
ReCLive: Real-Time Classification and QoE
Inference of Live Video Streaming Services
Sharat Chandra Madanapalli∗, Alex Mathai†, Hassan Habibi Gharakheili∗ and Vijay Sivaraman∗

∗School of Electrical Engineering & Telecommunication, UNSW, Sydney, Australia
†BITS Pilani, India

Emails: {sharat.madanapalli, h.habibi, vijay}@unsw.edu.au, f2016339p@alumni.bits-pilani.ac.in

Abstract—Social media, professional sports, and video games
are driving rapid growth in live video streaming, on platforms
such as Twitch and YouTube Live. Live streaming experience
is very susceptible to short-time-scale network congestion since
client playback buffers are often no more than a few seconds.
Unfortunately, identifying such streams and measuring their QoE
for network management is challenging, since content providers
largely use the same delivery infrastructure for live and video-
on-demand (VoD) streaming, and packet inspection techniques
(including SNI/DNS query monitoring) cannot always distinguish
between the two. In this paper, we design and develop ReCLive:
a machine learning method for live video detection and QoE
measurement based on network-level behavioral characteristics.

Index Terms—traffic classification, video streaming, QoE in-
ferencing, machine learning.

I. INTRODUCTION

Live video streaming consumption grew by 65% from 2017
to 2018 [1] and the recent pandemic situation fueled further
growth with major events being streamed online [2]. YouTube
Live is widely used for concerts, sporting events, and video
games. Twitch is a popular platform for streaming video
games from individual gamers as well as from tournaments.
Internet Service Providers (ISPs) are keen on gaining fine-
grained visibility into live video streams, enabling them to
monitor quality of experience (QoE) for live video streaming
over their networks, and where necessary enhance QoE for
their subscribers by dimensioning bandwidth appropriately or
applying policies for traffic management. However, ensuring
good QoE for live video streams is challenging, since clients
per-force have small playback buffers (a few seconds at most)
to maintain a low viewing latency. Even short time-scale
network congestion can cause buffer underflow leading to a
video stall, causing user frustration.

Network operators lack the tools today to distinguish live
streaming flows in their network, let alone know the QoE
associated with them. Content providers like YouTube use
the same delivery infrastructure for live streaming as for on-
demand video, making it difficult for deep packet inspection
(DPI) techniques to distinguish between them. Indeed, most
commercial DPI appliances use DNS queries and/or SNI
(Server Name Indication) certificates to classify traffic streams,
but these turn out to be the same for live and on-demand
video (e.g., in Youtube), making them indistinguishable. In
this work, we therefore pursue an alternative approach that is

based on the behavioral profile of the traffic flows. Extracting
key attributes from the network behavior allows us to build
machine learning models that can distinguish live from on-
demand video, as well as estimate user QoE metrics in terms
of resolution and buffer stall events. This allows network
operators to detect and measure live video streams purely from
network behavior, without requiring any assistance from end-
clients or server/CDN end-points.

Our specific contributions are three-fold: First, we collect
traffic traces from field (university campus) and lab (us-
ing synthetic network conditions) of around 23,000 video
streams spanning the two popular providers, namely Twitch
and YouTube, and analyze their patterns (§III). We make a
key observation that requests for manifest files and media
segments display markedly different patterns. Focusing on
the time series of content requests, therefore, lets us develop
our second contribution wherein an LSTM (long short term
memory) model is trained to distinguish live from on-demand
video with an accuracy over 95% across both providers (§IV).
Our third contribution develops a method that uses the chunk-
based features collected from the network flows to estimate
QoE metrics for live streaming in terms of resolution using a
random forest classifier with 93% accuracy, and predict buffer
stalls using a statistical model with an accuracy of 90% (§V).
Our methods offer real-time visibility into live video streaming
and its QoE metrics.

II. RELATED WORK

Live Video Streaming: Several aspects of live video
streaming have been studied by researchers including QoE
modeling/measurement. Prior work on QoE of live videos
range from theoretical models [3] to study buffer dynamics
to analysis of HTTP logs of CDNs to predict resolution and
buffer stalls [4], [5]. Our work, instead, focuses on identi-
fication of video streams and predicting QoE of encrypted
live streams from real-time network traffic behavior. We note
that HTTP logs and QoE metrics are typically available to the
CDNs or content providers. Our work is positioned to support
ISPs who do not have access to such logs but require to infer
the QoE of live videos traversing their network.

Application Classification: Traffic classification has been
a widely studied cross-disciplinary field and more recently,
researchers have begun the use of machine learning/deep learn-
ing models for classification of network traffic [6]. Authors of
[7] classify video streaming versus large downloads by using

978-0-7381-3207-5/21/$31.00 c©2021 IEEE

manually extracted features from network flow activity to
train random forest classifiers. In contrast, deep learning-based
methods leverage the automatic feature extraction: work in [8]
classifies type of traffic (e.g., Mail, VoIP, Chat) using a CNN
on the first 784 bytes of a session. In our work, we use LSTM-
based model for classifying live and VoD streams. Unlike
existing methods that use expensive packet-level and/or byte-
level features, we rely on periodic flow-level request counters
(collected every half-second) making it relatively scalable to
high traffic rates.

Video QoE From Network: Recently, many researchers
[9], [10], [11], [12], [13] have studied QoE metrics for
video streaming services across providers such as YouTube,
Netflix, Facebook, Bilibili and Amazon, particularly focusing
on VoD. Among existing works, only [11] studied QoE for live
streaming services (Twitch) by estimating only the resolution
metric. We note that not only does live video differ in delivery,
but it also has more stringent QoE requirements. Further, prior
works predominantly performed post-facto analysis of video
streaming QoE using features extracted from pcap traces [9],
[10], [13], or CDN logs [4], [5]. Our work develops methods
to distinguish live streams and predict their QoE metrics
(resolution and buffer stalls) in real-time by building upon
existing literature. Our design choices aim at scalability and
ease of deployment by identifying inexpensive traffic attributes
(to compute), and building machine learning models that
are “general” (work across providers) and “simple” (lower-
memory footprint, ease of training and deployment).

III. LIVE VIDEO CHARACTERISTICS & DATASET

Live video streaming refers to video content which is
simultaneously recorded and broadcasted in real-time. The
content uploaded by the streamer sequentially passes through
ingestion, transcoding, and a delivery service of a content
provider before reaching the viewers ([14], [15], [16]). Modern
live streaming clients typically use protocols (e.g., HTTP
Live Streaming) wherein they fetch manifest files containing
URLs to the latest transcoded media segments. The client
then downloads few segments and maintains a short buffer to
keep the latency between streamer and viewer to a minimum.
This increases the chances of buffer underflow as network
conditions vary, making live videos more prone to QoE
impairments such as resolution drop and video stall ([4], [5]).

In contrast, VoD streaming uses HTTP Adaptive Streaming
(HAS) and involves the client requesting segments from a
server which contains pre-encoded video resolutions. This
not only enables the use of sophisticated multi-pass encoding
schemes which compress segments to smaller sizes, but also
lets the client maintain a larger buffer making it less prone to
QoE deterioration.

A. Network Activity Analysis
Fig. 1(a) and 1(b) show the client’s network behavior (at 100

ms granularity) of representative live and VoD Twitch streams
from our dataset. The live streaming client downloads video
segments every two seconds. In contrast, the VoD client begins
by downloading multiple segments to fill up a long buffer and

then fetches subsequent segments every ten seconds. Thus, the
periodicity of segment downloads seems to be a very important
feature to distinguish live from VoD streams.

We first estimate the periodicity for download signals by
applying auto-correlation function followed by peak detection.
Fig. 1 shows the auto-correlation value at different time lags
(integral multiple of a second) for both live and VoD Twitch
streams. Note that the auto-correlation sequence displays peri-
odic characteristics just the same as the signal itself, i.e., lag =
2s for live Twitch and lag = 10s for VoD Twitch. Further, we
also notice peaks at multiples of the periodicity value. From
this observation, we attempt to classify video streams as live
or VoD using a Random Forest classifier whose inputs are
the first three lag values at which the auto-correlation signal
peaks, and achieved an accuracy of about 89.5% for Twitch
videos. However, this method does not generalize well to
other content providers due to several identifiable challenges.
Varying network conditions causes the auto-correlation to fail
in identifying the periodicity, as shown in Fig. 1(c) for a
sample of YouTube live streaming. Further, user triggered
activities like trick-play for VoD seem to distort the time-trace
signal, causing it to be mis-classified as a live stream.

To overcome these challenges and better understand the
delivery mechanism of live videos, we collected the playback
data from the video client such as latency modes, buffer sizes
and resolutions (using browser automation tool described in
§III-B). We used Wireshark (configured to decrypt SSL) to
gain insights into protocols being used, patterns of the requests
made for content and manifest files, their periodicity, and the
available latency modes as shown in Table I.

While SNIs may seem sufficient to distinguish live and VoD
streams at least for Twich, they can be changed by content
providers at any time. Further, with an increasing adoption of
eSNI (encrypted SNI) supported by TLS 1.3, server names will
not be accessible from the network traffic. Thus, it is needed
to identify certain patterns in the network behavior of live
streaming applications in order to distinguish them from VoD
streams. We observed that for each media segment/manifest
file, the video client in the browser made an HTTP request
that was also seen as an upstream packet on the wire. Due to
the use of TLS, the HTTP request is hidden in the packet data.
Thus, we tag the upstream packets to be request packets when
they contain a payload greater than 26 bytes (the minimum size
of HTTP payload). Fig. 1 clearly illustrates how the request
packets correlate with the video segments being fetched –
however, the auto-correlation approach failed to capture it (as
indicated in the YouTube instance). We found that the time-
trace signal of request packets: (a) is periodic and indicative
of the streaming type, even in varying network conditions, (b)
is less prone to noise in case of user triggered activities, and
(c) can be well generalized across content providers.

B. Dataset
Having identified request packets as a key feature to dis-

tinguish live from VoD streams, we collect data of around
23, 000 video streams from Twitch and YouTube. In this

0

20

40

60

Ra
te

 (M
bp

s)

0.0

0.5

1.0

Au
to

Co
rr

0 10 20 30 40 50 60
Time / Lag (sec)

Re
qu

es
ts

(a) Twitch Live.

0

20

40

60

Ra
te

 (M
bp

s)

0.0

0.5

1.0

Au
to

Co
rr

0 10 20 30 40 50 60
Time / Lag (sec)

Re
qu

es
ts

(b) Twitch VoD.

0

5

10

Ra
te

 (M
bp

s)

0.0

0.5

1.0

Au
to

co
rr

0 10 20 30 40 50 60
Time / Lag (sec)

Re
qu

es
ts

(c) YouTube Live.

Figure 1: Network behavior: download rate profile, its auto-correlation, and request packets.
Table I: Fetch mechanisms of Twitch and YouTube video streaming.

Provider Type Protocol Request for Manifest Frequency Latency modes Service Endpoint SNI

Twitch VoD HTTP/2 Once 10s - vod-secure.twitch.com
Live HTTP/1.1 Periodic (different flow) 2/4s Low, Normal video-edge*.abs.hls.ttv.net

YouTube VoD HTTP/2 + QUIC Once 5-10s - *.googlevideo.com
Live HTTP/2 + QUIC Manifestless 1/2/5s Ultra Low, Low *.googlevideo.com

section, we describe two tools which we built to: (a) automate
the playback of video streams, and (b) collect data of video
streams from our campus network – we obtained appropriate
ethics clearances (UNSW Human Research Ethics Advisory
Panel approval number HC16712) for this study.

Automated Data Collection: The first tool we built records
both network telemetry (flow-level counters) and user ex-
perience metrics of video streams. The tool automatically
plays (on personal computers) live and VoD streams from
Twitch and YouTube. The tool has three main containerized
components: a browser controlled using the Selenium [17]
library, a network telemetry component called “FlowFetch”,
and an orchestrator that co-ordinates the playback of videos
and data collection. This tool also has a network conditioner
module to artificially impose network conditions with the help
of the tc tool available in Linux distributions.

The orchestrator first fetches a list of videos to be played.
For both live and VoD, the tool fetches the top trending videos
from a particular provider. It then iterates through the video list
and performs the following steps for each video: (1) signals
the FlowFetch component to start collecting network data, (2)
plays the video on the browser, (3) collects the experience
metrics reported by the player such as resolution, buffer level,
and stores them in a csv file. During the playback of the video,
FlowFetch collects and stores network data into multiple csv
files. After the video is played for a fixed amount of time (5
minutes in this work), the orchestrator signals FlowFetch to
stop collecting data and repeats the steps on the next video.

We have developed the FlowFetch component in Golang to
collect network telemetry data. It can read packets from a pcap
file or a network interface. FlowFetch collects telemetry for a
network flow, identified by 5-tuple: src and dst IP addresses,
transport layer ports and protocol. In this component, multiple
fully programmable telemetry functions can be associated with
a flow. Two functions used in this paper are (1) request
packet counters and (2) chunk telemetry. The first function
exports the number of request packets (identified by the packet

Table II: Summary of our dataset: number of streams.
Source Twitch YouTube

Live VoD Live VoD

Tool 2587 2696 1430 1719
Campus 12534 1948 - -

payload length) observed on the flow every 500ms. The second
function (further described in §V) exports metadata on isolated
media chunks for estimating QoE metrics.

To isolate network flows corresponding to the video stream,
FlowFetch performs a regex match on SNI field captured in
the TLS handshake of a HTTPS flow (mentioned in Table I).
Along with network telemetry data collected for each video,
the orchestrator collects playback metrics like resolution and
buffer health from the video player. These playback metrics
that are stored along with the network telemetry data will form
a collocated time series dataset for each video stream.

Campus Data Collection: We additionally collected data
for Twitch videos from our university campus traffic (from
both WiFi and Ethernet clients). We received a mirror of all the
traffic between campus and the Internet to one of our servers.
We used FlowFetch to collect data of real user-generated
Twitch live and VoD flows from a variety of device types like
personal computers, tablets, and phones. As described above,
by using SNI regex matches, FlowFetch filters and tags the
collected flow as Live or VoD. Since we have no control over
the device/user streaming the videos, none of the playback
metrics such as resolution etc. are available. Hence, this data
set can only be used for classification purposes. Table II. shows
the number of video streams collected across providers using
our tool and from the campus traffic. As evident in Twitch
campus data, live streams vastly outnumber VoD streams.
While time limits were set for our automated tool, there were
none for the campus traffic. In total, we collected over 1000
hours of playback of videos across both the providers.

IV. CLASSIFICATION: LIVE VERSUS VOD
We now design a general neural network architecture for a

classifier that takes a time-series vector consisting of request

(a) An LSTM cell. (b) LSTM to MLP network.

Figure 2: Model structure for binary classification.
packet counts. Using our collected data, we then train one
instance of the classifier for each provider.

A. LSTM Model Architecture
We demonstrated in §III that for a network flow, the requests

made for content are evidently different in live streaming
compared to VoD streaming. This feature is captured in our
dataset wherein the count of requests is logged every 500ms
for a given network flow. To enable real-time classification, we
consider only 30 seconds of the playback as a time window
over which we aim to classify the stream. We thus obtain 60
data-points that form the input to our model as denoted by:

~X = [x1, x2,, x59, x60] (1)
As we saw in Fig. 1, live streams display more frequent

data requests, distinguishing their network behavior across
various providers. For example in case of Twitch, after initial
buffering, data is requested every two seconds during the stable
phase. Hence, the stable ~X is ideally expected to be in the form
of “200020002000...” – non-zero values occurring every four
data points (4 × 0.5s = 2s interval). Such patterns can be
extracted by features such as zeroFrac i.e., fraction of zeros
in the window, maxZeroRun i.e., maximum consecutive zeros
and so on. They can then be used to train a machine-learning
model. However, for different providers, the feature types and
their combinations would differ significantly. Hence, instead
of handcrafting features from ~X , we aim for a classification
model that derives higher level features automatically from
training data. Note, that unlike the lag values of top peaks
in the auto-correlation function (§III) that capture limited
properties of the intended signal, ~X is a vector of raw
time-series data, inherently capturing all temporal properties
of video requests. To automatically derive features of this
temporal dimension, we use a very popular time series model
called the Long Short Term Memory (LSTM) neural network.

An LSTM maintains a hidden state (~ht) and a cell state
(~ct), shown as upper and lower channels respectively in
Fig. 2(a). The cell state of the LSTM acts like a memory
channel, selectively remembering information that will aid
in the classification task. In the context of our work, this
could be the analysis of periodicity and/or the pattern by
which xis vary over time. The hidden state of the LSTM
is an output channel, selectively choosing information from
the cell state required for classifying a flow as live or VoD.
Fig. 2(a) shows that at epoch t, the input xt is fed to the
LSTM along with the previous hidden state ht−1 and cell
state ct−1, obtaining current ht and ct. In other words, at
every epoch, the information of previous steps is combined
with the current input. Using this mechanism, an LSTM is

Table III: Monitoring duration impact on the accuracy
(ReCLive model versus Random Forest).

Monitoring Duration
Provider T=10 sec T=20 sec T=30 sec T=30 sec [RF]
Twitch 94.33% 96.13% 96.82% 89.50%
YouTube 96.57% 98.28% 99.80% 68.93%

Table IV: Confusion matrix of the models.
Provider Twitch YouTube

Class Live VoD Live VoD
Live 0.981 0.019 1.000 0.000
VoD 0.117 0.883 0.004 0.996

able to learn an entire time series sequence with all of its
temporal characteristics.

As detailed above, we sequentially feed individual xi’s from
~X into the LSTM (layers=1, dim(ht) = dim(ct) = 32×1)
to obtain the final hidden state (~h60) which retains all the
necessary information for the classification task. We then feed
~h60 to a multi-layer perceptron (MLP) to make the prediction,

as shown in Fig. 2(b). The final output of the MLP is the
posterior probability of the input time-series being an instance
of live streaming.

B. Training and Results
We would like to emphasize that the architecture of the

neural network is consistent across providers, thus highlighting
the generality of our approach for classifying live and VoD
streams. For the remainder of the paper, the combination of
the LSTM and MLP is referred to as model. During training,
model learns to classify streams by reducing prediction error
(the binary cross entropy loss function) via back propagation
and Adam optimization. The trained model achieved high
accuracies (with 80/20 train/test split) across both providers,
as shown in Table III. For our baseline, we trained a Random
Forest (RF) by lag values of the three highest peaks (using
the auto-correlation function described in §III). Comparing the
last column (baseline accuracies) with the other three columns
(model accuracies) in Table III, the performance of model
is far superior than that of the baseline classifier. To further
understand the impact of monitoring duration on accuracy, we
quantify the performance of our model with 10, 20 and 30
seconds of data, as shown in Table III.

Table IV shows the confusion matrix of our 30-sec model
across providers. For live flows, we observe almost perfect true
positive rates (underlined values) across Twitch and YouTube.
However, for VoD flows, we observe a lower performance in
Twitch. We believe this is because the Twitch data consists
of real-user generated streams (collected from the production
network of our university campus) whereas the data for
YouTube was selectively collected in a lab environment. In
particular, we found certain instances of Twitch VoD in low-
bandwidth conditions where the client makes numerous video
requests, resulting in an input ~X that is similar to a window
of a live stream.

V. ESTIMATING QOE METRICS OF LIVE VIDEO

While the QoE of a live video stream is subjective, we
capture it with two major objective metrics; video quality

and buffer stalls. Video quality can be measured using: (a)
resolution of the video, (b) bitrate (number of bits transferred
per sec), and (c) more complex perceptual metrics like VMAF
[18]. In this paper, we develop a method to estimate the
resolution of the playback video since the ground-truth data is
available across both providers. Also, resolution is typically
reported (or available to select) in popular live streaming
services. In addition to video resolution, we devise a method
to detect the presence of buffer stalls which are more likely
to occur in case of live streaming (compared to VoD), since
a smaller buffer size is maintained on the client to reduce the
latency between the producer and the viewer. In what follows,
we present our analysis of data collected from the network
consisting of audio/video segments versus metrics recorded
on the client. Subsequently, we develop methods that estimate
video resolution and detect buffer stalls.

A. Network-Level Measurement

To estimate QoE metrics for the live stream, we need
to estimate the size of the media segments being fetched.
The amount of data downloaded between two consecutive
requests reasonably estimates the size of media segments.
We refer to this estimate as a chunk. Hence, we use the
term segment for a unit of media requested by the player,
while chunk denotes a corresponding unit of data observed
on the network (demarcated by the request packets). We build
upon existing network chunk-detection algorithms [10], [9] to
isolate the video chunks fetched by the live player. In short,
the algorithm identifies the start of a chunk by an upstream
request packet, and aggregates all subsequent downstream
packets to “form” the chunk. For each chunk, it extracts
the following features: requestTime, i.e., the timestamp of
the request packet, requestPacketLength, chunkStartTime and
chunkEndTime, i.e., timestamps of the first and the last down-
stream packets following the request, and lastly chunkPackets
and chunkBytes, i.e., total count and volume of downstream
packets corresponding to the chunk.

During the playback of a live video stream, the chunk
telemetry function operates on a per-flow basis in our
FlowFetch tool, and exports the above features for every chunk
observed on five-tuple flow(s) carrying the video. In addition,
as earlier mentioned in §III-B we collect resolution and buffer
health metrics reported by the video client. In what follows,
we correlate and analyze the chunk data obtained from the
network and client metrics to train our models for estimating
resolution and detecting the presence of buffer stalls.

B. Estimating Resolution

The resolution of a live video stream indicates the frame
size of a video playback – it may also sometimes indicate
the rate of frames being played. For example, a resolution
of 720p60 means the frame size is 1280×720 pixels while
playing 60 frames per sec. For a given fixed duration video
segment, the video segment size (and hence our corresponding
chunk estimate) usually increases in higher resolutions as more
bits need to be packed into the segment.

We analyzed the live video streams played using our tool
for both content providers to better understand the distribution
of video segment sizes across various resolutions. We also
consider four bins of resolution namely Low Definition (LD),
Standard Definition (SD), High Definition (HD), and Source
(originally uploaded video with no compression, only available
in Twitch) – Table V shows the distribution of streams across
these bins. The bins are mapped as follows, anything less than
360p is LD, 360p and 480p belong to SD, 720p and beyond
belongs to HD. If the client tags a resolution (usually 720p or
1080p) as Source, it is binned into Source. Such binning serves
two purposes: (a) it accounts for the similar visual experience
for a user in neighboring resolutions and (b) it provides a
consistent way to analyze across providers. Fig. 3 shows the
distribution of chunk sizes versus resolutions, and will be
further explained later in §V-B2. We estimate the resolution in
two steps: (a) first, separating chunks corresponding to video
segments, and (b) then, developing an ML-based model to map
the chunk size to resolution.

1) Separation of video chunks: Network flows correspond-
ing to a live stream can carry chunks of data that correspond
to any of video segments, audio segments, or manifest files,
and hence the video component needs to be separated out to
estimate its resolution. The method to isolate video segments
can be developed by analyzing a few streaming sessions by
decrypting SSL connections and analyzing the request URLs.

Twitch usually streams both audio and video segments on
the same 5-tuple flow for live video streaming, and manifest
files are fetched in a separate flow. We observed that audio is
encoded in fixed bitrate, and thus its chunk size is consistent
(≈ 35 KB). Further, Twitch video chunks of the lowest
available bitrate (160p) have a mean of 76 KB. Thus, video
chunk identification is fairly simple for Twitch live streams,
i.e., all chunks more than 40 KB in size.

YouTube live usually uses multiple TCP/QUIC flows to
stream the content consisting of audio and video segments
– Youtube operates manifestless. As indicated in Table I,
Youtube live operates in two modes, i.e., Low Latency (LL)
with 2 sec periodicity of content fetch, and Ultra Low La-
tency (ULL) with 1 sec periodicity. We found that the audio
segments have a fixed bitrate (i.e., size per second is relatively
constant) regardless of the latency mode – audio chunk size
of 28 − 34 KB for the ULL mode, and 56 − 68 KB for the
LL mode. However, separating out the video chunks is still
nontrivial as video chunks of 144p and 240p sometimes tend
to be smaller in size than the audio chunks.

To separate the audio chunks, authors of [10] used the
requestPacketLength as they observed that the audio segment
requests were always smaller than the video requests. We used
this method for TCP flows, but found it to be inaccurate
in case of UDP QUIC flows as the audio segment requests
are sometimes larger than video segment requests due to
header compression. In addition, QUIC flows pose specific
challenges for live video streams. Because of bi-directional
stream support available in HTTP/2 + QUIC, a request for
a media segment can be sent before the previous segment

160p
360p

480p
720p

720p60

720p (S
)

720p60 (S
)

1080p (S
)

1080p60 (S
)

Resolution

0.0

0.5

1.0

1.5

2.0

2.5
M

ea
n

Ch
un

k S
ize

 (M
B)

144p
240p

360p
480p

720p

720p60
1080p

1080p60

Resolution

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n
Ch

un
k

Si
ze

 (M
B)

LD SD HD SOURCE
Resolution Bin

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n
C

hu
nk

 S
iz

e
(M

B)

LD SD HD
Resolution Bin

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n
C

hu
nk

 S
iz

e
(M

B)

Figure 3: Chunk size versus resolution for Twitch (left), and YouTube (right).

Table V: Resolution distribution of dataset.

Provider LD SD HD SOURCE

Twitch 17% 32% 34% 17%
YouTube 36% 36% 28% -

Table VI: Accuracy of resolution prediction.

Provider Resolution Resolution bin

Twitch 90.64% 97.62%
YouTube 75.17% 90.08%

Table VII: Buffer stall prediction results.

Accuracy Recall FP rate

Twitch 90.1% 90.0% 10.3%
YouTube 89.6% 88.2% 14.2%

finishes downloading. Since our chunk telemetry function
relies on the request packets to mark the start of chunks,
the chunk sizes computed by the network telemetry function
differ from the actual size of media segments. For this reason,
we cannot accurately capture individual media segments for
YouTube videos delivered over QUIC flows. Thus, while
we detect QUIC live video (as the request patterns are still
distinguishable), QoE inferencing for YouTube QUIC video
streams is beyond the scope of this paper.

2) Analysis and Inference: After identifying the chunks
corresponding to the video segments for each provider, we
now look at the distribution of chunk sizes across various
resolutions at which the video is played. Fig. 3 shows box plots
of mean (video) chunk size in MB versus the resolution (i.e.,
actual value or binned value) in categorical values. Note that
the mean chunk size is computed for individual video streams
of duration 2-5 minutes. Further, the label (S) on the X-axis
indicates a Source resolution. Looking at Fig. 3, we make the
following observations: (a) video chunk size increases with
resolution across both the providers; (b) chunk sizes are less
spread in lower resolutions; and (c) chunk sizes of various
transcoded resolutions (i.e., not the source resolution) do not
overlap much with each other for Twitch, however overlap of
neighboring resolutions becomes more evident in YouTube.
Such overlaps make it challenging to estimate the resolution.

We use the Random Forest algorithm for mapping chunk
sizes to the resolution of playback as it creates overlapping de-
cision boundaries using multiple trees and then uses majority
voting to estimate the best possible resolution by learning the
distribution from the training data. Using the mean chunk size
as an input feature, we trained two models, i.e., one estimating
the exact resolution and other estimating the resolution bin.
We perform 5-fold cross validation on the dataset with 80/20
train/test split and our results are shown in Table VI.

C. Predicting Buffer Stalls
Buffer stalls occur when the playback buffer is emptied out

because the video segments cannot be fetched in time. This

QoE metric is especially important for live streams which
typically maintain short buffers (4 seconds for Twitch LL
and Youtube ULL modes). Network instability even for a few
seconds can cause the live buffer to deplete, leading to a stall
causing viewer frustration.

To better understand the live buffering mechanism across
the two providers, we collect data for live video streams
(≈ 5min per session), while using the network conditioner
component of our tool to impose synthetic bandwidth caps. We
created a commonly occurring situation in a household where
in cross traffic (browsing/e-mail etc.) is introduced for a few
seconds while a live stream is going on. To do so, the tool
starts with a cap of 10Mbps (typical household bandwidth)
and then after every 30 seconds caps the download/upload
bandwidth at a random value (between 100 Kbps to 2 Mbps)
for a duration of 10 seconds (mimicking the congestion due
to cross traffic). Live videos being played in the browser are
accordingly affected by these bandwidth switches. We found
that if videos are played at Auto resolution then the clients
avoid stalls most of the time by switching to lower resolutions.
Therefore, we forced the video streams to play at one of the
HD resolutions (1080p or 720p) to gather data of buffer stall
events. In total, we collected more than 250 video streams
across the three providers. On average, 15% and 6% of the
playback time was spent in stall state for Twitch and YouTube.

Fig. 4 shows the dynamics of buffer health for a represen-
tative stream in our dataset. We observe that this low latency
Twitch video starts with 2 seconds of buffer. It soon encounters
the first stall (highlighted by the red bar) around second 25
due to network congestion caused by cross traffic. Following
that, the stream linearly increases its buffer to 10 seconds, but
experiences stalls a couple more times until second 100. After
this point, the buffer value increases to more than 20 seconds.
It can be seen that a stall event not only deteriorates user
experience but also increases the latency of the live stream
as the user is watching content that was recorded at least 20
seconds ago – defeating the purpose of live streaming.

0 30 60 90 120 150 180
Time (sec)

0

10

20

30

G
ro

un
d

Tr
ut

h
Bu

ffe
r (

se
c)

0 30 60 90 120 150 180
Time (sec)

0

10

20

30

Pr
ed

ic
te

d
Bu

ffe
r (

se
c)

Figure 4: Time-trace of buffer health value: ground-truth
predicted, for a sample Twitch stream.

To predict such stalls, our buffer estimator algorithm takes
two parameters as input. The first is Segdur; live video streams
typically encode content into video segments of fixed duration.
This duration depends on the playback mode – e.g., YouTube
ULL streams have Segdur = 1 sec, while YouTube LL streams
have Segdur = 2 sec (§III). We automated this estimation by
equating Segdur to be the median inter-request time (IRT) of
video segments in the first window of n seconds (empirically
configured to be 20 sec). The second parameter is Bufmin;
a client typically fetches few video segments (at least one)
until a minimum buffer is filled before it begins playback. In
the case of Twitch, playback begins after the first segment
finishes downloading – hence, Bufmin = 2 sec (one segment
long). However, in the case of YouTube, Bufmin seemed to
vary between 2-10 seconds. Thus, we conservatively choose
the mean value in our dataset – 3 sec for ULL streams and 6
sec for LL streams.

Using the parameters above and the isolated video chunks
mentioned above (§V-B1), the buffer estimation algorithm
(Algorithm 1) works as follows. At the beginning of a stream,
its buffer is initialized at zero and increases by steps of
Segdur at the end of every chunk observed on the network,
until it reaches Bufmin (Algorithm 1, Lines: 4-7) . For every
subsequent video chunk, the buffer value is adjusted by: (a)
adding Segdur and (b) subtracting the time elapsed in the
playback since its previous chunk (Algorithm 1, Lines: 4,8).

Our algorithm predicts the current buffer value (in seconds)
of the client video player for both providers. To quantify the
accuracy of predicting buffer stalls (buffer value = 0), we first
divide a given video stream into 5-sec windows and assigned a
boolean value (true when there was a stall and false otherwise)
to each window. The ground-truth of buffer stalls comes from
the playback metrics collected by our tool described in §III-B.
Table VII summarizes the performance of predicting buffer
stalls across all playback windows. Overall, our algorithm
yields about 90% accuracy in predicting the presence of a
buffer stall in a 5-sec window. Note that our method tends
to underestimate the buffer health in YouTube videos (false
positive rate 14.2%) since we choose a conservative Bufmin

value, leading us to predict stalls even when the buffer value
is small but non-zero. We found that in more than 50% of the
false-positives, our algorithm underestimates the buffer value
by at most 2.3 sec (≈ the duration of a segment).

Algorithm 1: Predict Buffer Stall.
Parameters: Bufmin, Segdur
Data: Chunks detected on network {c1, c2, . . . , cn}
Output: Estimated buffer health

1 b← 0 . Tracks current buffer value
2 t← 0 . Tracks endTime of last chunk
3 for each network chunk c do
4 b += Segdur
5 if b <= Bufmin then
6 t = c.EndT ime
7 continue . Wait until video starts

8 b –= c.EndT ime− t . Decrement buffer
9 if b <= 0 then

10 b = 0 . Stall detected

11 t = c.EndT ime

VI. CONCLUSION

Live video streaming is a rapidly growing and ISPs today
lack tools to infer its QoE metrics in their network as existing
DPI-based solutions fall short in detecting and monitoring
live streams. In this paper, we present ReCLive: an ML-based
system to distinguish live streams from VoD streams using
media requests patterns and to infer QoE in terms of resolution
and buffer stall events for the detected live streams using chunk
attributes extracted from the network flows.

REFERENCES

[1] Conviva, “Annual State of the Streaming TV Industry,”
https://bit.ly/2NgqvRt, 2018.

[2] “Live streaming: 2020 trends,” https://bit.ly/2NFCbzT, May 2020.
[3] T. Zhang et al., “Modeling and analyzing live streaming performance,”

in 2020 IEEE/ACM IWQoS, 2020.
[4] A. Ahmed et al., “Suffering from buffering? Detecting QoE impairments

in live video streams,” in Proc. IEEE ICNP, Toronto, Canada, Oct 2017.
[5] T. Guarnieri et al., “Characterizing QoE in Large-Scale Live Streaming,”

in Proc. IEEE GLOBECOM, Singapore, Singapore, Dec 2017.
[6] F. Pacheco et al., “Towards the deployment of machine learning so-

lutions in network traffic classification: a systematic survey,” IEEE
Communications Surveys & Tutorials, vol. 21, pp. 1988–2014, 2018.

[7] H. Habibi Gharakheili et al., “iTeleScope: Softwarized Network Middle-
Box for Real-Time Video Telemetry and Classification,” IEEE TNSM,
vol. 16, no. 3, pp. 1071–1085, Sep. 2019.

[8] W. Wang et al., “End-to-End Encrypted Traffic Classification with One-
Dimensional Convolution Neural Networks,” in Proc IEEE ISI, Beijing,
China, Jul 2017.

[9] T. Mangla et al., “eMIMIC: estimating http-based video QoE metrics
from encrypted network traffic,” in Proc. IEEE/IFIP TMA, Jun 2018.

[10] C. Gutterman et al., “Requet: Real-Time QoE Detection for Encrypted
YouTube Traffic,” in Proc. ACM MMSys, Amherst, MA, USA, Jun 2019.

[11] F. Bronzino et al., “Inferring Streaming Video Quality from Encrypted
Traffic,” Proc. ACM POMACS, Aug 2019.

[12] S. Madanapalli et al., “Inferring Netflix User Experience from Broad-
band Network Measurement,” in Proc. IEEE TMA, Paris, France, 2019.

[13] M. Shen et al., “Deepqoe: Real-time measurement of video qoe from
encrypted traffic with deep learning,” in Proc. IEEE/ACM IWQoS, 2020.

[14] “Twitch Engineering: An Introduction and Overview,”
http://bit.ly/2sb86hv, 2018.

[15] K. Pires and G. Simon, “Youtube live and twitch: a tour of user-
generated live streaming systems,” in Proc. ACM MMSys, 2015.

[16] C. Zhang et al., “On Crowdsourced Interactive Live Streaming: A
Twitch.Tv-Based Measurement Study,” in Proc. ACM NOSSDAV, 2015.

[17] “Selenium Browser Automation,” https://www.selenium.dev/, July 2020.
[18] Z. Li et al., “Vmaf: The journey continues,” http://bit.ly/2Nad05K, 2018.

