
Progressive Monitoring of IoT Networks
Using SDN and Cost-Effective Traffic Signatures

Arman Pashamokhtari, Hassan Habibi Gharakheili and Vijay Sivaraman
School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia

Emails: {armanpasha, h.habibi, vijay}@unsw.edu.au

Abstract—IoT networks continue to expand in various do-
mains, from smart homes and campuses to smart cities and
critical infrastructures. It has been shown that IoT devices
typically lack appropriate security measures embedded, and
hence are increasingly becoming the target of sophisticated cyber-
attacks. Also, these devices are heterogeneous in their network
communications that makes it difficult for operators of smart
environments to manage them at scale. Existing monitoring
solutions may perform well in certain environments, however,
they do not scale cost-effectively and are inflexible to changes
due to their static use of models. In this paper1, we use SDN to
dynamically monitor a selected portion of IoT packets or flows,
and develop specialized models to learn corresponding traffic
signatures. Our first contribution develops a progressive inference
pipeline, comprising a number of machine-learning models each
is specialized in certain features of IoT traffic. Our inference
engine dynamically obtains selected telemetry, including a subset
of traffic or flow counters, using SDN techniques. Our second
contribution develops three supervised multi-class classifiers, two
are protocol specialists trained by packet-based features and
one is flow-based model trained by behavioral characteristics
of ten unidirectional flows. Our third contribution evaluates the
performance of our scheme by replaying real traffic traces of
26 IoT devices on to an SDN switching simulator in conjunction
with three trained Random Forest models. Our system yields an
overall accuracy of 99.4%. We also integrate our system with an
off-the-shelf IDS (Zeek) to flag TCP flood and reflection attacks
by inspecting only the suspicious device network traffic.

I. INTRODUCTION

The number of connected IoT devices worldwide is pro-
jected [1] to increase to 43 billion in 2023, an almost threefold
increase from 2018. Due to ease of use and deployment, about
25% of businesses and enterprises are using IoT technologies
today [2]. With this growing demand for IoTs, manufacturers
who rush to deliver innovative gadgets, attracting customers,
inevitably use third-party software components (e.g., commu-
nication libraries, encryption libraries, OS, open-source tools)
within the device. The use of deprecated or insecure software
components often allows the device to be compromised or used
to attack others on the network. The risk of vulnerabilities
in embedded components is not easy to mitigate, and thus
IoT systems require extra caution when it comes to security.
However, nearly 66% of organizations do not have adequate
visibility into IoT devices connected to their network [3]. Un-
like other computer systems, IoT networks contain thousands
of IoT devices, which makes them an attractive target [4]

1This project was supported by Google Faculty Research Awards.

of launchpad for large scale DDoS attacks, e.g., Mirai [5],
BASHLITE [6], and Remaiten [7].

Due to escalating security concerns associated with these
vulnerable devices, network operators need to obtain real-
time insights into the operation of their IoT systems to better
maintain and support their assets. A range of classification
methods have been developed [8]–[15] to fulfill this need
by generating machine-learning models that infer the type of
IoT devices from their traffic signatures. These models which
are trained by benign activity profile of IoTs can be used to
classify devices and possibly detect anomalies.

Most of the existing works [8]–[11], [13] need to inspect
every packet going through the network, while some others
[12], [14], [15] collect some flow-based statistical information
which requires the insertion of rules into a programmable
switch for every connected device. Also, existing works often
use a single multi-class classifier, which requires a large
amount of data and heavy machinery to train, run, and
maintain it. Furthermore, we argue that the amount of traffic
features required to distinguish an IoT varies across device
types. Some devices have unique traffic features, while others
have some features in common. Existing works do not consider
this fact and treat all IoTs in the same way in terms of traffic
features needed for their model.

In this paper, we aim to combat existing challenges by joint
use of dynamic telemetry (enabled by SDN) and progressive
inferencing strategy. Our contributions are threefold: (1) We
develop a scalable and cost-effective architecture that employs
multi classification models and dynamically selects a subset
of traffic for each device based on the confidence output of
the models. It is cost-effective because it judiciously obtains
information from a small subset of network traffic for certain
devices. Traffic selection is done by SDN, thus the cost of
network telemetry can be controlled, (2) We train three models
which two of them are packet-based (SYN and DNS) and the
other one is flow-based. Of the two packet-based models, our
SYN model is novel in fingerprinting IoT traffic. Our models
run in a progressive manner on demand; that is, when a model
is not confident about a device, our system uses the next model
(more complex) for that specific device, and (3) We evaluate
our progressive inference scheme with real traffic of 26 IoT
devices, and demonstrate its efficacy in classifying IoTs with
99.4% accuracy while detecting reflection and flood attacks.



II. RELATED WORK

In the context of IoT network monitoring, the common
approach for classifying devices is to collect network traffic
of IoTs and extract some features from it then use them
for training a machine-learning classifier. In general, there
are two types of network telemetry (traffic features) that are
mainly used in the literature: (1) packet-based attributes that
are extracted from each packet (requires packet inspection)
e.g., port numbers, domain names, HTTP User-Agent, and
occurrence of specific protocols, and (2) flow-based attributes
that are statistical information e.g., number of DNS queries,
mean traffic rate, and packet count.

Works in [8]–[11] use packet-based features. Examples
of packet features used in these works are the occurrence
of certain protocols (e.g., TCP, UDP, ARP, NTP, DNS, and
ICMP), TCP window-size, IP type-of-service field, TTL, IP
do-not-fragment flag, size of packet, payload entropy, payload
size, and TCP/UDP port numbers. Although these works yield
high accuracy in classifying IoTs, they require a huge amount
of computational power to inspect every packet to/from IoT
devices. This can become very expensive or even infeasible
for real IoT networks that serve thousands of devices.

The other type of network measurement is flow-based,
which uses statistical information on behavioral activities
for inference models. These attributes can be mean, min,
max, standard deviation, or other statistical properties of flow
measurements (e.g., packet count). Authors in [12] proposed
a two-stage classification which uses six flow-based attributes
like DNS interval, sleep time, and flow rate along with three
packet-based attributes (port numbers, domain names, and
cipher suites). They showed that by using only low-cost
attributes like flow volume, duration, and mean rate, a high
accuracy (more than 95%) could be achieved. The authors used
SDN to capture these features by inserting some OpenFlow
rules for each device. This approach may work for networks
with hundreds of devices, but for larger networks, it requires
inserting thousands of OpenFlow rules into a switch that can
affect both computation cost and system performance.

DEFT [13] is another work that applies both packet-based
and flow-based attributes. Samples of packet features include
HTTP request URI, HTTP method, HTTP response code, and
MQTT packet type. Some of the flow-based features are DNS
packet count, DNS packet size, SSDP flow duration, and NTP
packet size. DEFT is distributed but still requires an all-packet
inspection for every device on the network.

Most of the mentioned works need packet inspection, which
imposes high computation cost, resulting in scalability issues.
Also, they do not consider an important fact that some IoT
devices display a uniquely identifiable pattern in specific
packets or flows. A study in [16] shows that some IoT devices
have a fixed small set of network activity. Overlooking this fact
leads to developing a single heavy model that takes tens of
features for every device while it is not needed in many cases.
Computing these unnecessary features can have a significant
impact on computation cost and execution time.

Device 1

Device 2

Device 3

…

Device K

. . .

accurate models require expensive features

kn
ow

n 
de

vi
ce

 la
be

ls
pr

ot
oc

ol
-s

pe
ci

al
ist

 
m

od
el

s M1

Device 1

Device 2

Device 3

…

Device K

M2

Device 1

Device 2

Device 3

…

Device K

M3

Device 1

Device 2

Device 3

…

Device K

Mn
. . .

Fig. 1. Progressive inference from device traffic.

III. DYNAMIC INFERENCE FROM IOT NETWORK TRAFFIC

Existing works have focused on developing a single model
for IoT classification and monitoring. Purely using packet-
based features requires inspection of individual packets that
is expensive and provides limited visibility into network
activities that can lead to missing devices behavior in broader
context. Neglecting flow-based characteristics would limit
the insights obtained from the behavior of devices at an
aggregate level. For instance, in DoS and reflection attacks,
the packet signature of a device response to attacks query
may not necessarily change, so by only inspecting packets,
we might not detect sophisticated attacks. Instead, periodic
flow-based statistics like packets count can clearly highlight
a volumetric attack. On the other hand, by only using flow-
based features, we may lose fine-grained visibility into the
traffic by ignoring packet signatures that can be helpful in IoT
classification and/or attack detection. We believe a desirable
monitoring solution would utilize both packet-based and flow-
based features.

One of the main drawbacks of prior works is that most of
them demand a large amount of data for each device type to
train and test their machine-learning model. However, we note
that some IoT devices are very simple and have some unique
features in their activity, which can be used to distinguish
them among other devices. For example, Nest smoke sensor
only uses TCP port 11095 in all of its communications that is
unique across all IoT devices we have in our lab. In contrast,
Amazon Echo uses 80, 443, 840, 8692 ports. Of these four port
numbers 80 and 443 are used by many other devices as well.
In this example, we are able to distinguish Nest smoke sensor
by seeing the port number 11095, and hence no further traffic
inspection is needed. However, for sophisticated and complex
devices like Amazon Echo, the port number is insufficient,
so we need more features. We believe that some devices can
be handled by less expensive models with less amount of
information from their network traffic.

Another trouble with a single comprehensive model for
a wide range of IoT devices is that its maintenance like
retraining (due to legitimate change in traffic pattern) can
become quite challenging. It also demands heavy machinery
to run on. Also, having a single model increases the chance
of failure and makes the model more vulnerable to adversarial



attackers that try to bypass the model with specially-crafted
attack data. We believe that combination of multiple models
makes the solution more robust against adversarial attacks.

These facts motivated us to develop a pipeline of models
where, each model is specialized in a subset of traffic. This
pipeline consists of multiple machine-learning classifiers that
work with either packet-based or flow-based features. Fig. 1
illustrates an abstract structure of our progressive inference
approach. In this pipeline, each model can be specialized in
a subset of protocols; for example, the first model may use
characteristics of specific TCP packets, the second model may
be trained by features of DNS queries, and so on. SDN enables
us to provide the required telemetry e.g., a collection of
packets and flow counters to infer the IoT devices. SDN helps
us to minimize the cost of packet inspection by only mirroring
the selected packets also it computes the flow counters at
the hardware level without any further computation by our
program.

At the beginning of the pipeline (on the left) models are
slightly lightweight (processing minimal amount of traffic) but
still can distinguish some device types fairly confidently (those
that are shown by bright cells Fig. 1) – gray labels indicate
low confidence, meaning more data is needed. Moving forward
through the pipeline, models become more complex, and hence
demand richer network telemetry. Devices that are classified
unconfidently by the earlier models are passed on to following
models – in certain circumstances (temporal variation of model
output) confidently-labeled device may be further checked by
later stage models. If the next model is still unable to classify
the device confidently, we keep passing it through the pipeline.
The last model is the most complex in the pipeline. It is more
expensive and requires more network telemetry; therefore, it
is confident about most of the devices.

The key challenge in this progressive pipeline is choosing
the models. When a model only works with a subset of traffic,
there is a chance that some devices do not generate that type of
traffic for a considerable time interval. For example, Dropcam
does not generate DNS queries for hours; LIFX bulb sends
only one TCP SYN packet when it reboots. Thus, for this
approach to perform well for any type of IoT device, it should
not rely on the occurrence of a specific protocol. Instead, it
attempts classifying devices with the lowest amount of data,
but if unavailable, then it obtains more data.

For earlier stages of our pipeline, one can use packet
signatures extracted from signaling protocols like DHCP, TCP
SYN/SYN-ACK, DNS, or NTP. This significantly decreases
the number of the inspected packets. In contrast, for later
stages, since more data is needed, we can use a collection
of flow-based behavioral features without requiring packet
inspection.

We will develop three models (§IV) which collectively con-
tain the cost of packets inspection while giving an acceptable
accuracy (§V).

10− 5 10− 4 10− 3 10− 2 10− 1

SYN and SYN-ACK fraction of total packets

0.0

0.2

0.4

0.6

0.8

1.0

C
C

D
F:

 P
ro

b
 [

fr
a
ct

io
n
 >

 x
]

Fig. 2. CCDF of SYN and SYN-ACK fraction of total packets in IoT devices.

IV. MODELING IOT NETWORK TRAFFIC

In this section, we develop three models for our progressive
pipeline. Two models are packet specialist (TCP SYN and
DNS), and the third model is flow based.

A. TCP SYN model

We begin by analyzing characteristics of TCP SYN and
SYN-ACK packets. These packets are sent in the three-
way handshaking phase to establish a TCP connection. We
extracted TCP handshake packets from PCAP traces of 26
IoT devices in our lab, and found that following header fields
display identifiable patterns across various IoT types to some
extent. Fig. 2 shows the CCDF of SYN/SYN-ACK fraction of
packets generated by our devices over three weeks. It can be
seen that this ratio is less than 4% in traffic of more than 80%
of IoT devices in our lab, and hence cost-effective in terms of
the number of inspected packets.

TCP window size: A 16-bit field in TCP header that is used
to specify the number of bytes that sender is ready to receive.
We observed 19 distinct window size values across 26 IoT
devices. Ten devices each uses a unique window size value
(each ranging from 512 to 33580). Some devices like Google
home, Belkin camera, Withings sleep sensor and Samsung
smart camera each had two different window size values in
their SYN/SYN-ACK signatures.

TCP options [17]: A list of pre-defined options, each serves
for a specific purpose. “Kind”, “length”, and “data” are the
three fields that define an option entry. We found that distinct
devices have different set of options and even the order of the
option entries are different across devices. Below, we explain
individual options we used for signatures:

• End of Option List: This option is used to declare end
of the list only when the TCP header is not ended by
the options. Out of 26 IoT devices only four (Netatmo
weather station, Awair air quality monitor, LIFX light-
bulb, and Ring doorbell camera) use this option in their
option list.

• No-Operation: It is used among the other options to
make them a multiplier of 8 to improve performance.
19 devices use this option in their option list which 10
of them use it once and exactly before the window scale
option. This option appeared three times in HP printer’s
signatures which is unique.



TABLE I
PERFORMANCE OF INDIVIDUAL PROTOCOL-SPECIALIST MODELS ACROSS 26 IOT DEVICES.

Model G
oo

gl
e

H
om

e

G
oo

gl
e

C
hr

om
ec

as
t

A
m

az
on

E
ch

o

C
an

ar
y

ca
m

er
a

Tr
ib

y
sp

ea
ke

r

N
et

at
m

o
w

ea
th

er

A
ug

us
t

do
or

be
ll

B
el

ki
n

m
ot

io
n

B
el

ki
n

sw
itc

h

Pi
xs

ta
r

ph
ot

o-
fr

am
e

iH
om

e
pl

ug

N
et

at
m

o
ca

m
er

a

Sa
m

su
ng

ca
m

er
a

N
E

ST
sm

ok
e

H
P

pr
in

te
r

Aw
ai

r
ai

r-
qu

al
ity

W
ith

in
gs

bo
dy

R
in

g
do

or
be

ll

T
P-

L
in

k
ca

m
er

a

H
ue

bu
lb

L
IF

X
bu

lb

Sm
ar

tT
hi

ng
s

D
ro

pc
am

B
lip

ca
re

B
P

B
el

ki
n

ca
m

er
a

W
ith

in
gs

sl
ee

p

SYN
SYN-ACK

44%
[0.75]

100%
[1.00]

100%
[1.00]

90%
[0.59]

100%
[1.00]

100%
[1.00]

40%
[0.79]

100%
[0.99]

100%
[1.00]

82%
[0.63]

100%
[0.99]

100%
[0.99]

100%
[1.00]

100%
[1.00]

100%
[0.92]

100%
[1.00]

100%
[0.99]

100%
[0.99]

100%
[0.83]

100%
[0.99]

100%
[1.00]

100%
[0.99]

100%
[0.97]

100%
[0.85]

100%
[0.99]

100%
[0.99]

DNS 98%
[0.99]

99%
[0.97]

100%
[1.00]

100%
[1.00]

100%
[1.00]

100%
[1.00]

100%
[1.00]

47%
[0.99]

100%
[1.00]

100%
[1.00]

100%
[1.00]

100%
[1.00]

27%
[0.88]

100%
[0.95]

75%
[0.88]

100%
[1.00]

100%
[1.00]

100%
[0.96]

100%
[1.00]

100%
[0.99]

100%
[0.97]

98%
[1.00]

100%
[0.99]

100%
[1.00]

100%
[0.82]

100%
[0.99]

Flow 92%
[0.99]

96%
[0.99]

99%
[0.99]

99%
[0.97]

96%
[0.99]

94%
[0.99]

99%
[0.99]

100%
[0.99]

100%
[0.99]

99%
[0.79]

100%
[0.96]

100%
[0.99]

100%
[0.99]

95%
[0.91]

100%
[0.99]

100%
[0.99]

96%
[0.79]

99%
[0.98]

100%
[0.99]

100%
[0.99]

100%
[0.99]

100%
[0.99]

100%
[0.99]

100%
[0.90]

100%
[0.99]

100%
[0.99]

• Maximum Segment Size: It defines the maximum size
of a TCP segment and must be used in the three-way
handshaking phase. Devices usually set this field based on
the maximum transmission unit so IP fragmentation does
not occur. We found four devices (iHome power plug,
Netatmo weather station, Netatmo camera, and Smart
Things) each used unique value for this option, three
devices shared the value 1152, and 19 devices shared
the value 1460.

• Window Scale: TCP window scale was introduced to
improve the efficacy of TCP by multiplying window size
to value of the window scale. 16 IoT devices in our lab
use this option in their SYN/SYN-ACK signatures – only
seven unique values were observed in the data field of this
option across these 16 devices.

• Selective Acknowledgment: SACK enables the receiver
to send acknowledgment out of order. To use SACK,
client and server must agree on it with SACK-permitted
option in the three-way handshake. 17 devices send
SACK-permitted in their SYN packets’ header.

• Timestamp: Timestamp was defined in the standard
because of RTTM (Round Trip Time Measurement) and
PAWS (Protect Against Wrapped Sequences) algorithms.
12 devices send timestamp option in their SYN/SYN-
ACK header.

IPv4 Don’t Fragment flag: This one-bit flag in IPv4
header, indicates that the packet should not be fragmented
along the route. 17 devices set this flag to avoid IP fragmen-
tation.

Inspired by p0f [18], we develop our colon-separated sig-
natures of TCP SYN as follows:

{syn/synack} : {f/df} : [windowsize] :
[option#1kind] [option#1datavalue] : ... :

[option#nkind] [option#ndatavalue]

The fields by their order indicate: the packet is SYN or
SYN-ACK, fragmented (f) or not (df), the integer value of the
TCP window size, and the list of options with the same order
that was sent in the TCP SYN header. Some options only
have kind, and some others have a data value (e.g., maximum
segment size, and window scale). We do not add the data
value for some options like selective acknowledgment and
timestamp because they change in each packet. In addition to
the signature, we add port numbers to increase the accuracy

and uniqueness. We use destination port number of SYN
packets and source port number of SYN-ACK packets.

We extract the mentioned fields from TCP headers and
create the signatures periodically. This means that we consider
aggregate traffic over an epoch (say, 5 minutes) and create
our instances accordingly. Thus, each instance in our dataset
is a list of signatures along with a list of corresponding port
numbers a device communicated with over an epoch.

1) SYN model training: Our testbed contains 26 IoT devices
connected to a router with OpenWRT installed on it. On the
router there is tcpdump which captures all incoming/outgoing
packets and dumps them into a daily PCAP file. Our traffic
traces span six weeks.

For this model, we only analyze SYN/SYN-ACK packets
that individual IoT devices send. We use Bag-of-Words to
vectorize the string values of the SYN/SYN-ACK signatures.
Using Bag-of-Words, we implicitly count the number of
packets in each epoch as well, which makes our model
more accurate. We add three words, namely “unknown syn”,
“unknown syn-ack”, and “unknown port” to our vocabulary
and map any new value to one of these words to avoid ignoring
any unseen values. With this method we capture new values
and the model will give a low confidence upon seeing an
instance with unknown features.

Following dataset pre-processing (vectorizing), we split it
into two sets of training (70%) and testing (30%). We train
a Random Forest multi-class classifier. Note that we also
tried other models like Naive Bayes, Logistic Regression,
and KNN, and found that Random Forest outperforms all of
them by accuracy. Table I shows the accuracy of each model
across 26 IoT devices. Accuracy is presented in percentage
and confidence level is shown in brackets – red color cells
highlight device types which receive low accuracy/confidence
from respective models.

2) Problems with the SYN model: Although this model is
very lightweight, there are some devices that cannot be clas-
sified confidently. For example, August Doorbell and Canary
camera use the same TCP options list and remote TCP port
numbers. Additionally, the number of SYN packets they send
to their cloud server in each epoch is very similar. As another
example, we noticed that some devices like LIFX lightbulb and
Dropcam, only generate one SYN packet on reboot and then
maintain that connection for hours (even days). This becomes
a problem because these devices are active, generating traffic



but with only the SYN model we cannot identify them. These
issues motivated us to develop other models that can address
these problems.

B. DNS model

DNS is a commonly used protocol used by IoT devices
which frequently communicate with cloud servers. In the DNS
query, a device indicates the domain name that it wants its IP
address. IoT devices communicate with a limited number of
endpoint cloud servers [12] which their domain names could
be very indicative for detecting device type and manufacturer.

For the DNS model, we use the domain name extracted from
the DNS queries. Then similar to the SYN model, by using
Bag-of-Words and Random Forest, we train the DNS model
classifier. The accuracy of this model is 98.2%. DNS model is
very cost-effective in terms of the number of inspected packets
(i.e., no more than 10% of traffic).

Similar to the SYN model, there are two cases where
DNS model loses accuracy/confidence. (1) Some devices have
similar DNS queries, specially when they are from the same
manufacturer (e.g., Belkin motion sensor and Belkin camera).
(2) Some devices may not send any DNS query for hours (e.g.,
Dropcam) though they are active.

C. Flow model

For our system to be able to work for every device, we
develop a final model based on flow statistical information.
Inspired by [15], we use ten flow rules to measure flow
counters (packet and byte) of specific protocols during every
epoch. Our rules are inserted with three levels of priority to
avoid ambiguity between the overlapping rules. We assign
higher priority to the selected rules because they use TCP/UDP
as the underlying transaction protocols. ARP and TCP/UDP
have medium priority because they have overlap with total↑.

• High priority: SYN↑, SYN-ACK↑, DNS↑, NTP↑, SSDP↑
• Medium priority: TCP↑, UDP↑, ARP↑
• Low priority: remote↓, and total↑

Note that ↑ and ↓ respectively indicate outgoing (from device)
and incoming (to device) direction of traffic. For our features,
we use packet count and byte count of three flows including
DNS↑, remote↓, and total↑, and only packet count for the
remaining seven flows – in total, 13 features.

We train a Random Forest model based on above features
that gives an average accuracy of 98.7%. Because the features
used in this model are ordinal (in contrast to Bag-of-Words
in the previous models), it required three weeks of additional
training data to achieve a reasonable accuracy/confidence.

V. SYSTEM EVALUATION

We now evaluate the efficacy of our proposed scheme. Fig. 3
shows the architecture our SDN-based system empowered by
trained models on top – for brevity we do not show the SDN
controller. We replay PCAP traces of 26 IoT devices (collected
over a day in our lab).

Having the three models trained, we record the mean (µ)
and standard deviation (σ) of models confidence per each

IoT devices

SYN/SYN-ACK DNS Flow

Features 
Extractor

confidence-level

mirroring
packets

inserting 
rules

dev1 … dev20
dev25, dev26

SDN
switch

dev21 … dev24

Internet

Fig. 3. System architecture of our prototype.

device label. Given a model, if its average confidence (µ) for
training instances of a device label is less than a threshold (say,
90%) then we mark that device as a gray label for the model.
This happens when several devices share traffic signatures or
the model is not trained by sufficient amount of data from
that class. Considering µ values, we associate each device
with a model that has the lowest cost. For example, due to
low accuracy/confidence of the SYN model for Google home
device, we assign it to the DNS model. During testing phase,
we check in real-time (every epoch) whether the resulted
confidence for each subject device is greater than an expected
value (we consider µ − 0.5σ), if not, the device gets flagged
as anomaly, and all of its traffic is mirrored to an IDS.

The SYN model is default for every IoT device. This means
that the SDN switch is first inserted by two rules that mirrors
only SYN and SYN-ACK packets of every device to a “feature
extractor” engine. At the end of each epoch, if no SYN/SYN-
ACK packet is captured for a device on the mirror port, then
feature extractor inserts a new mirroring rule (DNS packets)
only for that device. Similarly, in case of no DNS query
from the expected devices, the system enters into the last
stage whereby ten device-specific rules (§IV-C) are inserted
to generate required telemetry for the flow model.

We plot a time trace (30 minutes) of our system evolution
for three representative devices in Fig. 4. Note that one device
(Belkin motion sensor shown by top row plots) was under
SYN flood attack for a short duration (13:35 - 13:40)

Fig. 4(a) shows the total number of packets these devices
generated versus the inspected packets. We observe that the
number of inspected packets in SYN/SYN-ACK and DNS
models is one order of magnitude less than the total packets.
Also, in case of Dropcam (bottom row) for which the Flow
model is used, no packet is inspected. Fig. 4(b) illustrates the
confidence level of each model for the assigned device. SYN
model has high confidence level (> 90%) for these devices
(Table I), thus they are initially assigned to this model.

At the end of the first epoch (13:20) the engine noticed that
though LIFX was assigned to the SYN model, it did not send
any SYN or SYN-ACK packet. Thus, the engine decided to
assign LIFX to the next model (i.e., DNS). Also, at the same
time, similar situation happened to Dropcam. Dropcam was
assigned to the SYN model, but it did not generate any of
these packets; so, it was assigned to the DNS model for the
next epoch. At the end of the next epoch (13:25), LIFX is



102

103

Belkin Motion total Belkin Motion inspected

101

102

P
a
c
k
e
t 

c
o
u
n
t

LIFX total LIFX inspected

13:20 13:25 13:30 13:35 13:40 13:45 13:50

Time

0

2000

4000

Dropcam total Dropcam inspected

(a) Total vs. inspected packets

0.0

0.2

0.4

0.6

0.8

1.0

SYN/SYN-ACK model

Belkin Motion

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
fi
d
e
n
c
e
-l

e
v
e
l DNS model

LIFX

13:20 13:25 13:30 13:35 13:40 13:45 13:50

Time

0.0

0.2

0.4

0.6

0.8

1.0

Flow model

Dropcam

(b) Confidence of protocol-specialist models.
Fig. 4. Time trace of: (a) total versus inspected packets count, and (b) confidence-level of protocol-specialist models, for three representative IoT devices.

classified correctly by the DNS model with high confidence.
However, Dropcam did not send any DNS queries. Therefore,
the engine assigned Dropcam to the flow model so from the
next epoch (13:30), all of them are assigned to the appropriate
model and are classified with high confidence.

Accuracy of the individual models are 89%, 98.2%, and
98.7% for SYN, DNS, and flow model respectively. However,
the overall accuracy of the system when devices are assigned
dynamically to the models, is above 99.4%. This means that
for an accurate and cost-effective solution, a single perfect
model is not necessary, instead, multiple models that are fairly
accurate for certain devices can achieve this result.

A. Verifying Attack Detection

In general, any vulnerability or attack, that forces a device
to generate SYN, SYN-ACK packet that is not benign (e.g.,
SYN flood and reflection attack), can be detected by the model
due to a significant confidence level decrease. Our SYN model
is able to accomplish this, because by using Bag-of-Words we
are implicitly counting the number of SYN/SYN-ACK packets
that devices usually send in each epoch, which significantly
increases during the attack.

Fig. 4 shows the result for attack on Belkin motion sensor.
From 13:35 to 13:40, we launched a SYN flood attack on
Belkin motion sensor. It is shown in Fig. 4(b) that during
this attack, the model confidence drops by about 25%. By
capturing this drop, we can forward the device traffic to Zeek,
an off-the-shelf IDS. If the attack continues till next epoch,
Zeek will detect and flag it, and the device needs to be
quarantined (by automatic insertion of a reactive SDN rule).

It is important to mention that attack detection was not
the main scope of this work. Instead, we considered a cost-
effective subset of IoT traffic for inference, and hence some
attacks may go undetected. Our future work will focus more
on detecting attacks and anomalies.

VI. CONCLUSION

In this paper we developed progressive inference engine
for classifying and monitoring network traffic of IoT devices.

We addressed the shortcoming of existing inference models
which are static, expensive, and inflexible. We developed a
progressive inference engine consisting of multiple models
each with different accuracy and cost that can be used for
specific devices. We employed SDN to dynamically acquire
different types of network telemetry. We evaluated the effi-
cacy of our system using three Random Forest models that
collectively achieve a high accuracy 99.4%.

REFERENCES

[1] A. Gupta et al. Forecast: Internet of Things — Endpoints and Associated
Services, Worldwide, 2017. Technical report, Gartner Research, Dec
2017.

[2] McKinsey. Growing opportunities in the Internet of Things, Jul 2019.
[3] Forescout. Network visibility survey. http://bit.ly/30LBGaf, 2016.
[4] Minzhao Lyu et al. Quantifying the Reflective DDoS Attack Capability

of Household IoT Devices. In Proc. ACM WiSec, Boston, Massachusetts,
USA, Jul 2017.

[5] NJ cybersecurity & communications integration cell. Mirai.
http://bit.ly/2RgwVlI, 2016.

[6] Black Lotus Labs. Attack of things! http://bit.ly/36hP07n, 2016.
[7] Pierluigi Paganini. The Linux Remaiten malware is building a Botnet

of IoT devices. http://bit.ly/30PNwQK, 2016.
[8] B. Bezawada et al. Behavioral fingerprinting of IoT devices. In Proc.

of the ACM CCS, Toronto, Canada, October 2018.
[9] D. Kumar et al. All Things Considered: An Analysis of IoT Devices

on Home Networks. In 28th USENIX Security Symposium, Santa Clara,
CA, USA, August 2019.

[10] K. Yang et al. Towards automatic fingerprinting of IoT devices in the
cyberspace. Computer Networks Journal, 148:318–327, 2019.

[11] M. Miettinen et al. IoT SENTINEL: Automated Device-Type Identifi-
cation for Security Enforcement in IoT. In Proc. of ICDCS, Atlanta,
CA, USA, June 2017.

[12] A. Sivanathan et al. Classifying IoT Devices in Smart Environments
Using Network Traffic Characteristics. IEEE Transactions on Mobile
Computing, 18(8):1745–1759, 2019.

[13] V. Thangavelu et al. DEFT: A Distributed IoT Fingerprinting Technique.
IEEE Internet of Things Journal, 6(1), 2019.

[14] A. Sivanathan et al. Characterizing and classifying IoT traffic in smart
cities and campuses. In IEEE INFOCOM WKSHPS, Atlanta, GA, USA,
May 2017.

[15] A Sivanathan et al. Managing IoT Cyber-Security using Programmable
Telemetry and Machine Learning. IEEE TNSM, 2020.

[16] A. Hamza et al. Clear as MUD: Generating, validating and applying IoT
behavioral profiles. In ACM SIGCOMM IoT S&P, Budapest, Hungary,
2018.

[17] IANA. Transmission Control Protocol (TCP) Parameters.
http://bit.ly/2RgSsea, 2019.

[18] p0f. http://lcamtuf.coredump.cx/p0f3/, 2016.


