
Measuring and Modeling Car Park Usage:
Lessons Learned from a Campus Field-Trial

Thanchanok Sutjarittham∗, Gary Chen∗, Hassan Habibi Gharakheili∗, Vijay Sivaraman∗, and Salil S. Kanhere†
∗School of Electrical Engineering and Telecommunications, †School of Computer Science and Engineering

University of New South Wales, Sydney, Australia
Emails: {t.sutjarittham@, gary.chen@student. h.habibi@, vijay@, salil.kanhere@}unsw.edu.au

Abstract—Transportation is undergoing significant change due
to the growth of ride-sharing, electric cars, car-sharing, and self-
driving cars. Organizations that have significant real-estate ded-
icated to on-premise employee car parking are therefore looking
to adapt the use of this space, motivated by the opportunity
to become greener, improve sharing, and pursue new revenue
opportunities. In this paper, we outline our experiences from
instrumenting, measuring, and analyzing car-park usage in our
University’s multi-storey parking lot, and building a model that
explores its use for multiple purposes in the near future.

Our specific contributions are as follows: (1) We begin by
describing experiences and challenges in measuring car-park
usage on our campus and cleaning the collected data; (2) We
analyze data collected over 23 weeks (covering teaching and
non-teaching periods) and draw insights into the usage patterns,
including occupancy patterns by times-of-day and days-of-week,
and identifying various user groups based on attributes such
as arrival time and duration of stay; (3) We develop a queuing
model to optimize the use of parking space for generating revenue
from shared cars with minimal impact on private car users. We
believe our study guides campus managers wanting to generate
more value from their existing parking resources.

I. INTRODUCTION

University campuses in much of the Western world are
experiencing a surge in student enrollments [1], accompanied
by an expansion in staff numbers, which are jointly putting
pressure on demand for on-campus parking. Many college
campuses are large and spread-out, meaning that even though
the use of private vehicles to commute to campus is increasing
[2], as many as 10-45% of available spaces are unused because
they are distributed across the campus [3]. This problem has
also been observed at our campus in UNSW Sydney, where
one of the multi-story parking lots fills up by 10am while the
other often has availability. Commuters lack real-time visibility
into parking availability in various parts of the campus, and
therefore often have to spend time driving around. Indeed,
information on parking space utilization will not only benefit
users, but will also provide evidence and statistics to campus
Estate Manager in planning for critical decisions such as
pricing policy and the need for new parking spaces. Further,
with new trends in transportation, ranging from electric cars
(Tesla) and ride-sharing (Uber) to car sharing (GoGet) and
ultimately self-driving cars, campus estate managers need
quantitative data to inform their future strategies that optimize
available space while becoming greener, encouraging sharing,
and pursuing new revenue opportunities.

The medium-term future is likely to evolve around shared
transport, leading to autonomous vehicles in the long-term.
These will not only enhance commuter experience, but equally
importantly cut down the use of fuel, alleviate the number
of cars on the road, and improve overall traffic congestion.
Car sharing (offered by companies such as GoGet, ZipCar,
Car2Go, etc.) is projected to grow at a rate of over 20%
between 2018 and 2024 [4] and is becoming a more main-
stream option. Universities such as UNSW can leverage such
trends to go green by encouraging car sharing scheme, reduce
parking congestion on campus, and avoid the need to build new
multilevel parking structures as the university grows. In order
to prepare for such trends in future transport, the University
needs visibility into current and predicted usage of their car
parking facilities so as to inform the future decision making
process.

This paper describes our experiences in instrumenting and
building a system to monitor car-park usage on campus,
including the real-time collection of data and cleansing it for
analysis. We then comprehensively analyze the car park usage
data that spans 23 weeks, covering both teaching and non-
teaching periods, and highlight interesting insights into car
arrival and departure patterns, and user parking behavior. Fi-
nally, we develop continuous-time non-homogeneous Markov
models based on historical usage data, and showcase how
it can be used for space-allocation planning for future car-
sharing schemes.

The rest of this paper is organized as follows: §II describes
relevant prior work. §III outlines our experiences in imple-
menting the car park monitoring system and collecting data
while §IV presents interesting insights obtained therein. §V
shows how we develop car park behavior models to aid car-
park dimensioning decision and the paper is concluded in §VI.

II. RELATED WORK

Sensing Technologies: A number of technologies are avail-
able on the market to monitor parking spaces. Many smart
parking deployments used various sensor networks including
ultrasonic, light, temperature, acoustic, and magnetic sensors
to detect the presence of vehicle at each parking spot in the
car-park [5]. However, monitoring every spot individually is
expensive, especially for a large parking lot with hundreds
of parking bays, so the solution is typically employed in
commercial parking areas such as shopping centers. A more



EVENT_DESC DATE TIME PLATE_NOT_READ

Ocr Read 7/10/18 11-12-58-306 READ

PLATE_STRING PLATE_COUNTRY PLATE_REGION OCRSCORE
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Fig. 1. LPR camera outputs for author’s car entering into the campus car-park.

cost-effective solution is to use existing CCTV camera to
acquire images or videos of a car-park’s view and apply image
processing to obtain car occupancy data [6]. However, contin-
uously recording images (or videos) of users’ vehicles may
raise privacy concerns, especially when images are collected
without users consent. RFID technology is another solution
for car park monitoring, where RFID readers are installed at
the entrance/exit of the car park [7]. This method requires a
RFID tag, that can be scanned whenever a car enters/exits
the parking lot, to be incorporated into parking permit of
individual user, and thus does not accommodate for casual
visitors of a university campus. The simplest solution (which
we use in this paper) is to install a license plate recognition
camera at each entrance and exit point of the parking lot to
automatically record the license plate number of incoming and
outgoing cars.

Use-cases: There are various applications of parking man-
agement system worldwide to improve user experience, reduce
congestion, and increase revenue from parking services. Real-
time data on car-park usage allows realization of parking
guidance information (PGI) system where users are informed
on the availability and location of parking spaces, and thus
have the ability to reserve a parking spot in advance (re-
ducing/removing search time) [8]. Furthermore, historical data
from car park monitoring system can be used to predict future
demand and dynamic parking fee can be applied based of
times-of-day and location of parking. For example, a large-
scale dynamic pricing scheme (SFpark) was implemented in
San Francisco [9] to overcome traffic congestion.

Parking Usage Modeling: Several researchers attempted to
model parking dynamics using queuing theory, incorporating
cars arrival and departure processes. Authors of [10] modeled
parking activities using M/M/m/m queue to predict parking
space occupancy in a vehicular ad-hoc network. Work in
[11] applied M/G/c/c queuing model for a parking lot of
occupancy considering a Poisson arrival process and a constant
average parking time. Blocking probability was calculated and
disseminated to users via vehicular communications to prevent
more users from entering the parking lot. Similarly, Gongjun
et el. [12] modeled the parking process as a birth-death
stochastic process to predict the parking revenue. Existing
works essentially assumed a fixed rate for either arrival or
service time (parking duration) which is not realistic. We

instead use varying rate of arrival and departure obtained from
real data to model the car-park usage behaviour.

III. DATA COLLECTION AND CLEANSING

In this section, we begin by outlining our experience with
license plate recognition (LPR) technology to measure car-
park usage. Note that license plate information is private
and confidential, and therefore we obtained appropriate ethics
clearances for this study (UNSW Human Research Ethics
Advisory Panel approval number HC171044). We then briefly
explain our system architecture for collecting, storing, and
analyzing data collected by the LPR cameras. Lastly, we
discuss measurement challenges, quantify errors and present
our method for cleaning data.

A. License-Plate-Recognition Camera

We investigated several commercial sensors with two ob-
jectives [13]: we wanted to: (a) have complete ownership of
the data and not risk it leaving our campus infrastructure;
and (b) not be beholden to a vendor to access our own data,
hence freeing us from ongoing service costs. In other words,
we wanted a “sale” model of the device so we could have
unlimited access to our data without any ongoing “service”
fees. This model allows us to integrate data into a centralized
repository as part of an overarching smart campus project to
facilitate better analytics across the many data feeds we have
on campus [14].

We chose Nedap automatic number plate recognition camera
model ANPR Access HD [15]. The camera uses license plate
recognition (LPR) technology to read license plate from the
captured images. The technology consists of two main stages:
(a) locating license plate in the captured image by isolating
a rectangle area (of the license plate number), using physical
characteristics such as the shape, symmetry, width to height
ratio and alphanumeric characters; and (b) character separation
and recognition inside the isolated image of the license plate
number [16].

The Nedap camera unit consists of several components
including a high definition camera, infrared (IR) illumination,
and automatic number plate recognition engine allowing the
camera to read complex number plate at various conditions,
dark time as well as day time. The camera relies on libraries
that are supporting license plates from specific countries. Each
country is using its own characters, colors, and designs.



Fig. 2. A real picture showing entry/exit of our campus car-park and a pair of
LPR cameras installed side-by-side close to the ceiling of the car-park ground
floor.

The camera provides a management console (a web-page
accessible via its IP address) that allows users to configure
various parameters such as shutter time, strobo time (activation
time of IR illuminator), and gain. We configured the camera to
use the default “Autoiris” mode which will automatically de-
termine the best parameters to use in its working environment;
this mode is recommended by the camera’s documentation.

For every vehicle that passes through the frame of the
camera, it runs an on-board image processing optical character
recognition (OCR) algorithm to output two types of data; an
JPEG image (with adjustable quality value between 0 and 100,
where 100 is the highest resolution 1080p) of the vehicle, and
a data record (in a CSV file) containing parameters such as
timestamp, license plate string, OCR score, speed, country,
state/region, type of vehicle and up to 50 more fields, in which
most of them are substring of another field. For example: fields
for hour, minute and second are also available in an aggregate
field called “TIME”. Fig. 1 shows an example of real license
plate (for the private vehicle of an author of this paper) as
recognized by the camera. On the left is the JPEG captured
image showing the isolated license plate, and on the right is a
list of selected key data fields generated by the OCR algorithm.
The definition of the fields are as follows:

• EVENT DESC: The value “OCR Read” means that the
algorithm was able to recognize individual characters in
the isolated license plate.

• DATE and TIME: time-stamp of the record.
• PLATE NOT READ: This field indicates whether the li-

cense plate was successfully isolated or not – the value
could be either “READ” or “NOTREAD”.

• PLATE STRING: This is the output string of the rec-
ognized license plate. Australian cars and motorcycles
respectively have 6 and 5 alphanumeric characters on
their license plate.

• PLATE COUNTRY and PLATE REGION: country and state
of the license plate – AUS for Australia, and NS for New
South Wales.

• OCRSCORE: Overall confidence value (between 0 and 100)
given by the camera on how accurately the entire license
plate number is recognized.

• OCRSCORE CHAR: OCR score for individual characters of
the string – in this example, character “J” has the highest

PO
ST

 A
PI

FTP Server

Master DB

Message 
Broker

Sensing layer Data layer Analytics layer

Processed DB

Analytics

Sensor Health 
Monitoring 

APP

Real-time 
Visualization

GET APIData cleansing 
& anonymizing

Entering LPR 
camera

Exiting LPR 
camera

Fig. 3. System architecture of collecting, analyzing and visualizing data from
LPR cameras.

score 89 and character “8” has the lowest score 80.
• SPEED: Speed of the vehicle in 100× actual speed (km/h)

– we found that this data field is unreliable since reported
values ranged from 1000 to 10,000,000.

• DIRECTION: Direction of the vehicle relative to the
camera, i.e., “APPROACH” for entry camera and “GO-
AWAY” for exit camera.

For our field trial, we only used text outputs of the camera
and intentionally deactivated the JPEG image recording for
two reasons: (a) maintaining users privacy, and (b) man-
aging volume of data collected. Note that we temporarily
recorded image captures for tuning the camera parameters and
collecting ground-truth data for quantifying the accuracy of
measurement. The camera supports both local storage on an
SD card (if inserted) and an external FTP data collection. We
used the latter option for continuous data collection, where the
camera creates and updates the CSV file in real-time when a
vehicle is detected.

For our experiment, we (in consultation with our Estate
Management) chose a 5-story car park of our university
campus with 895 parking spaces serving students, staff, vis-
itors, and contract workers. The first 4 levels are reserved
for permit holders and the top level for hourly-based paid
parking. The car-park has one entry and one exit at its ground
floor, therefore we installed two LPR cameras to capture
cars entering to and exiting from the parking lot, as shown
in Fig. 2. The camera requires 24 VDC power supply, and
communicates via Ethernet port. Hence, we (with help form
our campus Estate Management) supplied new power points
and provisioned Ethernet ports for the cameras.

Measurement System Architecture: Fig. 3 shows the
system architecture of data collection from the car-park using
LPR cameras. It comprises of three main layers: (a) “sensing
layer” is where LPR cameras captures license plate numbers of
entering (arriving) and exiting (departing) cars – cameras are
connected to the campus wired network over a private VLAN;
(b) “data layer” is the core of our system that hosts an FTP
server, a software engine for data cleansing and anonymiza-
tion, message broker and multiple databases for backup and
load balancing. Upon cleansing, the data is passed onto the
message broker which unifies the data into a JSON format,
each record is tagged with timestamp and sensor UUID, and is



TABLE I
MEASUREMENT ACCURACY OF LPR CAMERA FROM GROUND-TRUTH OF

CARS AND THEIR LICENSE-PLATES.

Accuracy

Camera Capture rate Read rate

Entry 94% 85%
Exit 88% 42%

posted via a RESTful API to our master database (where data
from various sensors of our campus network is stored); and
(c) “analytics layer” that includes health check monitoring (to
ensure the cameras are active and functioning), data analysis
and visualization modules – this layer retrieves data from the
master DB via RESTful API and writes processed data (i.e.,
real-time occupancy, stay duration) into another DB that is
used as the backend for visualization.

B. Measurement Accuracy

The accuracy of the LPR camera depends on various factors
including placement (e.g., height/angle at which it is installed),
lighting conditions, speed of vehicles, angle of the license
plate (on vehicles), and also the physical condition of the
license plate. We quantify the accuracy by two metrics: (a)
“capture rate” which is the fraction of cars detected, and (b)
“read rate” which is the fraction of license plate numbers that
are recognized correctly by the OCR algorithm running inside
the camera. According to the ANPR’s manufacturer [17], it is
expected to have capture rate and read rate of 98% and 95%,
respectively.

For capture rate, we performed several spot measurements
over 5 days (i.e., Monday to Friday) each for a period of 5
hours, (i.e., 11am to 4pm), to extract ground-truth data of car-
park usage. We used an GoPro camera to record video logs of
a total 1400 vehicles entering/exiting to/from the car-park. For
read rate, we first enabled the JPEG recording on both cameras
for a week, and then we manually inspected 700 images for
each of the ANPR cameras, the first 100 images per day of
that week.

Table I summarizes the accuracy of two cameras. It is seen
that the exit camera under-performs by both accuracy metrics,
especially with a very low read rate of 42%. This means that
the license plate of more than half of exiting vehicles are not
correctly recognized. The poor read rate of the exit camera
is mainly due to its non-ideal placement which causes it to
see the license plate of departing vehicles at a further distance
and also at a slight angle, and thus affecting the performance
of the OCR algorithm. Re-positioning the exit camera was
a nontrivial task due to difficulty (and cost) of provisioning
Ethernet port and power outlet for the new position.

C. Measurement Errors

We observed three types of errors from cameras’ outputs:
(a) multiple recognitions of the same license plate, (b) in-
correct recognition of license plate location, and (c) incorrect
recognition of license plate characters.

TABLE II
DISTRIBUTION OF ERROR TYPES FOR EACH CAMERA

(GROUND-TRUTH DATASET).

Error types

Camera Multiple recognitions Incorrect locating Incorrect recognition

Entry 59.3% 4.2% 36.4%
Exit 13.5% 34.9% 51.6%

Fig. 4. CCDF of Levenshtein distance for ground-truth dataset.
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Fig. 5. CCDF of OCR score for entry and exit cameras.

Multiple recognitions: Multiple recognitions occur when
the camera takes multiple images of a vehicle (possibly
because of its speed or moving pattern), and thus triggers
the OCR algorithm multiple times, generating multiple data
records for the vehicle in the CSV file. This results in over-
counting the number of vehicles entering/exiting. Note these
multiple records do not necessarily have the exact same license
plate string – it may output a slightly different string due to
the angle of the moving car and its distance to the camera in
a sequence frames captured.

Incorrect locating: This type of error occurs when the OCR
algorithm incorrectly locates the license plate in an image and
attempts to recognize the characters within that area of the
image. The output license plate string from these errors are
almost always “OCR NOT READ” as the recognized plate does
not match any of known formats of license plates available in
its embedded library. There are rare cases where a non-license
plate object gets partially recognized that their output appears
as incomplete strings with low OCR scores of below 60.



TABLE III
PERCENTAGE OF OF RECORDS REMOVED FROM THE ENTIRE DATASET AT

EACH STAGE OF CLEANSING.

Error types

Camera Multiples (redundant) low OCR score OCR-Not-Read

Entry 9.7% 12.9% 2.5%
Exit 7.9% 8.5% 8.2%
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Fig. 6. Rate of error due to redundant (multiple) records rises prior to camera
black-outs.

Incorrect recognition: Incorrect recognition occurs when
the camera successfully locates the license plate, but fails to
recognize the characters in the license plate correctly. To quan-
tify the severity of the read errors, we manually inspected 200
images per camera to obtain ground-truth license plate string
which we use to compare against the output string of cameras.
We employ Levenshtein distance [18] for measuring differ-
ence between two string words, i.e., the minimum amount
of single character addition, substitution or deletion required
to make two strings identical. For example, the Levenshtein
distance between the string “ABC123” and “AC123” is 1, two
strings will be identical by inserting a character “B” into the
string “AC123”. We compute the Levenshtein distance between
ground-truth and recognized strings, and show the CCDF plot
of the distance in Fig. 4. It is seen that up to 28% of records
for the entry camera and 52% for the exit camera have at least
1 character being mis-recognized (i.e., distance of more than
0 character). We also observe that the majority of these errors
were caused by 1 misread character, accounting for 15% for
entry and 30% for exit of the total observed records. Note that
incorrect recognitions also result in lower OCR scores for the
output record. In Fig. 5 we show the CCDF of the overall
OCR score of each camera. It is seen that 83% of records for
the exit camera have an OCR score of higher than 65, and
85% of records for the entry camera have an OCR score of
above 75 – we will use these thresholds to filter out “low OCR
score” records in our data cleansing process.

We summarize the distribution of error types for each cam-
era in Table II. It is observed that errors from the entry records
are largely dominated by multiple-recognitions (59.3%). This
relates to an issue for our entry camera we faced several
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times where the camera view unexpectedly turned black and
stopped collecting data (i.e., black-out events). To understand
this relationship, we plot in Fig. 6 the time-trace of daily error
rate due to redundant records, overlaid by black-out events
which required camera reboot. It is interesting to observe that
the rate of redundant records steeply rises a few days prior
to black-out events (evidenced by red cross markers in the
middle of August to middle of December). On the other hand,
we can see from Table II that errors of the exit records are
mostly from incorrect recognition (51.6%). This is due to the
fact that the exit camera is placed at a non-ideal location,
causing the camera to capture the license plate at an angle and
hence resulting in poor performance of the OCR algorithm.
We can also see that 34.9% of errors are from incorrectly
locating license plates for the exit camera while this measure
is only 4.2% for the entry camera. By inspecting the collected
images, we found that moving grass (close to the exit of the
car-park and is visible in Fig. 2) gets occasionally detected
as a moving object by the exit camera. This does not impact
our entry camera, and thus it displays a much lower rate of
incorrect locating error.

D. Data Cleansing

We now clean our raw data collected from the two cameras
with the following objectives: (a) removing multiple records
to obtain the correct count of arrival/departure, (b) removing
records of non-vehicle objects incorrectly captured by cam-
eras, and (c) matching license plates captured by both cameras
to deduce the distribution of stay-duration in our campus car-
park.

Fig. 7 shows our cleansing process with various stages
involved. The raw data, first undergoes a function that removes
multiple recognitions to remove multiple records that have the
same or slightly different strings. Since multiple records of a
vehicle appear consecutively in our dataset, a license plate is
considered as “redundant” if it re-appears in the next 5 records
of the CSV file after its first appearance and the Levenshtein
distance between the plates is 2 or less. We note that the
distance threshold of 2 is selected because our ground truth
observation has shown that this filtering only eliminates 8%
and 10% of entry and exit records (Fig. 4), and increasing
the threshold to 3 or more will only improve the coverage
by less than 10% which is very low considering the trade-off
for a high chance of plates getting mismatched (two different
plates get matched and treated as the same plate). We compare
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the OCR score of license plates identified as redundant, and
the license plate with the highest score is kept and others are
removed.

Next, we remove records with low OCR scores – these
records again correspond to redundant (multiple) captures of
one vehicle. As discussed earlier in Fig. 5, we use filtering
threshold of 75 and 65 for OCR scores for the entry and exit
cameras respectively. Lastly, we remove all records with OCR
NOT READ value – those with incorrectly located license plate
in the captured image. The pair of cleaned data will be used
for arrival/departure counts. A summary of records removal
due to each error type is shown in Table III.

As mentioned earlier, we apply the last stage of cleansing to
extract vehicles whose records are matched in both entry/exit
datasets – the output of this stage will enable us to compute
stay duration. Again for matching, we use the Levenshtein
distance of 2 or less. In rare cases we found one to many
matches in the two cleaned datasets for which we chose the
pair with the lowest Levenshtein distance and the highest
OCR score. By running the matching process on our cleaned
data from July to end of December, the matching process
was able to match on average 86% of the cleaned records
from both cameras. Remaining unmatched records correspond
to (a) vehicles stayed over-night (we process daily dataset
individually), (b) vehicles that are captured by one camera
(mostly entry camera) but not the other camera. We found from
our spot measurements that only a small number of vehicles
stayed overnight (i.e., 23 cars on average for a sample size of
11 nights), and thus they would not have significant impact on
the car-park usage patterns. We, therefore, analyze our dataset
on a per-day basis (i.e., midnight-midnight).

IV. ANALYSIS AND INSIGHTS INTO USAGE PATTERN

In this section, we analyze our cleaned data (obtained
from the previous section) spanned 23 weeks of teaching and
non-teaching periods in 2018, to highlight the usage pattern
of the campus car-park across various temporal dimensions
including time-of-day, day-of-week, week-of-semester, and
semester break/exam periods.
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Fig. 9. Average hourly arrival and departure rate of cars for each day-of-week.

A. Arrival and Departure Pattern

We begin with Fig. 8 that depicts the average daily number
of cars entering to (red bar) and exiting from (blue bar) the
car-park for each day-of-week, during 13-weeks of teaching
period. Red and blue dots represent actual measurements and
error bars represent 95% confidence interval of data-points.
It is seen that about 950 to 1000 cars use (i.e., enter/exit)
the car-park during a weekday (i.e., midnight-to-midnight),
except Friday for which the number slightly drops to about 830
due to fewer lectures. During weekends, the number of cars
using the car park goes below 400. Also, we observe narrower
error bars for weekdays compared to weekends, suggesting
predictable usage patterns for weekdays. In contrast, the car-
park usage varies significantly on weekends ranging from
200 to 600. Interestingly, it goes beyond 1000 cars for one
particular Saturday (i.e., 1 September 2018). After checking
the University event calendar, we found that this corresponds
to the University Open Day which typically attracts a large
number of high-school students and their families. The Uni-
versity provides free parking for all Open Day Visitors.

Fig. 9 illustrates the average hourly count of arriving cars
(red bars) and departing cars (blue bars) by times-of-day, for
each day of the week (separate graphs per day). It is seen that
during weekdays, the arrival rate starts rising steeply from
6am, peaks at 9am-10am, and falls slowly afterwards. The
departure process displays a similar bell-shape pattern but
shifted in time by about 8 hours, i.e., rising in the afternoon,
peaking at 5pm-6pm, and falling afterwards. During peak
times, we see about 200 cars per hour enter/exit the parking
lot – these numbers are slightly lower for Friday (i.e., 194
and 165 cars per hour). We also observe an irregular pattern
for weekends where car-park usage heavily depends on events
hosted on campus. Our findings of weekday arrival/departure
pattern corroborate with other studies [19].

Fig. 10 depicts the distribution of arrival and departure
probability for the five weekdays (in a stacked representation
with Friday on top and Monday at the bottom). To better
illustrate the pattern, we have color-coded five time intervals:
orange for prior-sunrise (12am-6pm), yellow for morning-peak
(6am-11am), green for afternoon-offpeak (11am-4pm), blue
for evening-peak (4pm-8pm), and purple for night-time (8pm-
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12am). Note that the difference in absolute numbers is not
seen here for Friday due to normalization. Unsurprisingly the
distribution plot shows that both patterns of arrival and depar-
ture are very consistent for most time-slots across weekdays,
with the strongest similarity observed during peak hours. As
before, we observe some different trends for Friday. Note
that the blue part of the arrival curve (4-8pm) shows a less
pronounced peak compared to other weekdays. This suggests
fewer arrivals to campus on Friday evening as opposed to
other weekdays evening time. This can be attributed to the fact
that there are very few evening lectures running on Friday. A
closer examination of the exit curve for Friday reveals that the
area in green is larger than the corresponding regions of other
weekdays. The purple part of the curve is also considerably
flatter than the other days. This suggests higher percentage of
cars leaving during early afternoon time and lower percentage
of cars exiting the car park after 8 pm on Fridays compared
to Mondays-Thursdays.

Additionally, we looked at the arrival/departure pattern
during different periods of the academic calendar including
orientation week (O-Week) which is largely geared for new
entrants to get acquainted with the university, regular teaching
weeks, a week long mid-semester break, a study-break week
right before final exams, exam periods and a lull period before
the end of year holiday shutdown during which undergraduate
students are away and campus attendance for everyone else
progressively reduces. The general patterns are similar to
Fig. 9 for all periods. One main difference observed was the
morning arrival peak occurred one hour earlier (i.e., 8am-
9am) during the O-Week and other non-teaching periods.
The former can be attributed to the fact that a portion of
students and admin staff arrive early during the O-week for
setting up various activities. The latter can be ascribed to
the fact that students are less likely to be on campus during
the non-teaching period and thus the morning peak time is
largely determined by the arrival pattern of staff who typically
arrive earlier (between 8-9am) than students. Also, the actual
count of arrival/departure slightly drops (i.e., around 50 cars)
during mid-semester break and other non-teaching period. This
suggests that the majority of car-park users are university staff
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Fig. 12. Density distribution of stay-duration for each week of semester.

members which is not unexpected due to high price of parking
permits at our campus.

B. Stay Duration Pattern

Our dataset allows us to obtain insight into stay-duration
of car-park users given that the license plate numbers are
captured at entry and exit points. Note that we rather to analyze
the distribution of these patterns across various user groups,
instead of individuals. For this analysis we used the cleaned
dataset after matching process mentioned in Section III-D.

Fig. 11 shows the distribution of stay duration (in hours)
across days-of-week. It is clearly seen that the distribution is
maximized at around 8 hours for Mondays to Fridays – this is
consistent with the standard working hours in Australia, which
is 7.6 hours a day [20]. We also observe that users tend to use
the car-park for about 2-4 hours during weekends - these users
are likely to attend events hosted on or near-by the campus or
Postgraduate students attending Saturday lectures.

We further look at the stay duration pattern for each week
of the semester in Fig. 12. A consistent pattern of bi-modal
(double-peaked) distribution is observed for each week. The
peak stay duration, as expected, centers at 8 hours, a typical
full-time work day. The second peak centered between 2 to
3 hours, highlighting usage patterns for weekends as well as
students/visitors.
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Fig. 13. Clustering results.

C. Parking Behaviour Users

We now cluster car-park users using k-means algorithm
[21] to identify parking behaviour of certain user groups on
weekdays during teaching period. For each car we extract
three features including arrival time, departure time, and stay
duration. Three clusters were selected based on the elbow
method. Fig. 13 shows the result of our clustering. We show in
Fig. 13(a) the scatter plot of stay-duration versus entry time for
individual vehicles in our dataset – clusters are color-coded.
It is seen that “Cluster-1” (shown by red region) corresponds
to users who enter the car-park early and stay more than 8
hours (center of cluster-1 is located at 9am entry time and
8.8 hours of stay duration) – this cluster represents full-time
staff. “Cluster-2” users enter the car-park at about the same
time as Cluster-1 and stay shorter (i.e., less than 5 hours)
– morning visitors and typical students. Lastly, “Cluster-3”
users are those who enter late and stay for a short period
(with center at 3pm entry time and 3.5 hours of stay) – this
cluster is likely to denote afternoon visitors and postgraduate
coursework students who attend evening classes.

In Fig. 13(b), we show the distribution of arrival and depar-
ture time for each cluster. We observe that the distributions
for Clusters-2 and -3 are relatively wider than of Cluster-
1. Again, it is seen that full-time staff in Cluster-1 typically
enter at about 9am and exit at about 5pm. Similar to scatter
plot, Cluster-2 users arrive early and leave early too. Lastly, as
expected Cluster-3 users enter in the afternoon and exit in the
evening. We also observe a significant overlap in the exit and
entry distributions for these users, which suggests that they
tend to stay on campus for a short period (about 3 hours).

V. MODELING CAR-PARK USAGE

We observed in the previous section that car-park usage
varies by times-of-day, days-of-week, and weeks-of-semester
which leads to under-utilization of car-park. This presents an
opportunity for campus managers to dynamically offer car-
park spaces to other users such as car-sharing service providers
with minimal impact on private car users. In this section,
we develop a model for the usage of car-park to determine
the potential of new offerings. We assume that the car-park
with arriving/departing vehicles represents a queuing system
where system states are captured by a continuous-time Markov
chain and arriving/departure are modeled as non-homogeneous
Poisson processes.
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Fig. 14. Wilcoxon test results of hourly arrival rate (teaching period).

A. Fitting a Poisson Distribution

We observed in §IV-A that arrival and departure rates of
vehicles highly depend on time-of-day, where morning and
afternoon peaks are expected at around 9am and 5pm re-
spectively. This suggests a non-homogeneous Poisson process
where the average rate of arrivals is allowed to vary with
time. We also observed that this general hourly pattern of
arrival/departure seems to be consistent across weekdays as
well as weeks of semester. However, this does not mean that
the same hourly rate can be used to capture incoming/outgoing
processes for all days and weeks. Hence, statistical tests to
identify the similarity or variation of the average hourly rate
is needed to be performed.

We employ two-sample Wilcoxon rank sum test [22] to
determine whether the difference in means of two independent
samples is significant. For instance, the test allows us to deter-
mine if there is any significant difference between the hourly
rate observed on Monday and the rate observed on Friday
during a certain hour-of-day. The Wilcoxon test generates an
output “p-value” (ranged between 0 and 1) indicating the risk
of concluding that a difference exists when there is no actual
difference. The p-value is compared to a significance level of
0.05 to accept “null hypothesis” (i.e., there is no difference
between the tested samples). The p-value smaller than 0.05
means that we safely conclude that the two samples differ.

Fig. 14 shows the Wilcoxon test results of arrival rate for
individual hours-of-day in facets, each comparing a pair of two
different weekdays (x-axis versus y-axis) – we omit results of
the departure rate due to space constraint. We use color-coded
cells (red for p-value < 0.05, and blue for p-value ≥ 0.05) to
indicate statistical difference (i.e., red cells) or similarity (i.e.,
blue cells) in distribution of data for a given pair. Focusing
on results of the arrival rate in Fig. 14, red-color cells are
seen when Friday is tested against other weekdays, especially
during morning and afternoon peak hours (i.e., 9-10am and
4-6pm). On the other hand, pairing non-Friday weekdays
typically results in blue cells for most of the time, highlighting
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varying slot duration and sampling resolution.

the strong correlation. We made a similar observation in Fig. 8
when aggregate daily count was considered. Also, Friday’s
hourly pattern deviates from other weekdays by departure rate
too – Friday rows are full in red during 5-8pm.

We show in Fig. 15 the CCDF plot of p-value obtained from
Wilcoxon test. In Fig. 15(a) two daily cohorts are considered:
(a) pairs of non-Friday weekdays (shown by dashed blue
lines), and (b) pairs of Friday and other weekdays (shown
by solid red lines). It is seen that 92% of pairs among non-
Friday weekdays have p-value > 0.05, whereas this fraction
is less than 75% for pairs of Friday-weekdays. Also, for
aggregate weekly cohorts (i.e., pairs are chosen from weeks-
of-semester) shown in Fig. 15(b), 97% of week pairs dis-
play p-value>0.05, indicating no (or very few) difference in
distribution across weeks of semester. The overall results of
Wilcoxon-test suggest that two models of Poisson process are
needed for the arrival/departure rate of cars during weekdays
of teaching period: one model for Mondays-Thursdays, and
one for Fridays.

We next attempt to fit Poisson distribution to each of the
two cohorts in our dataset. To achieve this we employ Chi-
Square Goodness of Fit Test [23] and consider two parameter
choices: (a) slot duration over which the arrival/departure rate
is relatively constant, (b) sampling resolution for the rate (e.g.,
per-minute or per-hour). We tune our parameters of choice by
varying slot duration (15-min, 30-min, 1-hr, 3-hr, 6-hr and 12-
hr) and sampling resolution (1-min, 15-min, 30-min, and 60-
min). In each slot, arrival and departure rates are sampled over
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Fig. 18. Continuous-time Markov chain of the car-park.

a moving window (i.e., equals to the sampling resolution) with
a step of one minute. This method of data sampling conforms
to the memoryless property of the Poisson process, where the
future arrival (or departure) is independent of the event in the
past.

For each combination of parameters we quantify the fraction
of time that our data follows a Poisson distribution. Fig. 16
shows our fitting experiment results. Each line corresponds to
a sampling resolution value, shown on the legend. It is seen
that the best result (i.e., highest fraction of fitting) obtained
when the slot duration is 1 hour and the rate is computed on
a per-hour basis. We, therefore, compute the hourly rate of
arrival (λ) and departure (µ) – Fig. 17 shows the results for
the cohort of Mon-Thu.

B. Modeling Car-park Usage as a Queuing System

Given the rate of arrival and departure, we model the car-
park as an M/M/1/C queue whose operation is visualized as
a continuous-time Markov chain shown in Fig. 18. Each state
of the chain represents the number of occupied space in the
car-park with total capacity C, and λ(t) and µ(t) are the rates
of arrival and departure respectively. If the car-park becomes
full (i.e., at state C), the arriving vehicle is rejected.

We developed a discrete-event simulator in R, to quantify
the probability of rejection considering a futuristic scenario
whereby the campus Estate Management allocates a fraction of
the car-park spaces to car-sharing services and the remaining
portion gets allocated to existing private cars. The primary aim
for the Estate Management would be to optimize the use of
parking space for generating revenue from shared cars with
minimal impact on private car users.

In order to simulate the dynamics of shared vehicles, we
begin by assuming that 20% of the existing users subscribe
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and use car-sharing services on a regular basis (the reasons
can be due to the potential reduction in travel cost, avoiding
parking fee, and eliminating the need to own a car) and 80%
of the current users continue commuting to the university by
a private car. We also assume that there will be new users
of shared vehicles – these additional users are modeled by
random sampling of a binomial distribution, B(100, 0.4), over
each slot of 60 minutes – meaning a total of 100 potential
vehicles with a 40% chance for each vehicle to use the car-
park within the slot. Given these assumptions, we compute
the rates of arrival and departure for both private and shared
vehicles.

Our campus car-park has a total capacity of 895 vehicle
spaces. In our simulation we split the car-park into two
queues (i.e., one for private cars and one for shared cars)
for various dimensioning configuration. We start with 10%
of spaces allocated to private cars and 90% to shared cars,
and increase/decrease the allocation for private/shared cars
by 5% at each step untill dimensioning scenario 90%/10%
is achieved. For each run of simulation, we quantify the
probability of rejection (i.e., no space left) during each slot
for both groups of private and shared cars. Fig. 19 shows
the fraction of slots that a private/shared car experiences a
rejection probability of 0.1 or more. As we expect, increasing
the portion allocated to private cars would reduce the rejection
probability (shown by sold red lines) for this users group and
increase the rejection for shared car users (shown by dashed
blue lines). The optimal dimensioning can be obtained by
considering the minimum rate of rejection tolerable for private
users traded with additional revenue from car-sharing service
providers.

VI. CONCLUSIONS

Digital transformation in transport industry demands large
organizations such as universities to revisit the operation of
their expensive on-campus parking facilities. In this paper
we have outlined our experiences in designing and deploying
a monitoring system for a real car-park at our university
campus. We collected data over 23 weeks (covering both
teaching and non-teaching periods) and cleaned it for analysis.

We then analyzed the usage data and highlighted insights
into car arrival and departure patterns as well as users park-
ing behaviour. Finally, we developed continuous-time non-
homogeneous Markov models using historical data and show-
cased (via simulation) its use for space allocation planning.

REFERENCES

[1] B. Council, “The shape of things to come: higher education global trends
and emerging opportunities to 2020,” British Council, Tech. Rep., 01
2012.

[2] L. dellOlio, R. Cordera, A. Ibeas, R. Barreda, B. Alonso, and J. L.
Moura, “A methodology based on parking policy to promote sustainable
mobility in college campuses,” Transport Policy, Apr 2018.

[3] A. Filipovitch and E. F. Boamah, “A systems model for achieving
optimum parking efficiency on campus: The case of minnesota state
university,” Transport Policy, vol. 45, pp. 86–98, Jan 2016.

[4] (2018) Car Sharing Market Size By Model.
https://www.gminsights.com/industry-analysis/carsharing-market.

[5] E. Polycarpou, L. Lambrinos, and E. Protopapadakis, “Smart parking
solutions for urban areas,” in Proc. IEEE WoWMoM, Madrid, Spain,
June 2013.

[6] D. Bong, K. Ting, and K. Lai, “Integrated approach in the design of
car park occupancy information system (COINS),” IAENG International
Journal of Computer Science, vol. 35, no. 1, Feb 2008.

[7] Z. Pala and N. Inanc, “Smart parking applications using rfid technology,”
in Proc. IEEE Annual RFID Eurasia, Istanbul, Turkey, Sep 2007.

[8] S. Shaheen, “Smart parking management field test: A bay area rapid
transit (bart) district parking demonstration,” UC Davis: Institute of
Transportation Studies, 2005.

[9] (2017) SFpark. http://sfpark.org/.
[10] M. Caliskan et al., “Predicting parking lot occupancy in vehicular ad hoc

networks,” in Proc. IEEE Vehicular Technology Conference. Dublin,
Ireland: IEEE, Apr 2007.

[11] R. Lu et al., “An intelligent secure and privacy-preserving parking
scheme through vehicular communications,” IEEE Transactions on
Vehicular Technology, vol. 59, no. 6, pp. 2772–2785, July 2010.

[12] G. Yan, W. Yang, D. B. Rawat, and S. Olariu, “Smartparking: A secure
and intelligent parking system,” IEEE Intelligent Transportation Systems
Magazine, vol. 3, no. 1, pp. 18–30, Apr 2011.

[13] T. Sutjarittham, H. Habibi Gharakheili, S. S. Kanhere, and V. Sivaraman,
“Experiences with IoT and AI in a Smart Campus for Optimizing
Classroom Usage,” IEEE Internet of Things Journal, pp. 1–1, 2019.

[14] T. Sutjarittham, H. Habibi Gharakheili, S. S. Kanhere, and V. Sivara-
man, “Realizing a Smart University Campus: Vision, Architecture, and
Implementation,” in Proc. IEEE ANTS, Indore, India, Dec 2018.

[15] (2019) ANPR Access HD - HD license plate camera for vehicle access
control. https://bit.ly/2HixxU5.

[16] S.-L. Chang, L.-S. Chen, Y.-C. Chung, and S.-W. Chen, “Automatic li-
cense plate recognition,” IEEE transactions on intelligent transportation
systems, vol. 5, no. 1, pp. 42–53, Mar 2004.

[17] V. Lyons, Guidance on ANPR Performance Assessment and Optimisa-
tion, 1st ed., Home Office of UK government, Centre for Applied Sci-
ence and Technology, Sandridge, St Albans, AL49HQ United Kingdom,
Mar 2014.

[18] S. Takahashi et al., “Travel Time Measurement by Vehicle Sequence
Matching Method,” in Proc. SICE-ICASE, Bexco, Busan, Korea, Oct
2006.

[19] T. Rajabioun, B. Foster, and P. Ioannou, “Intelligent parking assist,”
in Proc. IEEE Mediterranean Conference on Control and Automation,
Chania, Greece, 2013.

[20] (2019) Maximum weekly hours. https://bit.ly/1I14M9L.
[21] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means

clustering algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[22] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[23] V. Ricci, “Fitting distributions with r,” Contributed Documentation
available on CRAN, vol. 96, 2005.


