles for 1720 streams of
787 unique recommend titles and 919 streams of 11 unique
titles from a fixed list. Each video stream in the households
dataset played for a duration of 5 minutes and corresponding
network activity was recorded at every 100 ms. For lab, our
data is relatively larger with 5408 streams of recommended
titles along with 30 streams from the fixed list. Note that the
lab data of recommended titles were collected for a duration
of 2 minutes with the resolution of 500 ms – this was our
first set of data collected prior to households measurements
for which we increased both duration and resolution.

We release our datasets (spanning more
than 750 hours of Netflix video playback) via
https://telescope-data.sdn.unsw.edu.au/netflix.
The data is organized in two main branches namely
households and lab, each containing several zip files. Each
zip file, corresponding to a household (or lab), has a
folder denoting browser type (i.e., Firefox and/or Chrome),
in which are sub-folders of unique movie titles which
contain instances of playback in a timestamped directory.
There are two files corresponding to each instance of a
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Fig. 2: Network profile of flows in a typical Netflix video
stream.

video stream: (a) “flows.csv” (i.e., network activity), and
(b) “netflixstats.csv” (i.e., client playback metrics).
Each record of flows.csv represents the measurements
(at the resolution of 100ms or 500ms) of individual TCP
flows associated with a Netflix video stream comprising
timestampExport, timestampFlowMeasure, flowID, 5-tuple,
threshold of flow volume at which the FlowFetch exports
fine-grained flow profile measurements: cumulative volume
(Bytes), cumulative packetCount, and duration (ms). Also,
each record of netflixstats.csv represents the real-time
measurements (i.e., one row per second) of all client playback
metrics provided by the Netflix player comprising timestamp,
movieID, CDNaudio, CDNvideo, playback position (seconds),
movie duration (seconds), playing-bitrate-audio/video
(kbps), buffering-bitrate-audio/video (kbps), buffer-size-bytes-
audio/video, buffer-size-seconds-audio/video, throughput
(Kbps), etc.

IV. NETFLIX STREAMING: ANALYSIS AND INSIGHTS

In this section, we analyze our data to highlight behavior
of Netflix videos at network and client.

A. Profile of a Typical Netflix Stream

Fig. 2 illustrates a time-trace of network activity measured
for a representative Netflix video stream played for 5 minutes
with no interruption. The top subplot shows in black lines the
total downstream traffic profile for this stream, and the four
subplots below in blue lines show downstream traffic profile of
each TCP flow associated with this stream. We observe that the
Netflix client established four parallel TCP flows to start the
video, three of them come from Netflix server 203.219.57.106
and one from 203.219.57.110. All four TCP flows actively
transferred content for first 60 seconds. Thereafter, two flows
(A,C) became inactive (i.e., idle) for a minute before being
terminated by the client (i.e., TCP FIN). It is seen that the
remaining two active flows (B,D) changed their pattern of
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(c) Throughput and buffering-bitrate of video.
Fig. 3: Client metrics of a Netflix stream.

activity – FlowB has small spikes occurring every 16 seconds
and flowD has large spikes occurring every 4 seconds.

Let us correlate this with metrics offered by the Netflix
client application for the same video stream shown in Fig. 3.
We show in Fig. 3(a) and 3(b) the buffer health of audio
and video respectively which is measured in terms of: (a)
volume in bytes (shown by solid blue lines and left y-axis)
and (b) duration in seconds (shown by dashed red lines and
right y-axis). We observe that the buffer health in seconds for
both audio and video ramps up during the first 60 seconds of
playback, till it reaches to a saturation level at 240 seconds
of buffered content – thereafter, this level is consistently
maintained by periodic filling. Note that the audio and video
buffers are replenished every 16 and 4 seconds respectively,
suggesting a direct contribution from the periodic spikes in
network activity (observed in FlowB and FlowD).

Netflix client interface reports a metric called “throughput”
which is an estimate of bandwidth available for the video
stream. Fig. 3(c) shows the throughput (in Mbps, solid blue
lines, on the left y-axis) and the buffering-bitrate of video
(in Kbps, dashed red lines, on the right y-axis). We observe
that the video starts at a low-quality bitrate 950Kbps, switches
to higher bitrate 1330Kbps after 2 seconds, and jumps to its
highest bitrate 2050Kbps after a second. Note that it stays
at this highest bitrate for the rest of video playback even
though far more bandwidth is available. Additionally, we note
in Fig. 3(b) that the video buffer health in volume is variable
while the buffer in seconds and the buffering bitrate are both
consistent. This is because of variable bitrate encoding used
by Netflix to process the videos where each video chunk is
different in size depending on scene complexity. In contrast,
buffer health volume for audio in Fig. 3(a) stays at 3MB with
periodic bumps to 3.2MB – this indicates a constant bitrate
encoding used for audio content and bumps occur when a new
audio chunk is downloaded and an old one is discarded from
the buffer. For audio, we observed (not shown in the Fig. 3(c))
a constant bitrate of 96Kbps throughout the playback.

Having analyzed streaming behavior on network and client
individually, we now attempt to correlate them. We observed
two distinct phases of video streaming: (a) the first 60 seconds
of buffering, (b) followed by stable buffer maintenance. In the
buffering phase, the client aggressively transferred contents at
a maximum rate possible using four concurrent flows and then
in the stable phase it transferred chunks of data periodically
to replenish the buffer using only two flows.
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Fig. 4: Correlation of network activity and client behavior.

Of the two flows active in stable phase, FlowB (with a
spike periodicity of 16 seconds) displays a strong correlation
between the spikes of its network activity and the replenishing
audio buffer levels on the client, as shown in Fig. 4(a). This
suggests that the TCP flow was used to transfer audio content
right from the beginning of the stream. Isolating content
chunks of this flow , we found that the average chunk size was
213KB with a standard deviation of 3KB (1.4%). Every chunk
transfer corresponds to an increase of 16 seconds in the client
buffer level. Considering the fact that each chunk transferred
16 seconds (indicated by both periodicity and increase in
buffer level) of audio and the buffering bitrate of audio was
96Kbps, the size of audio chunk is expected to be 192KB
which is very close to our computed chunk size of 213KB
which includes the packet headers. Additionally, we note that
for this specific flow, the server IP address differs from other
flows (as shown in Fig. 2) and the Netflix client statistics also
indicate that audio comes from a different CDN endpoint.

Further, FlowD (with a spike periodicity of 4 seconds)
during the stable phase, displays a similar correlation between
its network activity and the client buffer health of video, as
shown in Fig. 4(b). The chunks of this flow have an average
size of 1.15MB and a standard deviation of 312KB (27%).
With each chunk constituting 4 seconds of video content and
the video bitrate on client measured as 2050Kbps, the actual
chunk size is expected to be 1.00MB which is close to the
computed average chunk size while accounting for packet
headers. Additionally, a high deviation in video chunks size
also suggests that video is encoded using variable bitrate (in
contrast, audio has a constant bitrate).

Trickplay: Having understood the streaming behavior dur-
ing a normal playback (with no interruption), let us now
analyze the behavior of Netflix streams during trickplay events.
Trickplay occurs when the user watching the video decides
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Fig. 5: (a) Distribution of quality, and (b) correlation of
network activity with available bandwidth.

to play another segment far from current seek position by
performing actions such as fast-forward, or rewind. A trickplay
is performed either within the buffered content (e.g., forward
10 seconds to skip a scene) or outside the buffered content
(e.g., random seek to unbuffered point). In the former case
(within buffer), our observations show that the Netflix client
uses existing TCP flows to fetch the additional content filling
up the buffer up to 240 seconds. However, in the latter case,
the client discards the current buffer and existing flows, and
starts a new set of flows to fetch content from the point of
trickplay. This means that trickplay outside the buffer is very
similar to the start of a new video stream, making it difficult
to determine whether the client has started a new video (say
next episode in a series) or has performed a trickplay. For
this reason, we consider a trickplay event equivalent to start
of a new video stream and compute our experience metrics
accordingly. Additionally, we note that for a stream in the
stable phase, trickplay results in transitioning back to the
buffering phase until the buffer is replenished. In §V, we will
distinguish trickplay from network congestion that can cause
a stream to transition into the buffering phase.

B. Analysis of Netflix Streams Across Our Dataset

Having looked at a representative video stream, we now
analyze properties of Netflix streams in the dataset. Starting
with the quality of streams across all instances in our dataset,
we plot in Fig. 5(a) the histogram (with 20 bins) of the number
of unique titles for a given video bitrate – the x-axis is capped
at 5000 Kbps for readability of the plot. Note that each title is
played at multiple bitrate values during a stream, as explained
earlier. We make two observations: (a) Netflix videos are
available in a fine granularity of bitrates in the range (i.e., [80,
6100] Kbps) of bitrate – this is in contrast with [7], in which
video providers employed a small discrete set of 7 bitrates. The
availability of Netflix videos in many bitrates across the range,
combined with variable bitrate encoding, makes it nontrivial
to map a chunk size observed on the network to a particular
quality bitrate, and (b) all movie titles are available at lower
bitrates (i.e., less than 1500Kbps), while only 517 titles in our
dataset were available (or played) at a high-quality bitrate (i.e.,
more than 3000Kbps).

Moving to correlation of active flows and network condition,
we show in Fig. 5(b) the scatter plot of the total number of
TCP flows (those with volume more than 1 MB) per each
stream versus the average throughput (measured by Netflix
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Fig. 6: Multiplexing audio and video over two TCP flows.

client). Note that for each stream, we counted all TCP flows
during both initial buffering and midstream (due to CDN
switch or network congestion events). It is seen that Netflix
often uses 3 to 5 TCP flows for the entire range of measured
throughput – upon commencement of the stable phase only
a couple of flows remain generally. We also observe that the
flows count can go up to more than 12 when the available
bandwidth is relatively lower (i.e., less than 8 Mbps) – this is
not surprising as Netflix attempts to spawn multiple flows to
quickly fetch required contents for a smooth playback.

Lastly, we would like to point out certain challenges in
analyzing Netflix behavior. We found that some TCP flows
carry both audio and video contents (audio content is identified
by chunk sizes of about 220KB and periodicity of 16 seconds
in the stable phase) – both in an interleaved and alternating
fashion. Also, each content type may switch TCP flows
midstream – e.g., we observe in Fig. 6 in the stable phase of
a sample stream that Flow1 carries audio and Flow2 carries
video at the beginning, but after about 20 seconds video is
carried in Flow1 and audio is carried in Flow2.

Therefore, the mapping of a flow to the content it carries
is nontrivial to determine. The complex and sophisticated
orchestration of flows and their content type/quality makes
it challenging to accurately predict all the client playback
metrics purely based on network activity. In the next section,
we use machine learning and statistical methods to compute
a set of metrics (buffer-fill-time, average bitrate, and available
throughput) per stream to infer user experience from network
measurements.

V. INFERRING NETFLIX QOE FROM NETWORK

Having understood the behavior of video streaming, we now
develop a method which uses just the network measurements
to infer Netflix user experience (since ISPs do not have access
to end clients). We first detect presence of Netflix video
streams per host by using DNS, detect the phase of video
playback and finally compute our metrics relevant to user
experience.

A. Isolating Netflix Video Streams

Prior to video playback, the client sends a DNS query
to fetch the IP address of Netflix streaming servers. To
isolate flows corresponding to Netflix, we capture the A-
type DNS response packets and inspect them for the suffix
nflxvideo.net – if present, we mark the IP address as a



Netflix streaming server. In parallel, we track five tuple flows
established to these streaming servers on a per-host basis. For
example, given a user with IP address of 1.1.1.1, we track
the connections from Netflix servers to this IP address in a
separate data structure, and thus group all flows established by
this user to the Netflix streaming server. For now, we assume
that one host plays at most one video at any time – later
we will describe a method to detect households with multiple
parallel Netflix sessions. We note that an ISP can equivalently
use any other method to isolate Netflix traffic, e.g., SNI field
present in server hello message sent during SSL connection
establishment. We used DNS as it is simpler to capture and
avoids the use of sophisticated deep packet inspection tech-
niques required otherwise. However, we acknowledge that the
DNS information may be cached in the browsers, thus every
video stream may not have a corresponding query observed
on the network. Nonetheless, maintaining a set of IP addresses
(from previous DNS queries) will ensure that the video streams
are captured.
B. Streaming Phase Classification

Having isolated the TCP flows of a stream, we now build
machine learning-based model to classify the phase (i.e.,
buffering or stable) of a video streaming playback by using
several waveform attributes (explained next).

Data Labeling: Each video streaming instance in our
Netflix dataset is broken into separate windows of each 1-
minute duration. We label a window of individual TCP flows
associated with a stream using the client buffer health (in
seconds) of that stream. For each window, we consider three
measures namely the average, the first, and the last value of
buffer health in that window. If both the average and last
buffer values are greater than 220 seconds, then we label it as
“stable”. If both the average and the last buffer values are less
than 220 seconds but greater than the first buffer value, then
we label the window as “buffering”. Otherwise (e.g., transition
between phases), we discard the window and do not use for
training of our model.

Attributes: For each flow active during a window, we com-
pute two sets of attributes. Our first set of attributes include:
(a) totalVolume – relatively high during buffering phase; (b)
burstiness (i.e., µ/σ) of flow rate – captures the spike patterns
(high during stable phase); (c) zeroFrac, fraction of time the
flow is idle (i.e., transferred zero bytes) – this attribute is
expected to be smaller in the buffering phase; (d) zeroCross,
count of zero crossing in the zero-mean flow profile (i.e., [x-
µ]) – this attribute is expected to be high in the buffering
phase due to high activity of flows; and (e) maxZeroRun,
maximum duration of being continuously idle – this attribute
is relatively higher for certain flows (e.g., aging out or waiting
for next transfer) in the buffering phase.

Our next set of attributes are computed by isolating chunks
of transfers from the flow profile. Each chunk in a flow is
isolated by three successive data points of zero (i.e., 300
ms idle after a transfer). Our five attributes computed from
chunks are: (f) chunksCount; (g,h) average and standard-
deviation of chunk sizes; (i,j) average and mode of chunks
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Fig. 7: Performance of phase classification: (a) confusion
matrix, and (b) CCDF of confidence-level.

inter-arrival time. In the buffering phase, the flow would have
less chunks, lower inter-chunk time, and higher volume in each
chunk compared to the stable phase. In total, for each flow in
a window, we have 10 attributes computed (considering just
the waveform profile, independent of available bandwidth) for
each training instance (i.e., 1-min window of a TCP flow).

Classification Results: We used the RandomForest ML
algorithm available in Python scikit-learn library. We con-
figured our model to use 100 estimators which are used to
predict the output along with a confidence-level of the model.
We split our labeled data of 12,340 instances into training
(80%) and testing (20%) sets. We evalued the performance
of our classifier using the testing set and obtained a total
accuracy of 93.15%, precision of 94.5% and recall of 92.5%.
We show in Fig. 7(a) the confusion matrix of our classifier. It
is seen that 93.9% of buffering and 92.4% of stable instances
are correctly classified. Fig. 7(b) illustrates the CCDF of the
model confidence for both correctly and incorrectly classified
instances. The average confidence of our model is greater 94%
for correct classification while it is less than 75% for incorrect
classification – setting a threshold of 80% on the confidence-
level would improve the performance of our classification.

Use of Classification: For each TCP flow associated with
a streaming session, we call our trained model to predict
its phase of video playback. As explained earlier in §IV,
multiple flows are expected especially at the beginning of a
stream. We perform majority voting on outputs of the classifier
for individual flows to determine phase of the video stream.
In case we have a tie, we pick the phase with maximum
sum confidence of the model. In addition to the classification
output, the count of flows in the stable phase (i.e., two flows)
can be used to check (validate) the phase detection. This cross-
check method also helps detect the presence of concurrent
video streams for a household to discount them out of the
analysis – having more than two Netflix flows for a household
IP address, while the model indicates the stable phase (with a
high confidence), likely suggests parallel playback streams.

C. Computing User Experience Metrics

We now identify three key metrics that together help us
infer Netflix user experience. The first two are metrics directly
related to experience, and the third one is used to deduce
events affecting experience.



1) Buffer Fill-Time: As explained in §IV (by Fig. 3(a)
and 3(b)), Netflix streams tend to fill up to 240 seconds
worth of audio and video to enter into the stable phase – a
shorter buffer fill-time implies a better network condition and
hence a good user experience. Once the stream starts its stable
phase, we begin by measuring bufferingStartTime when the
first TCP flow of the stream was established. We then identify
bufferingOnly flows – those that were active only during the
buffering phase, go inactive upon the completion of buffering,
and are terminated after one minute of inactivity (FlowA and
FlowC shown in Fig. 2). We, next, compute bufferingEndTime
as the latest time when any bufferingOnly flow was last
seen active (ignoring activity during connection termination
(e.g., TCP FIN)). Lastly, the buffer fill-time is obtained by
subtracting bufferingEndTime and bufferingStartTime.

Fill-Time Results: To quantify the accuracy of computing
buffer fill-time, we use our client data of video buffer health
(in seconds) as ground-truth. Results show that our method
achieved 10% relative error for 75% of streams in our dataset
– the average error for all streams was 20%. We observe that
in some cases a TCP flow starts in the buffering phase and
(unexpectedly) continues carrying traffic in the stable phase for
some time after which it goes idle and terminates. This will
result is our predictions of buffer fill-time to be larger than its
true value thereby underestimating the user experience.

2) Bitrate: A video playing at a higher bitrate brings a
better experience to the user. We estimate the average bitrate
of Netflix streams using the following heuristics. During the
stable phase, Netflix replaces the playback buffer by period-
ically fetching the video and audio chunks. This means that
over a sufficiently large window (say, 30 seconds), the total
volume transferred on the network would be equal to the
playback buffer of the window size (i.e., 30 seconds) since
the client tends to maintain the buffer at a constant value
(i.e., 240 seconds). Therefore, the average bitrate of the stable
stream is computed by divinding the volume transferred over
the window by the window length. During the buffering phase,
Netflix client downloads data for the buffer-fill-time and an
additional 240 seconds (i.e., the level maintained during the
stable phase). Thus, the average bitrate of the buffering stream
is computed by dividing total volume downloaded by sum of
buffer fill-time and 240 seconds.

By tracking the average bitrate, we are able to determine
the bitrate switches (i.e., rising or falling bitrate) in the stable
phase. As discussed earlier, there are a range of bitrates
available for each video. For example, title “Eternal Love”
was sequentially played at 490, 750, 1100, 1620, 2370, and
3480Kbps during a session in our dataset. We note that Netflix
makes bitrates available in a non-linear fashion – bitrate values
step up/down by a factor of ∼1.5 to their next/previous level
(e.g., 490×1.5 approximately indicates the next bitrate level
750). We use this pattern to detect a bitrate switch if the
measured average bitrate changes by a factor of 1.5 or more.

Bitrate Results: We evaluated the accuracy of our bitrate
estimation using the client data as ground-truth. For the
average bitrate in buffering phase, our estimation resulted a
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Fig. 8: Inferring user experience considering throughput.

mean absolute error of 158Kbps and an average relative error
of 10%. The estimation errors for average bitrate in stable
phase, were 297Kbps and 18% respectively. These errors arise
mainly due to the fact that Netflix client seems to report
an average bitrate of the movie but due to variable bitrate
encoding, each scene is transfered in different sizes of chunks,
hence a slightly different bitrate is measured on the network.
Nonetheless, we note that detection of bitrate switch events
will be accurate since the average bitrate would change by
more than a factor of 1.5 in case of bitrate upgrade/downgrade.

3) Throughput: We use the aggregate throughput measure-
ments of the stream (obtained by summing up the throughput
of all TCP flows involved) to detect experience events listed
below. To do so, we derive two signals over a sliding win-
dow (say, 5 seconds) of the aggregate throughput: (a) max
throughput, and (b) average throughput – note that the flow
throughput is measured every 100ms.

Max bitrate playback. For a video stream, if the gap between
the max throughput and the computed average bitrate is
significantly high (say, twice the bitrate being played), then
it implies that the client is not using the available bandwidth
as it is currently playing at its maximum possible bitrate, as
shown in Fig. 8(a), indicating a good experience.

Bitrate variations during buffering. If the max throughput
measured is relatively close to the bitrate ranges of Netflix
(up to 5000 kbps) and is highly varying, it indicates possible
bitrate switching events. In this case, the actual bitrate strongly
correlates with the average throughput signal, as shown in
Fig. 8(b). The fluctuating average throughput with high stan-
dard deviation (i.e., ≥ 20%) causes the stream to switch
bitrates and becomes unstable, indicating a bad experience.

D. Detecting Buffer Depletion and Quality Degradation

We now detect bad experiences in terms of buffer health and
video quality using the metrics described above. To illustrate
our method, we conducted an experiment in our lab whereby
the available network bandwidth was capped at 10 Mbps. We
first played a Netflix video on a machine, and one minute
after the video went into the stable phase (i.e., 240 seconds of
buffer filled on client) we introduced UDP downstream traffic
(i.e., CBR at 8Mbps using iperf tool) to congest the link.
For videos, we chose two Netflix movies – Season 3 Episode
2 of “Deadly 60” with high quality bitrate available up to
4672Kbps (Video1), and Season 1 Episode 1 of “How I Met
Your Mother” with a maximum bitrate of 478Kbps (Video2).



0 120 240 360 480 600
Time (Seconds)

0

50

100

150

200

250
Bu

ffe
r H

ea
lth

 (S
ec

on
ds

)

0

1000

2000

3000

4000

5000

Bi
tra

te
 (k

bp
s)

(a) Quality dropped due to congestion
(client behavior of Video1).

0 60 120 180 240 300
Time (Seconds)

0

50

100

150

200

250

Bu
ffe

r H
ea

lth
 (S

ec
on

ds
)

0

1000

2000

3000

4000

5000

Bi
tra

te
 (k

bp
s)

(b) Quality maintained even with con-
gestion (client behavior of Video2).
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(c) Quality dropped due to congestion
(network activity of Video1).
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(d) Quality maintained even with con-
gestion (network activity of Video2).

Fig. 9: Detecting quality degradation for users.

Fig. 9 shows client behavior (top plots) and network activity
(bottom plots) for the two videos.

Considering Fig. 9(a) for Video1, it is seen that the stream
started at 679Kbps bitrate (dashed red lines), quickly switched
up, and reached to the highest possible value 4672Kbps in 30
seconds. It continued to play at this bitrate and entered into the
stable phase (at second 270) where only two flows remained
active, as shown in Fig. 9(c), and the buffer health (solid
blue lines) reached to its peak value of 240 seconds. Upon
commencement of congestion (at second 340), we observe
that the buffer started depleting followed by a bitrate drop
to 1523Kbps. Moving to the network activity in Fig. 9(c), we
observe that two new flows spawned, the stream went to the
buffering phase, and the network throughput fell below 2Mbps.
The change of phase, combined with a drop in throughput,
indicates that the client experiences a buffer depletion – a bad
experience. Using our method, we detected a phase transition
(into buffering) at second 360 and deduced bitrate from the
average throughput (as explained earlier in Fig. 8(b)), ranging
from 900Kbps to 2160Kbps. This estimate shows a significant
drop (i.e., more than a factor of 1.5) from the previously
measured average stable bitrate (i.e., 3955Kbps). Additionally
during the second buffering phase, we observe a varying
average throughput with the mean 1.48Mbps and the standard-
deviation 512Kbps (i.e., 35% of mean) indicating a fluctuating
bitrate on the client. We note that although a transition from
stable to buffering can result from a trickplay (discussed in
§IV) we do not detect a bad experience since no change in
max throughput is observed.

Moving to Fig. 9(b) and 9(d) for Video2, the stream played
consistently at the bitrate 478Kbps and quickly transitioned
into the stable phase within about 20 seconds. It started
with 4 active flows with aggregate throughput of 10 Mbps,
but only one flow remained active after entering into the
stable phase – this flow was responsible for both audio
and video contents. Upon arrival of UDP traffic (at second

80), no change is observed in the playback. Employing our
method for experience metrics, we estimated a buffer fill time
of 17.5 seconds, average buffering bitrate of 652Kbps, and
correctly predicted the stream to be in the stable phase with
bitrate reported every minute as 661, 697, 658, 588Kbps.
Additionally, the max throughput was accurately predicted
to drop from 10Mbps to 4Mbps. We note that even though
the bitrate and throughput are relative low during the stable
phase, the playback is smooth and the experience is not bad.
We believe that our stream phase detection, combined with
estimation of bitrate and throughput, enables us to distinguish
a good experience from a bad experience which could arise
due to quality bitrate degradation and buffer depletion events.

VI. CONCLUSION

Netflix is a widely-used video streaming application and
network operators are seeking visibility into its user expe-
rience. In this paper, we presented a practical method to
infer Netflix user experience from broadband network mea-
surements in real-time. We developed a measurement tool
and collected network activity and client behavior data for
8000 Netflix streams. We made our dataset publicly available.
We then highlighted the correlation between network flows
activity and client buffer health. Finally, we developed a
model to predict the streaming phase and inferred Netflix user
experience in terms of buffer-fill time, average video bitrate,
and available bandwidth to the stream.
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