
PicP-MUD: Profiling Information Content of
Payloads in MUD Flows for IoT Devices

Arman Pashamokhtari, Arunan Sivanathan, Ayyoob Hamza, and Hassan Habibi Gharakheili
School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia

Emails: {a.pashamokhtari, a.sivanathan, m.ahamedhamza, h.habibi}@unsw.edu.au

Abstract—The Manufacturer Usage Description (MUD) stan-
dard aims to reduce the attack surface for IoT devices by
locking down their behavior to a formally-specified set of network
flows (access control entries). Formal network behaviors can
also be systematically and rigorously verified in any operating
environment. Enforcing MUD flows and monitoring their activity
in real-time can be relatively effective in securing IoT devices;
however, its scope is limited to endpoints (domain names and IP
addresses) and transport-layer protocols and services. Therefore,
misconfigured or compromised IoTs may conform to their MUD-
specified behavior but exchange unintended (or even malicious)
contents across those flows. This paper develops PicP-MUD with
the aim to profile the information content of packet payloads
(whether unencrypted, encoded, or encrypted) in each MUD
flow of an IoT device. That way, certain tasks like cyber-risk
analysis, change detection, or selective deep packet inspection can
be performed in a more systematic manner. Our contributions are
twofold: (1) We analyze over 123K network flows of 6 transparent
(e.g., HTTP), 11 encrypted (e.g., TLS), and 7 encoded (e.g., RTP)
protocols, collected in our lab and obtained from public datasets,
to identify 17 statistical features of their application payload,
helping us distinguish different content types; and (2) We develop
and evaluate PicP-MUD using a machine learning model, and
show how we achieve an average accuracy of 99% in predicting
the content type of a flow.

Index Terms—IoT, MUD, encrypted traffic analysis

I. INTRODUCTION

IoT devices and systems are exposed to a wide range of
sophisticated cyber attacks [1] exploiting vulnerabilities such
as default credentials (e.g., causing code injection) and unen-
crypted traffic exchange (e.g., leading to private data leaks).
Unmanaged IoT devices can present extreme risks to network
operators – examples are DDoS, botnet, and ransomware
attacks [2]. According to a recent survey [3] of about 150K
connected cameras, about 80% of them communicate via
plaintext (unencrypted) protocols HTTP and FTP.

Although unencrypted communications bring cyber risks to
IoT systems, traffic encryption does not necessarily mitigate
those risks and may present other challenges [4]. Security
appliances like firewalls cannot thoroughly inspect encrypted
traffic, especially at scale (performance bottlenecks). Hence,
cybercriminals tend to employ encryption to hide their mali-
cious activities (e.g., command-and-control messages or exfil-
trated data) from being detected by IDSes and firewalls [5].

IoT devices differ from non-IoTs in their network be-
havior and traffic characteristics. Hence, security measures
used for non-IoTs cannot be directly applied to IoTs [6].
However, a limited (and identifiable) set of behaviors for

IoT devices enables their operators to “whitelist” their be-
nign network activities by specifying intended local/remote
servers and network services in the form of Manufacturer
Usage Description (MUD) [7] profile – a set of access flows
(e.g., expressing an IP protocol, source/destination ports, and
source/destination IP addresses). The MUD standard aims to
define lightweight formal metadata for IoT devices to reduce
their attack surface – locking down their network behavior
to a limited set specified by the MUD profile (disallowing
unintended activities). Researchers have developed techniques
to use MUD profiles as signatures for classifying IoT devices
[8], systematically enforce security policies into networks [9],
and generate baseline models for anomaly detection [10].

In this paper1, we develop a classifier model to infer from
traffic contents of a given MUD flow, extending the capability
of MUD profiles. We classify MUD flows into three classes of
content types, namely transparent (like HTTP), encrypted (like
TLS), and encoded (like RTP). Having the ability to classify
the content type of flows comes with several advantages: (a)
one can perform a systematic risk assessment on the network
behavior of an IoT device by quantifying whether their traffic
is exchanged confidentially (encrypted) or not (transparent);
(b) by knowing the type of contents, opaque flows (encrypted
and/or encoded) can be offloaded from DPI-based intrusion
detection systems as deep inspection of opaque data gives little
(if any) insight; and, (c) one can track the content type of target
flows over time and detect deviations from a “baseline”.

Our contributions are as follows: (1) We analyze the content
of a large and diverse set of flows: 106K flows collected
from our IoT testbed containing traffic of TLS, HTTP, DNS,
NTP, and RTP protocols; 5K flows generated and collected
in our lab using 10 popular encryption algorithms (AES,
Blowfish, Camellia, RSA, ChaCha20, SEED, SM4, 3DES, CAST5,
and IDEA), two compression algorithms (gzip and bzip), and
four audio/video formats (PNG, JPEG, MP3, MP4); 600 TLS flows
popular websites collected in our lab; two public datasets
containing FTP [11] and SMB [12] traffic traces. We identify 17
statistical features from the byte values of packet payload for
each flow and highlight their prediction power for determining
the content type of flows; and (2) We train and evaluate the
performance of a Random Forest model and show how it can
give 99% accuracy in predicting the content class by analyzing
the first 6KB worth of data of a flow.

1Funding for this project was provided by CyAmast Pty Ltd.

II. RELATED WORK

IoT Network Security: Researchers have proposed meth-
ods for securing IoT devices at network level. Works in
[13]–[16] developed models to classify network activities of
connected IoT devices. Authors of [13] and [14] employed
statistical traffic features like distribution of transport-layer
port numbers and flow volume (flow-based), or IP time-to-
live and maximum segment size (packet-based) to train a
machine learning model to infer various types of IoTs from
their network traffic. Works in [15] and [16] used deterministic
features like IP address and/or domain name of cloud servers
to identify IoT devices. Work in [17] trained machine learning
models on features like packet size, packet inter-arrival time,
and traffic rate (for benign and malicious instances) to train
anomaly detectors. The use of MUD profiles for securing IoT
devices has been studied over the last few years [8]–[10], [18].
Authors in [9] developed a method to translate MUD profiles
of IoT devices into flow rules (“allowlisting”) on an SDN-
based gateway – that way, the majority of network attacks
could be prevented given MUD profiles are tightly specified.
Work in [10] developed one-class clustering-based models
for time-series activity of individual MUD flows to detect
anomalous behaviors (volumetric attacks) when sophisticated
attackers sim to conform to MUD profiles on the network.

Encrypted Data Analysis: Inferring from encrypted data
has been a subject of research for website fingerprinting
[19], application classification [20], and identifying Operation
Systems [21]. Work in [5] enhanced BotHunter [22] (Snort-
based botnet detector) to detect botnets that transmit encrypted
traffic. BotHunter is triggered when specific rules like net-
work scans, DNS lookups for blacklisted domains, or known
signatures inside “unencrypted” traffic payloads are matched.
The authors employed measures of entropy to identify flows
carrying encrypted traffic that, in conjunction with malicious
rules (blacklisted IP/domains), enable network operators to
detect certain encrypted botnets. Authors of [23] developed
a model to analyze audio/video data of streaming platforms
like Netflix and Spotify. Their model employs measures of
entropy and chi-square to infer the media state (encrypted,
encoded with media codec, and decoded for presentation), thus
allowing to extract copyright-protected media from RAM once
decoded. Work in [24] developed machine learning models to
detect malicious traffic carried over DoH (DNS over HTTPS).
They used entropy along with statistical flow-based features
(packet/byte counts).

To the best of our knowledge, this paper is the first to
propose a traffic content classifier for MUD flows of IoT
devices. We use MUD as an enabler of our architecture for
systematic and selective IoT traffic monitoring. Our model
uses a comprehensive set of statistical features (both packet-
level and flow-level) to determine three content classes (trans-
parent, encrypted, or encoded). Also, in contrast to prior work,
we collect and analyze traffic traces of an extended range of
protocols and evaluate the efficacy of our model on unseen
protocols.

programmable
switch

IoT dev #1 IoT dev #N

IoT dev #1 IoT dev #2

MUD profiles

…

IoT dev #N

MUD flow: access control entry (ACE)

enforcing MUD flow

𝑝!
"!,#|𝑖 = 1, … , 𝑃

𝒇𝒅,𝒌 : {info class,
score}

inference
model

packets of a given
MUD flow 𝑓$,%IoT dev #2

{f1,k | k=1,..,K}
f1,k : (in/out,

local/remote,
<transport proto>,
<transport service>,
<endpoint>)

Profiling
Engine

selecting MUD profile

feature vector
target device

1

2

3 4

5

control plane

data plane

Remote
Cloud

PicP-MUD

Fig. 1. System architecture of our PicP-MUD.

III. PROFILING INFORMATION CONTENT OF
PAYLOADS IN MUD FLOWS

Fig. 1 illustrates the architecture of our system for pro-
filing the content (information) of MUD flows for a given
network of IoT devices. The top half of the figure shows
our control plane, which is responsible for inference and
processing, while the bottom half takes care of networking
and traffic forwarding. Starting from the top, MUD profiles
of connected IoT devices are assumed to be available. Note
that IoT manufacturers are expected to supply MUD profiles.
At the time of writing, manufacturers have not published the
profile of their commercial IoT devices. However, there are
open-source tools like MUDgee [8], which can help network
operators automatically generate the MUD profile for an IoT
device from its traffic trace. Also, there are ongoing efforts
[25] to facilitate the adoption and sharing of MUD profiles
across the Internet community. A MUD profile consists of
a list of access control entries (ACE). For example, the
profile of dev #1 in Fig. 1 contains K flow entries denoted
by f1,k, where k ∈ [1,K]. Each ACE specifies the flow
direction (incoming↓ or outgoing↑), flow scope (local/remote),
transport-layer protocol (TCP/UDP), transport-layer service (i.e.,
port number), and endpoints (IP address/domain name).

Flow of Events: Given a target IoT device on the network
(step 1 in Fig. 1), the Profiling Engine first fetches the
corresponding MUD profile from a repository (step 2). Next,
it enforces (step 3) an ACE flow fd,k into a programmable
switch (e.g., OpenFlow or P4-based) that is in charge of traffic
forwarding. In response, the switch will provide the Engine
with packets pfd,ki of the requested flow (step 4) – selective
traffic analysis. In §IV, we will discuss the amount traffic (in
terms of byte count) is required for an accurate classification.
Note that the Engine can be programmed to profile a set of (or
all) ACE flows. In that case, corresponding states need to be
maintained by the Engine. Finally, the Engine computes the
required features of the corresponding packet set and passes a
vector (per each MUD flow) to the inference model to make
an inference (5). The model provides the class of contents
(e.g., transparent, encrypted, or encoded) with a score between
0 to 1 (higher scores indicate more confidence).

We note that the desired set of content classes can vary
in different use cases. For example, in botnet detection [5],

TABLE I
SUMMARY OF OUR LABELED DATASET.

Protocol # flows Information class
DNS 62,023 transparent
FTP 11,125 transparent
HTTP 8,852 transparent
NTP 2,940 transparent
SMB 309 transparent
UDP 442 transparent
TLS 32,800 encrypted
3DES 100 encrypted
AES 99 encrypted
Blowfish 100 encrypted
CAST5 99 encrypted
Camellia 98 encrypted
ChaCha20 100 encrypted
IDEA 99 encrypted
RSA 99 encrypted
SEED 100 encrypted
SM4 100 encrypted
RTP 81 encoded
bzip 983 encoded
gzip 992 encoded
JPEG 486 encoded
MP3 480 encoded
MP4 493 encoded
PNG 495 encoded

distinguishing encrypted flows is of paramount importance,
and therefore merging transparent and encoded flows into a
class of non-encrypted traffic can be acceptable; or, for deep
packet inspection (DPI) offloading [26], only two classes of
transparent and opaque (encrypted or encoded) would suffice.
For an objective like dynamic risk analysis and continuous
behavioral monitoring of connected IoTs, more content types
offer richer insights. For instance, the cyber risk of each class
is different: transparent (high), encoded (medium as it can
be decoded by just knowing the encoding algorithm), and
encrypted (low as it requires a secret encryption key). Also,
finer-grained anomaly detection can be performed with three
classes compared to two classes. Note that this paper focuses
on developing the profiling engine. The use of content profiling
for risk assessment and behavioral monitoring is beyond the
scope of this paper and is left to future work.

A. Our Traffic Dataset

To have a well-trained model, a rich dataset is needed.
Our dataset consists of traffic traces that we collect in
our lab and obtain from public sources. We process PCAP
files to aggregate packets into 5-tuple flows – IP proto-
col, source/destination IP address, and source/destination port
number are used the five-tuple key to distinguish flows. One
may use flow termination signals like TCP FIN for TCP flows,
or a configurable timeout for UDP flows, and extract multiple
instances of the same 5-tuple flow over time. However, in
this paper, we do not terminate 5-tuple flows in our dataset
processing. Table I summarizes our labeled dataset indicating
applications/protocols, flow count, and corresponding informa-
tion class.

Our IoT Lab Traffic: We collect 106,070 flows from
our testbed, consisting of 13 IoT devices ranging from smart
cameras, speakers, and smoke sensor to weighing scale and

power switch. We specifically collect TLS, HTTP, DNS, NTP, and
RTP (video feed stream from a smart camera) traffic flows from
these IoTs.

TLS web Traffic: We collect 626 TLS flows of popular web-
sites like Amazon, Apple, Facebook, Google, IBM, Microsoft,
Oracle, Twitter, and YouTube, initiated by our lab computers.

Synthetic Traffic: To further diversify our dataset, we wrote
a script to transfer various content types between two com-
puters via UDP flows. We collect traffic traces of these locally
exchanged flows from our lab’s network. Note that our focus
is on computing features from the content (payload) of flows;
therefore, the transport-layer protocol (TCP or UDP) would not
affect our inference. Using our script, we generated 442 UDP
flows containing plaintext payloads, 994 encrypted flows from
10 popular encryption algorithms, and 3929 encoded flows
from a range of compression and media encoding algorithms.

Public Datasets: In order to expand our transparent flows,
we obtain FTP and SMB raw packet traces from public sources
[11] and [12], respectively. The FTP dataset contains traf-
fic traces of anonymous users worldwide interacting with a
public FTP server at the Lawrence Berkeley National Lab-
oratory. These traces only include FTP commands (both re-
quests/responses on TCP/21) without any data flows. The SMB
traffic traces were collected by Wireshark developers through
running Samba torture test suite [27] over a Samba server.
Samba torture contains a set of software tests to be performed
on Samba servers to validate they are operational.

B. Traffic Features

During the data analysis phase, we found that certain
encryption algorithms (like AES and 3DES) in some modes of
operation like Cipher Block Chaining (CBC) tend to embed a
fixed-size initialization vector at the beginning of each packet
for a given encrypted flow. Initialization vector size is equal
to the block size of encryption algorithms which is often 16
bytes (or less) [28]. As these bytes are non-encrypted, they can
introduce noise to our inference process. Therefore, we trim
the first 16 bytes of all packets in our dataset before feature
extraction, regardless of their content type.

Inspired by prior works [5], [23], [29], we use a combination
of features (computed on both packet-based and flow-based)
from byte values of traffic content for our inference model.
We employ three types of statistical metrics (explained next)
to construct our feature set.

(1) Shannon’s entropy: Entropy indicates the amount of
information embedded in a given message (the payload of
packets/flows in our context). The entropy value for random
payloads (like those in encrypted packets) has higher values
than plaintext payloads. To compute entropy, we first need to
decide a “symbol size”; e.g., for binary values, symbol size
of two bits results in four possible symbols i.e., 00, 01, 10,
and 11. Therefore, m-bit entropy denotes entropy calculated
based on m-bit symbols. In this paper, we use 4-bit and 8-bit
entropy, representing HEX and ASCII encoding. According to
the probability of each symbol inside a given message, entropy
is computed by:

transparent encrypted encoded
class

2

4

6

8
8-

bi
t m

ax
 e

nt
ro

py

(a) Maximum 8-bit entropy
(packet-based approach).

transparent encrypted encoded
class

0

50

100

150

200

A
rit

hm
et

ic
 m

ea
n

(b) Arithmetic mean (flow-based
approach).

Fig. 2. Predictive power of: (a) packet-based entropy, and (b) flow-based
arithmetic mean, in distinguishing the three content classes.

H(x) = −
n∑

i=1

P (xi) log2 P (xi) (1)

where the message contains n distinct symbols xi. Given a
symbol xi, probability P (xi) is equal to the number of times
xi was found in the message divided by the total number of
symbols inside the message.

Entropy is an indicative metric for distinguishing transparent
messages from opaque ones [23]. However, it falls short in
a finer-grained classification of opaque contents – encrypted
versus encoded. One aspect that encrypted and encoded con-
tents are different is their byte value distribution. Strong
encryption algorithms are expected to display high degrees of
confusion and diffusion [30], which result in encrypted outputs
becoming like pseudo-random numbers. Therefore, encrypted
contents will likely display a uniform byte value distribution.
However, as encoding algorithms are not designed to have such
properties, their output byte distribution may not necessarily be
uniform [31], [32]. Hence, the detection of encoded contents
is relatively challenging. Therefore, the following two metrics
are used to capture the byte value distribution of contents,
helping us distinguish encrypted from encoded traffic.

(2) Arithmetic mean and standard deviation: For a given
array of bytes, we first convert each byte to its corresponding
decimal value (i.e., [0 − 255]), followed by computing their
average and standard deviation. A true random (uniform)
distribution of decimal values gives arithmetic mean of 127.5
and standard deviation 73.7. We expect encrypted contents’
mean and standard deviation to be closer to those metrics of
the uniform distribution.

(3) Chi-square: Chi-square is a statistical test that measures
the similarity between two discrete distributions. Smaller χ2

values highlight more similarity. For us, the objective is to
quantify the similarity between the distribution of measured
byte values and the uniform distribution (reference). χ2 is
computed by:

χ2 =

255∑
i=0

(Oi − Ei)
2

Ei
(2)

where Oi denotes the number of times that byte value i was
observed in a given byte array (measured payload). Also, Ei

refers to the expected byte value i in the reference distribution.
Given our reference distribution is uniform, Ei is constant and
equal to n/256 in which n is the total number of bytes inside
the measured payload.

transparent encrypted encoded
class

10
3

10
4

10
5

10
6

C
hi
-s
qu
ar
e

(a) All flows.

transparent encrypted encoded
class

10
3

10
4

10
5

10
6

C
hi
-s
qu
ar
e

(b) Flows with size ≥1.5KB.

Fig. 3. Measure of chi-square for: (a) all flows, and (b) those flows with the
payload size of ≥ 1.5KB, in our dataset.

Note that the three metrics discussed above can be computed
on either a packet basis or flow basis. In what follows, we
incorporate both methods to enrich the features for our model.

Packet-based Computing Approach: Given a flow with
P packets, we first compute three metrics, namely 4-bit
entropy, 8-bit entropy, and arithmetic mean for individual
packets. We choose to not compute the chi-square metric for
individual packets as possible fragmentation in IPv4 packets
(due to maximum transmission unit of 1500 bytes imposed by
Ethernet) makes this metric relatively less reliable (explained
in III-C). We next obtain a corresponding distribution (i.e.,
average, standard deviation, minimum, and maximum values)
for each of these metrics. Hence, a total of 12 packet-based
features will be obtained from the given flow.

Flow-based Computing Approach: For this approach, we
first construct a single byte array by aggregating the payload
of all packets available in a given flow. We next compute five
metrics, namely 4-bit entropy, 8-bit entropy, arithmetic mean,
standard deviation, and chi-square for that single array. Hence,
a total of 5 flow-based features will be obtained per given flow.

C. Content Inference

We now briefly analyze the prediction power of our features
(explained in §III-B) across the three classes of contents
(transparent, encrypted, and encoded) in our labeled dataset.
For the purpose of illustration, we focus on the first 6KB
worth of contents in each flow. Later in §IV, we will analyze
the impact of content sizes (from the first 2KB to the first
10KB) to determine the best option, balancing the inference
accuracy against the computing cost. Let us begin with Fig. 2
where predictive power of two representative features are
demonstrated. Fig. 2(a) shows the violin plot for the maximum
8-bit entropy value computed across all packets of each
flow (discussed in the previous subsection). It can be seen
that majority of encrypted and encoded flows have larger
entropy values compared to transparent flows. In fact, 99.2%
of encrypted flows and almost 100% of encoded flows have
maximum 8-bit entropy value larger than 6; while this feature
is less than 6 for 99.99% of transparent flows. Only 14 flows
(SMB) have a maximum 8-bit entropy value larger than 6.

We inspected those SMB flows and found that they include
read/write commands to the SMB server for target files. By
looking at the payloads of those flows we noticed that they
indeed contain random byte values (thus, larger entropy) – the
client generates random bytes, and then requests the server to
write those values to target files, and finally requests the server

TABLE II
PERFORMANCE OF THE MODEL

VARIES BY FLOW SIZE ACROSS THREE CLASSES.

Prediction accuracy
Flow size (KB) transparent encrypted encoded average
2 87% 97 80% 88%
4 99% 97 78% 91%
6 99% 95 94% 96%
8 99% 96 93% 96%
10 99% 94 94% 96%

to read those stored values. We verified this by inspecting the
source code of Samba torture at [27]. Moving to Fig. 2(b), we
observe how flow-based arithmetic mean can predict the three
classes to a great extent. Though encrypted and encoded flows
seem to overlap slightly, there exist certain distinct patterns for
each class. A vast majority (97%) of transparent flows have
their arithmetic mean in the range of [10, 90]; this metric for
more than 80% of encrypted falls in the range of [90, 115];
and, about 75% of encoded flows have this value in the range
of [115, 140].

As mentioned earlier in this section, we analyzed the first
6KB worth of flow contents to compute features. Also, for
a flow with a total content size less than 6KB, its entire
content is considered. While the inclusion of small flows did
not deteriorate the prediction power of entropy and arithmetic
mean, it significantly impacted the chi-square metric. It has
been shown [33] that for chi-square to give a valid output, the
minimum expected value of each discrete category should be
more than five. In our context, as we have 256 categories of
byte values, hence we need at least 6 × 256 = 1536 bytes
for each flow to get a reliable output from the chi-square test.
Therefore, chi-square may not be a good indicator for flows
with payload size less than 1.5KB.

Fig. 3 shows the impact of payload size on the measure
of chi-square. We plot the distribution chi-square values for
all flows in Fig. 3(a) and the same distribution for flows
larger than a threshold in (i.e., 1.5KB) in Fig. 3(b). Applying
this threshold excluded about 93% of transparent flows in
our dataset – this measure was relatively lower for encrypted
(14%) and encoded (1%) flows. By comparing plots in Figures
3(a) and 3(b), it can be seen that excluding smaller flows helps
to distinguish various classes – a vast majority of transparent
flows have their chi-square measure over 10000, encrypted
flows tend to give chi-square measures centered around 2000
and 7000 (the two peaks), and encoded flows have their chi-
square measures uniformly spread in a wide range [100, 5000].

We saw in Figures 2(a), 2(b), and 3 that transparent flow
contents seem to have more distinct features compared to
encrypted/encoded flows; while, certain overlaps are visible
between characteristics of encrypted and encoded flow con-
tents. One may attempt applying deterministic thresholds to
assess whether a flow carries transparent or opaque contents
(a binary classification). However, distinguishing encrypted
from encoded flows is a nontrivial task with 17 features (i.e.,
dimensions). Instead, machine learning-based models have
proven to be effective in analyzing all features and finding an

TABLE III
PERFORMANCE OF THE MODEL

FOR ACCEPTED PREDICTIONS (CONFIDENCE SCORE≥ 0.8).

Prediction accuracy
Flow size (KB) transparent encrypted encoded average
2 99% 99% 86% 95%
4 99% 99% 90% 96%
6 99% 99% 99% 99%
8 99% 99% 100% 99%
10 99% 99% 99% 99%

optimal combination of features to characterize unique patterns
of each content class. Among various options of learning
algorithms, decision tree-based models seem to be a good
fit for our problem (a relatively small multi-class classifier),
given their ability to create clear boundaries across features
and assign distinct regions per class.

IV. EVALUATION RESULTS

In this section, we evaluate the efficacy of our method by
generating a machine learning model trained on a subset of
our data. Given a content class, we use some protocols for
training and the remaining protocols for testing. This is done
to reduce the chance of overfitting for our model. For training,
we use NTP and DNS from transparent flows, IoT TLS and AES
from encrypted flows, and RTP, gzip, PNG, and MP4 for encoded
flows. The rest of flows in Table I will be used to test the
trained model. It is importation to note that those 626 TLS web
flows are only present in our testing dataset. In total, we have
99,297 and 24,198 flows for training and testing, respectively.

For the learning algorithm, we choose Random Forest as
it has shown reasonable accuracy and explainability in the
existing literature of network traffic analysis. We train our
model through a ten-fold cross-validation process to find the
best combination of hyper-parameters for the final model.
We tune the following parameters of our Random Forest
model: number of decision trees, maximum depth of trees,
and maximum features to consider at each split.

Since the amount of data analyzed in each flow can affect
the quality of inference, we experiment with different flow
sizes and quantify the model accuracy accordingly. Note that
the flow size is referred to as an upper cap for the number of
payload bytes we process in each flow – we used 6KB flow
size for our preliminary data analysis (§III-C) and insights
presented in Figures 2 and 3. Table II shows the performance
of the model (the accuracy measure of predicting testing
instances) with five different flow sizes ranging from 2KB
to 10KB.

It can be clearly seen that having 4KB of contents for a
transparent flow is sufficient for the model to correctly predict
its class – the prediction accuracy saturates (99%) at flow size
of 4KB for the transparent class (second column in Table II).
Moving to encrypted flows, the accuracy seems to slightly
fall from the flow size of 6KB, but the accuracy is relatively
acceptable (≥ 94%) for all flow sizes. For encoded flows, the
accuracy drops by increasing the flow size from 2KB to 4KB
but it becomes relatively stable and acceptable (≈ 94%) after

that. The average accuracy (of all classes) seems to saturate
at the flow size of 6KB.

Another observation is that our model faces some difficulties
in correctly predicting the class of encoded flows. Encoded
flows (mostly JPEG ones) are mispredicted as an encrypted
class. For the flow size of 4KB, almost half of the JPEG
flows are misclassified. We observed that the model displays
different levels of confidence (a number between 0 and 1)
when testing various flow types. Inspired by our recent work
[34], we determine lower-bound thresholds (one per class)
for the confidence score of our model by applying it to
the training dataset. As a result, if the model predicts a
class with a confidence lower than the expected threshold,
that prediction will be discarded. In other words, we only
consider “accepted” predictions (with confidence scores higher
than corresponding thresholds). Due to high variations in the
model confidence for predicting transparent instances (in the
training dataset), we choose a global configurable confidence
threshold equal to 0.80 for all content classes. Let us revisit
the model performance for accepted predictions (when the
model is relatively confident) in Table III. We observe that the
prediction accuracy (classes and average) saturates for the flow
size of 6KB. It can be seen that 99% of accepted predictions
are correct, with only computing up to 6KB worth of data
from each flow. Lastly, we found that the model is generally
less confident when predicting encoded flows than the other
two classes. More than a third (36%) of encoded flows receive
less-confident predictions (hence, “discarded”). This measure
is about 20% for transparent and encrypted flows.

V. CONCLUSION

MUD has proven to be a powerful standard that enables
network operators to reduce the attack surface on an IoT
device by formally defining its expected network behavior
(whitelisting benign behaviors). In the absence of a provision
for limiting/specifying traffic contents exchanged via indi-
vidual MUD flows, certain malicious network activities can
go undetected while still conforming to the MUD profile
of connected IoTs. In this paper, we developed PicP-MUD
that profiles the information content of payloads in MUD
flows. We analyzed more than 100K network flows from 24
protocols belonging to three classes (transparent, encrypted,
and encoded) and identified 17 statistical features indicative
of their content class. We trained a multi-class classifier that
can correctly predict the content type of a flow by analyzing
the first 6KB worth of its packet byte values.

REFERENCES

[1] H. Habibi Gharakheili et al., “Cyber-Securing IoT Infrastructure by
Modeling Network Traffic,” in Security and Privacy in the Internet of
Things: Architectures, Techniques, and Applications, A. Ismail Awad
and J. Abawajy, Eds. John Wiley & Sons, 2021, ch. 6, pp. 151–176.

[2] Fortinet, “Examining Top IoT Security Threats and Attack Vectors,”
Jun 2021. [Online]. Available: https://tinyurl.com/2p8624t7

[3] Palo Alto Networks, “Are the Security Cameras in Your Organization
Safe from Cyber Attacks?” Mar 2021. [Online]. Available: https:
//tinyurl.com/2p9anezb

[4] Fortinet, “The Challenges of Inspecting Encrypted Network Traffic,”
Aug 2020. [Online]. Available: https://tinyurl.com/2p8m4tvy

[5] H. Zhang et al., “Detecting encrypted botnet traffic,” in Proc. IEEE
INFOCOM, Turin, Italy, Apr. 2013.

[6] Cyber Edge Group, “Cyberthreat Defense Report,” 2020. [Online].
Available: https://cyber-edge.com/cdr/

[7] E. Lear et al., “Manufacturer Usage Description Specification,” RFC
8520, Mar. 2019. [Online]. Available: https://tinyurl.com/yndykju8

[8] A. Hamza et al., “Verifying and Monitoring IoTs Network Behavior
using MUD Profiles,” IEEE TDSC, vol. 19, no. 1, pp. 1–18, Jan 2022.

[9] ——, “Combining MUD Policies with SDN for IoT Intrusion Detec-
tion,” in Proc. ACM IoT Security and Privacy, Budapest, Hungary, Aug
2018.

[10] ——, “Detecting Volumetric Attacks on IoT Devices via SDN-Based
Monitoring of MUD Activity,” in Proc. ACM SOSR, San Jose, CA,
USA, Apr 2019.

[11] Lawrence Berkeley National Laboratory, “LBNL-FTP-PKT,” Jan 2003.
[Online]. Available: https://tinyurl.com/4xrabnuf

[12] Wireshark, “Sample Captures: Server Message Block (SMB),” Nov
2005. [Online]. Available: https://tinyurl.com/34p7wbst

[13] A. Sivanathan et al., “Classifying IoT Devices in Smart Environments
Using Network Traffic Characteristics,” IEEE TMC, vol. 18, no. 8, pp.
1745–1759, 2019.

[14] K. Yang et al., “Towards Automatic Fingerprinting of IoT Devices in
the Cyberspace,” Computer Networks, vol. 148, pp. 318–327, 2019.

[15] H. Guo et al., “IP-Based IoT Device Detection,” in Proc. ACM Security
and Privacy, Budapest, Hungary, Aug. 2018, p. 36–42.

[16] S. J. Saidi et al., “A Haystack Full of Needles: Scalable Detection of
IoT Devices in the Wild,” in Proc. ACM IMC, NY, USA, Oct 2020.

[17] R. Doshi et al., “Machine Learning DDoS Detection for Consumer
Internet of Things Devices,” in Proc. IEEE SPW, San Francisco, CA,
USA, May 2018.

[18] NIST, “Securing Small-Business and Home Internet of Things (IoT)
Devices,” May 2021. [Online]. Available: https://tinyurl.com/2p84uwja

[19] A. Panchenko et al., “Website Fingerprinting at Internet Scale,” in Proc.
NDSS, San Diego, CA, USA, Feb. 2016.

[20] V. F. Taylor et al., “AppScanner: Automatic Fingerprinting of Smart-
phone Apps from Encrypted Network Traffic,” in IEEE EuroS P,
Saarbrücken, Germany, Mar. 2016.

[21] J. Muehlstein et al., “Analyzing HTTPS encrypted traffic to identify
user’s operating system, browser and application,” in IEEE CCNC, Las
Vegas, NV, USA, Jan. 2017.

[22] G. Gu et al., “BotHunter: Detecting Malware Infection Through IDS-
Driven Dialog Correlation,” in Proc. USENIX Security Symposium,
Boston, MA, Aug. 2007.

[23] R. Wang et al., “Steal This Movie: Automatically Bypassing DRM
Protection in Streaming Media Services,” in Proc. USENIX Security
Symposium, Washington, D.C., USA, Aug. 2013.

[24] Y. Khodjaeva et al., “Network Flow Entropy for Identifying Malicious
Behaviours in DNS Tunnels,” in Proc. ACM ARES, New York, NY, USA,
Aug. 2021.

[25] M. Richardson et al., “On loading MUD URLs from QR codes
(work in progress),” Working Draft, IETF Secretariat, Internet-
Draft draft-richardson-mud-qrcode-06, Mar 2022. [Online]. Available:
https://tinyurl.com/mtbxjcra

[26] A. Maxwell et al., “Methods, systems, and computer readable media for
rapid filtering of opaque data traffic,” U.S. Patent 9 973 473B2, Mar. 15,
2018.

[27] Smba Team, “SMB Torture.” [Online]. Available: https://tinyurl.com/
2p83ew7k

[28] NIST, “Recommendation for Block Cipher Modes of Operation,” Dec
2001. [Online]. Available: https://tinyurl.com/y3fa5733

[29] S. Cha et al., “Detecting Encrypted Traffic: A Machine Learning
Approach,” in Proc. WISA, Jeju Island, South Korea, Aug. 2016.

[30] C. E. Shannon, “Communication theory of secrecy systems,” The Bell
System Technical Journal, vol. 28, no. 4, pp. 656–715, 1949.

[31] J. Haggerty et al., “FORWEB: File Fingerprinting for Automated Net-
work Forensics Investigations,” in Proc. e-Forensics, Adelaide, Australia,
Jan 2008.

[32] W.-J. Li et al., “Fileprints: Identifying File Types by n-gram Analysis,”
in Proc. IEEE SMC IAW, Jun 2005.

[33] M. Bland, An Introduction to Medical Statistics. Oxford University
Press (UK), 2001.

[34] A. Pashamokhtari et al., “Inferring Connected IoT Devices from IP-
FIX Records in Residential ISP Networks,” in IEEE LCN, Edmonton,
Canada, Oct 2021.

