
Inferring Connected IoT Devices from
IPFIX Records in Residential ISP Networks

Arman Pashamokhtari∗, Norihiro Okui†, Yutaka Miyake†, Masataka Nakahara†, Hassan Habibi Gharakheili∗
∗School of Electrical Engineering and Telecommunications, UNSW, Sydney, Australia

†KDDI Research, Inc., Saitama, Japan
Emails: {armanpasha, h.habibi}@unsw.edu.au, {no-okui, miyake, ms-nakahara}@kddi-research.jp

Abstract—Residential ISPs today have limited device-level
visibility into subscriber houses, primarily due to network ad-
dress translation (NAT) technology. The continuous growth of
“unmanaged” consumer IoT devices combined with the rise of
work-from-home makes home networks attractive targets for
cyber attacks. Volumetric attacks sourced from a distributed
set of vulnerable IoT devices can impact ISPs by deteriorating
the performance of their network, or even making them liable
for being a carrier of malicious traffic. This paper explains
how ISPs can employ IPFIX (IP Flow Information eXport), a
flow-level telemetry protocol available on their network, to infer
connected IoT devices and ensure their cyber health without
making changes to home networks. Our contributions are three-
fold: (1) We analyze near three million IPFIX records of 26 IoT
devices collected from a residential testbed over three months
and identify 28 features, pertinent to their network activity and
services, that characterize the network behavior of IoT devices
– we release our IPFIX records as open data to the public;
(2) We develop a multi-class classifier to infer the presence of
certain IoT device types in a home network from NATed IPFIX
records. We also develop a Trust metric to track network activity
of detected devices over time; and, (3) We evaluate the efficacy
of our inferencing method by applying the trained classifier
to IPFIX traces which yields an average accuracy of 96% in
detecting device types. By computing a temporal measure of
trust per each device, we highlight (on our testbed) a permanent
behavioral change in third of devices as well as some intermittent
behavioral changes in others.

Index Terms—IoT, traffic inferencing, residential networks,
IPFIX, machine learning

I. INTRODUCTION

Home networks are becoming increasingly complex, yet
neither ISPs nor subscribers have much visibility into con-
nected devices and their network-level behavior. Technologies
like network address translation (NAT) present only an opaque
view of the home network to the global Internet [1], [2]. This
makes it surprisingly challenging for ISPs to even detect and
discover connected devices, as the traffic transmitted by every
active device in a home would have the same IP and MAC
address of the home gateway.

Consumer IoT devices have become popular by offering
convenient functionalities to smart homes. It is anticipated that
the number of smart homes will increase to about half a billion
by 2025, which is more than two times larger than the same in
2020 [3]. Consumer IoT devices come in different categories,
including but not limited to smart cameras, speakers, voice
assistants, health devices, electrical plugs, and air-quality
sensors.

IoT devices are believed to be more vulnerable [4] to cyber
attacks than general-purpose IT devices. This is mainly due to
a lack of sufficient security measures embedded into resource-
constrained IoT devices. Moreover, typical home users often
do not have adequate skills to protect their network and
devices, hence creating risks for the entire Internet ecosystem.
Recent reports [4], [5] highlight how a significant portion of
deployed IoT devices, exposed with default passwords, are
low-hanging fruits for attackers.

Traditional static tools, used for identifying IT assets (per-
sonal computers and smartphones), fall short when employed
for agentless IoT devices [4] – not fully capture the heteroge-
neous behavior of IoT assets. However, obtaining continuous
visibility into connected networks is an essential first step
for securing these vulnerable devices [6]. Visibility means
inferring device types and profiling their expected behavior
by analyzing their network activity. Once device identities are
determined, their dynamic behavior can be tracked, allowing
for verification of their health or flagging any significant
deviation from the norm.

ISPs enable IoT devices in homes to connect with their
intended servers on the Internet. Stable and fast Internet
connections can indulge botnets and malware in launching
coordinated volumetric attacks (DDoS) using millions of in-
fected IoTs [7] – this can affect the performance of ISPs core
network and potentially make them accountable for carrying
traffic of illegal campaigns [8]. On the other side, residential
subscribers gradually express willingness in paying to ISPs
[9] for improved security of their Internet-connected products.
Therefore, ISPs seem to be relatively incentivized to play a
role in providing network monitoring and security services to
households.

Machine learning techniques are widely used by both in-
dustry and academia for enhancing network visibility in a
variety of domains and use-cases [10]. Given their specialized
functionalities, IoT devices (as opposed to IT devices) are
proven [6] to display a finite set of identifiable patterns on the
network, enabling operators to tightly model their expected
(normal) behavior. Therefore, inferring types of IoT devices
[11] and/or detecting their anomalous behaviors [12] can
be achieved far more effectively than traditional signature-
based techniques. Recently, several attempts have been made
by researchers [2], [13]–[17] to help ISPs achieve this task.
Existing works come with their own limitations like: (a)

requiring changes (hardware and/or software) to individual
home gateways (difficult to scale) [2], [13], [15], [16]; (b)
heavily dependent on the private identity (MAC/IP address)
of devices (not applicable for post-NAT scenarios) [13]–[16];
and, (c) relying on signatures like domain name and/or IP
block of manufacturers’ server (not necessarily capturing the
behavior of individual devices and hence yielding less reliable
inferencing) [13], [17].

In this paper, we employ IPFIX data (a legacy flow-based
telemetry) to detect consumer IoT devices in households. We
first analyze near three million IPFIX records of 26 IoT
devices in our testbed and extract 28 flow-level features which
represent the network behavior of these devices – we release
our IPFIX records as open data [18] to the public. We then
train and tune a multi-class classifier model to infer the type of
IoT devices from the features of their IPFIX records. We also
deduce thresholds specific to each device class, and develop
a trust metric per class, reducing the rate of misclassification
as well as enabling us to monitor the behavioral health of
detected devices. Lastly, we evaluate the performance of our
classifier across device types and network services, and draw
insights into how behavioral changes can be detected by our
inferencing method.

II. RELATED WORK
Gaining visibility into residential networks can enable

value-add service offerings like quota management, parental
control, and cyber security monitoring [1], [19], benefiting
both ISPs and subscribers.

Inferencing from Residential IoT Traffic: Consumer IoTs
are purpose-built devices to perform a finite (and often dis-
tinguished) set of functions on the network, and therefore
create an opportunity for ISPs to automatically detect them
and profile their network behavior. Prior relevant works [2],
[14], [15] employed new or instrumented home gateways,
making it far from trivial for deployment at scale. DEFT [15]
developed a hierarchically distributed method for classifying
IoT devices in home networks. The authors proposed to use
SDN-based home gateways in each home that are coordinated
by a central controller in the ISP cloud. Individual home
gateways extract a mix of packet and flow features, and
apply a trained classier (running as virtual network function
on the gateway) to the traffic features – when unsure (or a
new device discovered), locally computed features are sent to
the central controller. Work in [2] requires NetFlow-enabled
home gateway augmented by a “local detector” hardware for
identifying vulnerable IoT devices in home networks using
public databases like Common Vulnerability Exposures (CVE)
and National Vulnerability Database (NVD). IoT-Sentinel [14]
classifies IoT devices by collecting packet-based features using
SDN-enabled gateways.

A recent work [17] developed a more scalable deterministic
method for detecting IoT devices in home networks by col-
lecting flow data from the core of ISP networks. The authors
used IP addresses, port numbers, and domain names of the
contacted cloud servers to determine the type of devices con-
nected to each home network. Though the proposed method

ISP network

IPFIX-enabled
edge router

home #1

home #N

IoT devices
in home #1

home #2

…

IoT devices
in home #2

IPFIX
records

IoT devices
in home #N

classifier
model

NAT

NAT

NAT

Post-NAT

Fig. 1. System architecture of IPFIX classifier used by ISP.

gives scalability, the resolution (by manufacturer and platform)
and accuracy (70-80%) of their inferencing could be improved.

Inferencing from IPFIX Telemetry: IPFIX has been used
for different purposes like flow-based anomaly detection [20]
and application classification [21]. To the best of our knowl-
edge, this is the first work to use activity features of IPFIX
records (collected from the edge of ISP networks) to infer
IoT device types in home networks. This approach provides
several advantages: (a) it requires no change to existing home
networks; (b) statistical features of IPFIX records enable
acceptable prediction even when inferencing is done post-NAT;
(c) classifying individual flow records makes it stateless (no
need to compute and/or maintain features over a window of
time), and hence the complexity of inferencing is reduced;
and, (d) IPFIX records contain no payload information, and
thereby there is no privacy concern.

III. INFERENCING CONNECTED IOT DEVICES
FROM IPFIX RECORDS

Identifying the composition of IoT devices in households
can be done either by collecting network telemetry data
(packet-based and/or flow-based) from inside (pre-NAT) or
outside home networks (post-NAT). The pre-NAT telemetry,
indeed, reveals more information about the connected devices,
particularly their unique identifiers (e.g., MAC and/or IP
addresses), enabling network operators to combine various
telemetry records and map them to their unique device iden-
tifier. However, collecting pre-NAT telemetry is not a trivial
exercise without making changes to legacy home gateways –
prohibitively expensive for ISPs to deploy at scale for hundreds
of thousands of households. On the other hand, the post-
NAT approach provides a limited amount of data, primarily
because NAT hides the entire internal network and identity of
active devices – this makes it infeasible to directly associate
flow records with their respective end-devices. That said, post-
NAT inferencing and monitoring would be practically more
attractive for ISPs, particularly for the ease of deployment at
scale.

S
o
n
y
 B

ra
v
ia

 T
V

S
o
n
y
 s

p
e
a
k
e
r

P
a
n
a
s
o
n
ic

 d
o
o
rp

h
o
n
e

G
o
o
g
le

 H
o
m

e

W
a
n
s
v
ie

w
 c

a
m

.

A
m

a
z
o
n
 E

c
h
o
 S

h
o
w

A
m

a
z
o
n
 E

c
h
o

A
p
p
le

 H
o
m

e
p
o
d

M
C

J
ro

o
m

 h
u
b

Q
w

a
tc

h
 c

a
m

.

F
re

d
i
c
a
m

.

JV
C

 K
e
n
w

o
o
d
 h

u
b

B
it

fi
n
d
e
r

s
e
n
.

L
in

e
 C

lo
v
a
 s

p
e
a
k
e
r

P
la

n
e
x
 p

a
n
ti

lt
 c

a
m

.

P
h
il
ip

s
 H

u
e

P
la

n
e
x
 o

u
td

o
o
r

c
a
m

.

Q
ri

o
 h

u
b

JV
C

 K
e
n
w

o
o
d
 c

a
m

.

P
la

n
e
x
 U

C
A

0
1

A
 c

a
m

.

N
a
tu

re
 r

e
m

o
te

iR
o
b
o
t

ro
o
m

b
a

X
ia

o
m

i
L
E
D

S
e
s
a
m

e
 A

P

P
o
w

e
rE

le
c
 p

lu
g

N
o
k
ia

 b
o
d
y

101

102

103

104

105

106

#
 I
P
F
IX

 r
e
c
o
rd

s

Fig. 2. Our dataset: number of IPFIX records across 26 IoT devices.

IPFIX [22] is a standard protocol for transmitting IP flow
data from network devices, like switches and routers for
network monitoring and analysis. IPFIX uses a five-tuple flow
key (including source and destination IP address, source and
destination transport-layer port number, and transport-layer
protocol) to uniquely identify and aggregate packets belonging
to the same flow. For connection-oriented flows, IPFIX uses
session termination signals such as TCP FIN to detect the
end of flows. For connection-less flows (e.g., UDP), on the
other hand, IPFIX uses two parameters, namely idle-timeout
(by default five minutes) and active-timeout (by default 30
minutes). If no packet is exchanged over a flow for the idle-
timeout or if a flow is active for more than the active-timeout,
the flow is terminated and a corresponding IPFIX record is
exported.

Fig. 1 illustrates the architecture of our inference system.
Traffic from home networks is sent to the ISP network,
where IPFIX-enabled edge routers are configured to export the
respective IPFIX records. When a flow is terminated, its IPFIX
record is presented to a classification model for determining
its corresponding device type. Each IPFIX flow record will
lead to the detection of a single IoT device (inside the home)
that exchanged data with a server. The ISP will progressively
append a list of IoT devices for each home, upon discovery
of a new type by predicting the device label of IPFIX flows.
It can be seen in Fig. 1 that with post-NAT inferencing (the
scope of this paper) the ISP can only capture remote flows
via which an IoT device inside a home network communicates
with a remote server on the Internet; in contrast, the pre-NAT
approach (practically challenging for ISPs, and beyond the
scope of this paper) may provide richer visibility into every
traffic including local and remote flows.

A. IPFIX Dataset and Features

Our residential testbed comprises 29 consumer IoT devices
ranging from smart-camera, speaker, door phone, and TV to
lightbulb, sensor, and vacuum cleaner. We collected PCAP
traces from our testbed (pre-NAT) during January, March, and
April 2020 – due to some technical issues in our lab, we
were not able to collect the network traffic during February

2020. It is important to note that we collected our data in a
pre-NAT setup to obtain ground-truth label (device MAC/IP
address) of traffic data; however, we do not take any advantage
of device identity (their MAC and/or IP address) in our
inferencing process. We exclude the local flows from our
raw data collected pre-NAT, and only keep remote flows for
developing our inferencing models in this paper. In other
words, our processed data truly represent a post-NAT telemetry
scenario.

Our IoT network traces constitute: (i) traffic generated due
to human users interacting with the devices at least twice a
week in months January and March – for example, asking
questions from smart speakers, checking air quality from smart
sensors, switching the color of smart lightbulbs, watching a
live stream from cameras; as well as (ii) traffic generated by
the devices autonomously – for example, DNS/NTP activities
that are unaffected by human interaction. During April, due
to the COVID outbreak, devices were operated completely
autonomously. For April 12-13 and 21-22, we have no traffic
trace of the devices due to a power shutdown and the server
outage, respectively. Note that PCAP files were configured to
record up to a size limit of 9.6 MB (meaning time slots with
a duration of approximately 20-30 minutes). Hence extracting
IPFIX records from individual PCAPs may lead to a flow
that crosses the boundary of subsequent slots and breaks into
shorter flows. We, therefore, stitch PCAPs on a monthly basis,
and then extract IPFIX records from the monthly PCAPs. We
use the YAF tool [23] to generate IPFIX binary files from the
PCAP files, followed by applying the Super Mediator tool [24]
to generate IPFIX JSON files from the binaries. YAF comes
with an option called flow-stats that allows exporting a
richer set of flow-level information. In this paper, we use this
option to embed all the possible features into individual IPFIX
records.

Our IPFIX dataset [18] contains more than nine million
IPFIX records in which about 70% of them are local flows
that do not leave the NAT gateway (cannot be captured by the
ISP edge routers). We use the IPv4 address of IPFIX records
to filter local flows, including: (i) unicast flows with both
source and destination from private address space (i.e., 10/8,

0 200 400 600 800 1000 1200 1400

inter-arrival time (min)

10− 3

10− 2

10− 1

100

C
C

D
F:

 P
ro

b
 [

ti
m

e
 >

 x
]

Fig. 3. CCDF of (daily) average inter-arrival time of IPFIX records per IoT
device in our dataset.

172.16/12, 192.168/16) reserved by the Internet Assigned
Numbers Authority (IANA) [25], (ii) multicast flows (i.e., with
address in the range of 224/4), (iii) link-local flows (i.e., with
address in the range of 169.254/16), and (iv) broadcast flows.
Three devices, namely Sony camera, Planex one-shot camera,
and LinkJapan eSensor are found with only local flows in the
dataset, hence excluded from our study in this paper. After
excluding the local flows, there are about three million remote
IPFIX records – for the rest of this paper, we will focus on
remote flows only. Fig. 2 illustrates the number of IPFIX
records we analyze per device during January, March, and
April 2020. Highly active devices like Sony Bravia TV, Sony
speaker, Panasonic doorphone, Google Home, and Wansview
camera generated over 100K flows. Devices like MCJ room
hub, Fredi camera, JVC Kenwood hub, Philips Hue, and Qrio
hub are moderately active with 10K-100K flows. Lastly, we
observe relatively less-active devices like Nokia body that
generated only 107 flows during these three months.

Considering the frequency of network activities per device
type, we plot in Fig. 3 the CCDF of average flow inter-arrival
time, on a daily basis per device during the three months.
The average inter-arrival time across all device types is about
50 minutes, while 15 device types generate a flow every 10
minutes on average. We observe that the longest daily average
of flow inter-arrival time belongs to the Nokia body with
more than 10 hours because this device only becomes active
whenever the user interacts with it.

Moving to data fields of each IPFIX record, Table I sum-
marizes a list of all potential elements (indicative of network
activity of the flow) that will be used as part of features in §V.
It is important to note that each IPFIX record represents a bi-
directional flow [26], hence there are two sets of these features
– each specific to a direction (outbound and inbound). For
example, smallPacketCount (third row in Table I) shows
the number of small packets that an IoT device (the initia-
tor of flow) transmitted to an Internet-based server (remote
endpoint), and accordingly, reverseSmallPacketCount in-
dicates the number of small packets that the remote endpoint
sent to the IoT device on the same flow.

In addition to the activity features listed in Table I, we
capture the identity of each flow record by a set of binary
features (Table II), highlighting their network service. We use

TABLE I
“UNIDIRECTIONAL” ACTIVITY FEATURES

EXTRACTED FROM IPFIX RECORDS.

Feature Description
packetTotalCount # packets
octetTotalCount # bytes

smallPacketCount
packets containing
less than 60 bytes pay-
load

largePacketCount # packets containing at
least 220 bytes payload

nonEmptyPacketCount # packets containing
non-empty payload

dataByteCount total size of payload

averageInterarrivalTime average time (ms) be-
tween packets

firstNonEmptyPacketSize payload size of the first
non-empty packet

maxPacketSize the largest payload size

standardDeviationPayloadLength
standard-deviation of
payload size for up to
the first 10 non-empty
packets

standardDeviationInterarrivalTime
standard-deviation of
inter-arrival time for up
to the first 10 packets

four popular services including: HTTP (contributing to 6% of
total flows in our dataset), HTTPS (35% of flows), DNS (20%
of flows), and NTP (2% of flows) along with an aggregate of
any other network services over TCP (3% of flows) or UDP
(30% of flows) protocol. Note that 4% of the flows (in our
dataset) use network control protocols like ICMP and IGMP
that are not associated with either of the dominant transport-
layer protocols namely TCP and UDP.

We found some device types that display distinct behav-
iors by certain features in their IPFIX records. For exam-
ple, IPFIX records with reverseSmallPacketCount larger
than 500 would belong to Sony speaker with a probabil-
ity of 95%; also, 97% of the IPFIX records which their
reverseDataByteCount falls between 300 KB and 400
KB, belong to Sony Bravia TV. That said, we observe
some overlap of features across device types. This is mainly
because each IPFIX record contains an “aggregate” set of
information on the activity and identity of a single network
traffic flow. For example, we found 16 devices share the
averageInterarrivalTime feature, having a value less than
10 seconds on average; five devices have this feature valued
between 10 and 20 seconds; and, five other devices have a
value greater than 20 seconds in their IPFIX records.

In another example, we have three categories
of devices in our dataset by only considering the
reversePacketTotalCount feature: (a) Planex UCA01A
camera with a high count (more than 200) of packets, (b)
Xiaomi LED and iRobot Roomba with medium packet counts
(between 100 and 200), and (c) other 23 device types with
low packet counts (less than 70). Also, in terms of network
services, devices like Fredi camera, JVC Kenwood camera,
Sesame access point, Xiaomi LED, and all three Planex
cameras never use HTTPS. Instead, all IPFIX records of a
device like Qrio hub are HTTPS.

TABLE II
“BINARY” IDENTITY FEATURES OF POPULAR SERVICES

EXTRACTED FROM IPFIX RECORDS.

Service Protocol Source/destination port numbers
HTTP TCP 80, 8080, 8008, or 8888
HTTPS TCP 443, 1443, 8443, or 55443
DNS UDP 53, or 5353
NTP UDP 123
others TCP any
others UDP any

These examples highlight that determining the class type of
IPFIX records would certainly require a collection of features.
Also, mapping these identified features to their correct class
cannot be achieved by a set of deterministic rules. We,
therefore, employ machine-learning techniques that have been
widely adopted by researchers for network traffic inferenc-
ing [27] to learn the statistical attributes of IPFIX records
for inferring their device class. We choose Random Forest,
a powerful machine learning-based algorithm that builds a
decision tree ensemble – allowing for the automatic creation
of a sequential combination of feature rules (similar to what
we did in the examples above) to predict the target class.
In order to maximize the prediction performance, we extract
every possible feature from the IPFIX records and let the
Random Forest algorithm construct the optimal decision trees.

IV. CLASSIFICATION AND BEHAVIORAL TRACKING

As mentioned earlier, analyzing flows in a post-NAT sce-
nario will reveal partial information about actual IoT devices
connected to the home network; therefore, a machine learning-
based model may misclassify some IPFIX records. Note that
the primary objective of our inferencing is to determine
whether an IoT device is present and active in a home network,
or not. Therefore, the quality of each prediction is of top
priority. This objective necessitates a method for discarding
inconfident predictions, made primarily due to a lack of
distinct features in the subject IPFIX flow. Note that one may
attempt to aggregate individual IPFIX records over a time
window in order to increase the amount of data passed into
the inferencing model. However, this is not applicable in post-
NAT deployment as there is no association between individual
IPFIX records and devices.

Machine learning models often produce a measure of con-
fidence for their prediction. The confidence-level is a number
between 0 and 1. Higher confidence values indicate more
reliable predictions. We, therefore, use the confidence-level of
our Random Forest model to decide whether a prediction is
“accepted” or “discarded” – certain thresholds are determined
and applied to the confidence-level of the model’s prediction.
We note that thresholds can be applied globally [6] across
all classes, or specifically per individual classes. Given the
diversity in network behaviors as well as richness of training
data across various IoT types, we choose to apply class-
specific thresholds that are obtained from the training phase.

The model’s confidence for correctly predicting instances
of class L is denoted by CL, and the corresponding threshold
is denoted by λ which is calculated for each class separately.

To set the thresholds, we use the distribution (average: µCL

and standard-deviation: σCL
) of confidence per each class

during the training phase as baseline. In this paper, we consider
two ways of thresholding per each class: (a) greater than the
average confidence: λ1 = [µCL

, 1], and (b) within one-sigma
from the average confidence: λ2 = [µCL

− σCL
, µCL

+ σCL
].

In §V, we will show how each of these thresholds would
improve the accuracy of the model by discarding majority of
mispredictions.

A. Tracking Behavior of Connected IoTs Post-NAT

Our primary objective is to identify IoT devices connected
to home networks by classifying IPFIX flow records, collected
post-NAT. For ISPs to obtain additional insights into the
behavior of classified devices in each home, they may want
to track devices’ network activity, ensuring their cyber health
and/or detecting possible behavioral changes. We note that
tracking the behavior of IoT devices post-NAT can be quite
challenging as our unit of data (IPFIX flow record) does not
carry the identity (e.g., MAC or IP address) of their respective
end-device. In the absence of a solid meta-data for associating
the IPFIX records with devices, we again resort to the output
of our inferencing model.

For each device type discovered per household, we quantify
and track a metric, called “Trust”. The trust metric is computed
based on the number of predictions for that type during a
unit of time (a configurable parameter, say, one hour) with
respect to a class-specific baseline obtained from the training
phase. For each class L in our model, we record the expected
(average) number of IPFIX records (denoted by Ne,L) and the
expected rate of discarded IPFIX records (denoted by De,L)
during training. A raw measure of trust is computed by:

TL =
No,L

Ne,L ×De,L
(1)

where, No,L is the number of “observed” flows predicted
as class L – obviously, those predictions receive an accepted
level of confidence from the model. The intuition behind this
measure (a raw trust) is to check the number of expected
flows from a device with the number of flows that are indeed
classified as that device type during the monitoring period.
Trust values closer to one imply that corresponding devices
behave normally. However, raw trust can become greater than
one when a device is over-active (e.g., under attack), or its
flows are mispredicted as another device class. Either of these
cases (i.e., having the raw trust value greater than one) need
to be interpreted as a misbehavior. Therefore we need to
normalize the raw trust in such a way that it decays in case of
deviation from normal behavior. We define normalized trust
(will be simply referred to as trust in the rest of this paper)
by:

Tnorm,L = exp

(
− (TL − 1)2

2σ2
TL

)
(2)

where σTL
is the standard-deviation of TL, computed during

the training phase. Use of σTL
allows for customizing the

A
m

a
z
o
n
 E

c
h
o

A
m

a
z
o
n
 E

c
h
o
 S

h
o
w

A
p
p
le

 H
o
m

e
p
o
d

B
it

fi
n
d
e
r

s
e
n
.

F
re

d
i
c
a
m

.

G
o
o
g
le

 H
o
m

e

JV
C

 K
e
n
w

o
o
d
 c

a
m

.

JV
C

 K
e
n
w

o
o
d
 h

u
b

L
in

e
 C

lo
v
a
 s

p
e
a
k
e
r

M
C

J
ro

o
m

 h
u
b

N
a
tu

re
 r

e
m

o
te

N
o
k
ia

 b
o
d
y

P
a
n
a
s
o
n
ic

 d
o
o
rp

h
o
n
e

P
h
il
ip

s
 H

u
e

P
la

n
e
x
 U

C
A

0
1
A

 c
a
m

.

P
la

n
e
x
 o

u
td

o
o
r

c
a
m

.

P
la

n
e
x
 p

a
n
ti

lt
 c

a
m

.

P
o
w

e
rE

le
c
 p

lu
g

Q
ri

o
 h

u
b

Q
w

a
tc

h
 c

a
m

.

S
e
s
a
m

e
 A

P

S
o
n
y
 B

ra
v
ia

 T
V

S
o
n
y
 s

p
e
a
k
e
r

W
a
n
s
v
ie

w
 c

a
m

.

X
ia

o
m

i
L
E
D

iR
o
b
o
t

ro
o
m

b
a

0.0

0.2

0.4

0.6

0.8

1.0

c
o
n
fi
d
e
n
c
e
 l
e
v
e
l

correct classification

misclassification

Fig. 4. Average confidence-level of correctly and incorrectly classified
instances per device type for the training dataset.

change rate of trust across various device types – for a complex
device like smart TV that displays a wide range of network
activities the trust metric changes slower, while for a simple
device like smart sensor it is will change relatively faster.

V. EVALUATION RESULTS

For evaluation, we split our data into two groups: training
(1,450,215 IPFIX flows recorded in January and first half of
March), and testing (1,274,786 IPFIX recorded in the second
half of March and full April). We use Scikit-Learn Python
library to train our Random Forest classifier.

A. Model Training and Tuning

We tune the parameters of our Random Forest model to
maximize its performance for the chosen features (§III-A). We
tune two important parameters, namely the number of decision
trees, and the maximum number of attributes to consider
at each branch split. For each combination of parameters,
we quantify the model accuracy by 10-fold cross-validation,
whereby the training dataset is randomly split into training
(90% of total instances) and validation (the remaining 10%
of total instances) sets, and the accuracy is averaged over 10
runs to produce a single performance metric. We compute the
model’s accuracy by averaging the rate of correct predictions
(true-positives) across individual classes of our model. In other
words, the average of all values across the main diagonal of
the model’s confusion matrix (will be discussed in Fig. 5).
We found the best tuning parameters which yield the highest
prediction accuracy (90%) to be 100 decision trees and a
maximum of five features for finding the best split.

We next quantify the confidence of the model (on the
training dataset) for correct classifications as well as incorrect
classifications across various classes of device type, as shown
in Fig. 4. Green bars indicate the average confidence for
correctly predicted flows and red bars indicate the average
confidence for mispredicted flows. A clear takeaway from this
analysis is that the model is more confident when a flow is
correctly classified and is relatively less confident when a flow
is misclassified.

The second observation is that the two threshold meth-
ods (λ1 and λ2 we defined in §IV) affect our inferencing
differently, as shown in Table III: λ1 is found to be more
conservative by discarding 18% of predictions, compared to

A
m

a
z
o
n
 E

c
h
o

A
m

a
z
o
n
 E

c
h
o
 S

h
o
w

A
p
p
le

 H
o
m

e
p
o
d

B
it

fi
n
d
e
r

s
e
n
.

F
re

d
i
c
a
m

.

G
o
o
g
le

 H
o
m

e

JV
C

 K
e
n
w

o
o
d
 c

a
m

.

JV
C

 K
e
n
w

o
o
d
 h

u
b

L
in

e
 C

lo
v
a
 s

p
e
a
k
e
r

M
C

J
ro

o
m

 h
u
b

N
a
tu

re
 r

e
m

o
te

N
o
k
ia

 b
o
d
y

P
a
n
a
s
o
n
ic

 d
o
o
rp

h
o
n
e

P
h
il
ip

s
 H

u
e

P
la

n
e
x
 U

C
A

0
1

A
 c

a
m

.

P
la

n
e
x
 o

u
td

o
o
r

c
a
m

.

P
la

n
e
x
 p

a
n
ti

lt
 c

a
m

.

P
o
w

e
rE

le
c
 p

lu
g

Q
ri

o
 h

u
b

Q
w

a
tc

h
 c

a
m

.

S
e
s
a
m

e
 A

P

S
o
n
y
 B

ra
v
ia

 T
V

S
o
n
y
 s

p
e
a
k
e
r

W
a
n
s
v
ie

w
 c

a
m

.

X
ia

o
m

i
L
E
D

iR
o
b
o
t

ro
o
m

b
a

Predicted labels

Amazon Echo

Amazon Echo Show

Apple Homepod

Bitfinder sen.

Fredi cam.

Google Home

JVC Kenwood cam.

JVC Kenwood hub

Line Clova speaker

MCJ room hub

Nature remote

Nokia body

Panasonic doorphone

Philips Hue

Planex UCA01A cam.

Planex outdoor cam.

Planex pantilt cam.

PowerElec plug

Qrio hub

Qwatch cam.

Sesame AP

Sony Bravia TV

Sony speaker

Wansview cam.

Xiaomi LED

iRobot roomba

T
r
u

e
 l
a
b

e
ls

0.980.02 0

0.110.89 0

0 0 1 0

0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0

0 0 0 0 0 0 0.97 0 0 0 0 0 0 0 0.01 0 0.02 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.09 0 0 0 0 0 0 0.91 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0.01 0 0.98 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.74 0 0.26 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99 0 0.01 0 0 0 0

0 1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0

0 1 0 0

0 1 0

0 1

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Confusion matrix of accepted predictions – Random Forest model
followed by applying class-specific confidence thresholds (λ1).

TABLE III
IMPACT OF λ1 AND λ2 THRESHOLDS ON TRAINING INSTANCES.

Accepted Discarded
Correct Incorrect Correct Incorrect

λ1 1,188,487 419 200,088 61,221
λ2 1,323,119 9,451 65,456 52,189

8% discard rate resulted from applying λ2; λ1 is proven
to discard more of incorrect predictions compared to λ2
(99% versus 84%); considering the accepted predictions, λ1
gives a slightly better accuracy than λ2 (99.96% compared
to 99.29%). Given the primary objective being the quality
(purity) of predictions, we use the first method of thresholding
(λ1) for the testing phase of our evaluation.

B. Model Testing

Having tuned the parameters and obtained the class-specific
confidence thresholds, we now evaluate the efficacy of the
model by applying it to our testing dataset. Fig. 5 shows the
confusion matrix of our inferencing (the model combined with
λ1 thresholds). The average accuracy across all classes is 96%,
with 20 classes receiving more than 99% accuracy – the rate of
correct predictions across accepted predictions. We found that
applying the thresholds significantly improves the quality of
model prediction. Note that the average accuracy of the model
alone (without λ1 thresholding) is 82%. Also, only 1% of
the accepted instances are incorrectly predicted. Note that this
quality of prediction is achieved at the cost of discarding a part
of the correctly predicted flows (28% of correct predictions
when the model is less confident than expected thresholds).
Discard rate, on average, is about 16% per class.

Though our model gives an overall acceptable performance,

0.6

0.8

1.0
a
c
c
u
ra

c
y

0

20

40

h
it

 t
im

e
 (

m
in

)

2

4

6

h
it

 f
lo

w

Mar 16
Mar 19

Mar 22
Mar 25

Mar 28
Mar 31

Apr 3Apr 6Apr 9

Time

0.0

0.5

1.0

Tr
u
s
t

Apr 15
Apr 18

Apr 24
Apr 27

Apr 30

Fig. 6. Time-trace of average accuracy, trust, hit-time, and hit-flow of our
inferencing across all classes on the testing dataset.

we find Power Elec plug performing not so well. We found
that the model mispredicts most of Power Elec plug instances
(relatively confidently) as Planex outdoor camera. Further
investigations revealed that almost all of those misclassified
flows correspond to UDP/10001 service which is the second
top service in IPFIX records of Planex outdoor camera (the
mispredicted class). Analyzing the features of UDP/10001
records from these two classes showed that the inter-arrival
time and the number of outgoing packets in the flows of Power
Elec plug significantly changed from the training to the testing
phase, becoming similar to those of Planex outdoor camera
flows, and hence resulted in the misprediction. Note that the
ISP may choose re-train the model [11] after verifying certain
legitimate changes, but re-training is beyond the scope of this
paper.

Another takeaway from our evaluation is that the perfor-
mance of our inferencing scheme varies across different proto-
cols. The scheme yields a better accuracy (correctly predicted
fraction of the accepted records) in TCP flows compared to
that of UDP flows. Focusing on TCP, we see the highest true-
positive rate in both HTTPS and “other” TCP flows with 99%,
followed by HTTP flows with 94%. For UDP flows, DNS and
“other” UDP services have 99%, followed by NTP with 75%
true-positives. It is important to note that NTP flows receive the
highest discard rate (99% of the NTP flows are predicted with
fairly low confidence from the model). This is mainly because
the vast majority of the NTP flows have the exact size of 76
bytes (including payload, UDP and IP headers) across all IoT
classes in our dataset. We note that most of these IoT devices
use the minimum packet structure defined by the NTP standard
without any extension field, resulting in identical byte count
feature for this specific type of flows.

C. Operational Insights

We track the temporal efficacy of our inferencing model in
operation on a daily basis, as shown in Fig. 6. In addition to
overall accuracy (top plot) which remains fairly high during

0.0

0.5

1.0

T
r
u
s
t

Amazon Echo Show

0.0

0.5

1.0

T
r
u
s
t

JVC Kenwood hub

0.0

0.5

1.0

T
r
u
s
t

iRobot roomba

Mar 16
Mar 19

Mar 22
Mar 25

Mar 28
Mar 31

Apr 3 Apr 6 Apr 9

Time

0.0

0.5

1.0

T
r
u
s
t

Sony Bravia TV

Apr 15
Apr 18

Apr 24
Apr 27

Apr 30

Fig. 7. Daily measure of Trust for four representative IoT devices on the
testing dataset.

our testing period, we capture two metrics: (a) hit-time, the
time taken for our model to detect a device since its first-
seen on the network, and hit-flow which indicates the number
of flows generated by a device before the model correctly
detects it. It can be seen from the second top plot in Fig. 6
that the average hit-time across all classes varies between 5
seconds and 40 minutes, highlighting the responsiveness of our
inferencing scheme. Also, we observe that the average hit-flow
mostly equals 2 (with a maximum of 4) – this suggests that
discarding about a third of correctly classified flows does not
incur an excessive delay in our inferencing.

Moving to the trust metric shown in the bottom plot of
Fig. 6, we see consistently high values during the testing
period on average (highlighting the overall health of devices).
Only on 20th April, we observe a slight drop in the trust due to
the early shutdown of our capturing server in preparation for
a planned power outage on 21st and 22nd April – this resulted
in just 3 hours worth of data captured on 20th April.

Dynamics of Trust Metric: To better understand the tem-
poral dynamics of the Trust metric, we plot in Fig. 7 the daily
Trust for a few representative classes which display noticeable
changes in their behavior.

We categorize the behavioral changes by trust metric in two
groups: (i) permanent declines which are probably caused by
a legitimate firmware upgrade, leading to change in traffic
features and/or the number of generated flows, and (ii) tem-
porary declines that can be caused by an intermittent network
condition or device usage/configuration for a short period of
time, leading to generation of significantly different number of
flows without necessarily affecting the traffic features. Fig. 7
illustrates the daily trust of four representative devices from
our testbed: Amazon Echo Show (change in traffic features),
and JVC Kenwood hub (change in the number of flows)
represent a firmware upgrade scenario, while iRobot roomba
and Sony Bravia TV represent temporary behavioral/usage
changes affecting their flow count.

Amazon Echo Show has an average trust of 0.97 before
April 9 on which it starts to decay and remains around
0.3 until the end of April. By further analysis, we found
that the daily flow count was almost expected, but some
significant changes were observed in certain traffic features
(reverseOctetTotalCount and reverseDataByteCount
dropped by about 30-40%). Another noteworthy change was in
the reverseAverageInterarrivalTime feature that raised
from 11 to 22 seconds after April 9. These changes caused
the number of accepted flows to drop by 40%, compared to
the expected value from the training phase.

JVC Kenwood hub starts with a very low trust value on
16th and 17th March, followed by a fluctuating trust measure
averaged at 0.66 from 18th March to 13th April. Next, we
observe a permanent drop, starting from 14th April. JVC
Kenwood hub generated 993 and 1019 flows during the first
two days respectively (16th and 17th March) – in each day,
about 900 flows received accepted prediction. Moving to the
second half of April, the hub generated on average 220 flows
per day, and around 170 of flows (daily) are predicted with an
acceptable confidence. These values are far from the expected
behavior of JVC Kenwood hub based on the training dataset
where the expected number of flows is about 470 per day.

The iRobot Roomba displays a consistently high trust value
over the testing period (about 0.94 on average) except for 20th

April. This device has an average of 50 flows per day over the
testing period, except on 20th April, it only had 6 flows. The
shutdown of our capture server in preparation for a planned
power outage on the following days caused this drop. As the
expected flow count for iRobot Roomba is about 45 per day,
the significant deviation on 20th April resulted in a significantly
low trust value for this device.

Sony Bravia TV shows a persistent trust measure throughout
the testing phase except for April 14, when it generated a very
high number of flows. On average, it generated 5, 648 flows
per day during those days with a healthy trust metric. However,
the flow count rose to 98, 019 on April 14 – of those flows,
≈44, 000 (about 3.5 times the expected baseline) received an
accepted prediction.

VI. CONCLUSION

Residential networks continue to become richer and more
vulnerable with the widespread adoption of consumer IoT
devices. ISPs, therefore, recognize the need to deal with IoT
security by obtaining visibility into these connected devices
and their behavior. This paper discussed how an ISP can
leverage IPFIX telemetry to achieve this task post-NAT, at
scale, without making changes to home networks. We analyzed
about three million IPFIX records (to be released as open
data) from about thirty IoT devices to train a multi-class
classifier model that infers connected IoTs in homes. We then
improved the quality of our prediction by applying class-
specific thresholds as well as developing a trust metric to track
the health of the identified devices. Lastly, we showed that our
method can classify the IPFIX flows of IoT devices with about
96% accuracy, and detect their behavioral changes.

REFERENCES

[1] S. Grover et al., “Peeking behind the NAT: An Empirical Study of Home
Networks,” in Proc. ACM IMC, Barcelona, Spain, Oct 2013.

[2] Y. Meidan, V. Sachidananda, H. Peng, R. Sagron, Y. Elovici, and
A. Shabtai, “A Novel Approach For Detecting Vulnerable IoT Devices
Connected Behind a Home NAT,” Computers & Security, vol. 97, p.
101968, Oct 2020.

[3] Statista, “Number of Smart Homes forecast worldwide from 2017 to
2025,” 2020. [Online]. Available: https://bit.ly/3ulFflm

[4] Palo Alto Networks, “Unit 42 IoT Threat Report,” 2020. [Online].
Available: https://start.paloaltonetworks.com/unit-42-iot-threat-report

[5] D. Kumar et al., “All Things Considered: An Analysis of IoT Devices
on Home Networks,” in Proc. USENIX Security, SC, USA, Aug 2019.

[6] A. Sivanathan et al., “Classifying IoT Devices in Smart Environments
Using Network Traffic Characteristics,” IEEE Transactions on Mobile
Computing, vol. 18, no. 8, pp. 1745–1759, Aug 2019.

[7] T. Micro, “Mirai Botnet Exploit Weaponized to Attack IoT Devices via
CVE-2020-5902,” 2020. [Online]. Available: https://bit.ly/2RRLy1X

[8] H. Kumar et al., “Enhancing Security Management at Software-Defined
Exchange Points,” IEEE TNSM, vol. 16, no. 4, pp. 1479–1492, 2019.

[9] J. Blythe et al., “What is security worth to consumers? Investigating
willingness to pay for secure Internet of Things devices,” Crime Sci,
vol. 9, no. 1, pp. 1–9, Jan 2020.

[10] Cyber Edge, “Cyberthreat Defense Report,” 2020. [Online]. Available:
https://bit.ly/3xM1Idi

[11] A. Sivanathan, H. Habibi Gharakheili, and V. Sivaraman, “Detecting
Behavioral Change of IoT Devices Using Clustering-Based Network
Traffic Modeling,” IEEE Internet of Things Journal, vol. 7, no. 8, pp.
7295–7309, Aug 2020.

[12] A. Hamza et al., “Detecting Volumetric Attacks on LoT Devices via
SDN-Based Monitoring of MUD Activity,” in Proc. ACM SOSR, San
Jose, CA, USA, Apr 2019.

[13] H. Guo and J. Heidemann, “IoTSTEED: Bot-side Defense to IoT-based
DDoS Attacks (Extended),” USC/Information Sciences Institute, Tech.
Rep. ISI-TR-738, Jun. 2020. [Online]. Available: https://bit.ly/3ec9eGS

[14] M. Miettinen et al., “IoT SENTINEL: Automated Device-Type Identifi-
cation for Security Enforcement in IoT,” in Proc. IEEE ICDCS, Atlanta,
USA, Jun 2017.

[15] V. Thangavelu et al., “DEFT: A Distributed IoT Fingerprinting Tech-
nique,” IEEE IoT Journal, vol. 6, no. 1, pp. 940–952, Feb 2019.

[16] S. Marchal et al., “AuDI: Toward Autonomous IoT Device-Type Iden-
tification Using Periodic Communication,” IEEE JSAC, vol. 37, no. 6,
pp. 1402–1412, Jun 2019.

[17] S. J. Saidi et al., “A Haystack Full of Needles: Scalable Detection of
IoT Devices in the Wild,” in Proc. ACM IMC, NY, USA, Oct 2020.

[18] A. Pashamokhtari, N. Okui, Y. Miyake, N. Masataka, and
H. Habibi Gharakheili, “IoT IPFIX Records,” 2021. [Online].
Available: https://iotanalytics.unsw.edu.au/iotipfixrecords

[19] H. Habibi Gharakheili and V. Sivaraman, “Cloud assisted home net-
works,” in Proc. ACM CAN, Incheon, Republic of Korea, Dec 2017.

[20] R. Hofstede et al., “Towards Real-time Intrusion Detection for NetFlow
and IPFIX,” in Proc. CNSM, Zurich, Switzerland, Oct 2013.

[21] J. J. Davis, “Machine Learning and Feature Engi-
neering for Computer Network Security,” Ph.D. disser-
tation, QUT, QLD, Australia, 2017. [Online]. Available:
https://eprints.qut.edu.au/106914/1/Jonathan Davis Thesis.pdf

[22] P. Aitken, B. Claise, and B. Trammell, “Specification of the
IP Flow Information Export (IPFIX) Protocol for the Exchange
of Flow Information,” RFC 7011, Sep. 2013. [Online]. Available:
https://rfc-editor.org/rfc/rfc7011.txt

[23] NetSA CERT, “YAF,” 2006. [Online]. Available:
https://tools.netsa.cert.org/yaf/yaf.html

[24] ——, “Super Mediator,” 2012. [Online]. Available:
https://tools.netsa.cert.org/super mediator

[25] R. Moskowitz, D. Karrenberg, Y. Rekhter, E. Lear, and G. J. de Groot,
“Address Allocation for Private Internets,” RFC 1918, Feb. 1996.
[Online]. Available: https://rfc-editor.org/rfc/rfc1918.txt

[26] IETF, “Bidirectional Flow Export Using IP Flow Information Export
(IPFIX),” 2008. [Online]. Available: https://tools.ietf.org/html/rfc5103

[27] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine Learning for Internet of Things Data
Analysis: a Survey,” Digital Communications and Networks, vol. 4,
no. 3, pp. 161–175, Aug 2018.

