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Abstract—Making robust inferences from IoT network traf-
fic is needed for the reliable management of IoT devices in
health, industrial, or agricultural domains, particularly at scale.
Ensemble methods aim to enhance accuracy and consistency
by aggregating predictions from multiple classification models.
However, the process of combining several models can be difficult
due to disagreements in their predictions. This research examines
the causes of packet-based classifiers disagreement, specifically
when and why packets receive multiple prediction labels. We
develop a method that identifies packets that cause disagreement
and show how disagreements can provide information on the
reliability of the prediction from the classifier. For this study, we
adapted three classifiers from previous research on IoT traffic
inference. The classifiers were applied to public traces of IoT
packets. Our results indicate that disagreement varies across
IoT classes and is lower in certain protocols, such as SSDP and
NTP at the application layer and LLC at the datalink layer. We
also found that when the three classifiers agree on a prediction,
there is a 97% chance that it is correct. By removing disagreeing
predictions, an ensemble classifier’s accuracy can be increased.

Index Terms—Machine Learning, Packet Classification, Reli-
able Inference, Internet of Things

I. INTRODUCTION

As the Internet of Things (IoT) continues to expand, the
need for accurate device characterization becomes paramount.
IoT devices vary in their functionalities, characteristics, and
behavior, making it challenging to develop comprehensive
models that capture their diverse nature. Ensemble techniques
have emerged as a promising approach to address this issue by
combining multiple models to improve the accuracy of device
characterization. By leveraging the diversity of individual
models, ensemble methods can capture a broader range of
device behaviors, leading to more robust and reliable charac-
terizations. Such ensemble techniques have shown remarkable
success in various domains, including anomaly detection,
classification, and predictive maintenance in IoT environments
[1]–[3].

An intriguing aspect arises when these ensemble learn-
ers produce conflicting or disagreeing predictions. This phe-
nomenon invites exploration into the reasons behind such
disparities. Unraveling the underlying factors driving these
disagreements can offer valuable insights into the strengths and
limitations of ensemble methods, shed light on the inherent
complexities of the data, and potentially pave the way for
novel techniques to enhance ensemble learning performance.

However, current metrics do not explicitly leverage this infor-
mation. We propose a new metric called “Disagreement” and
exploit it to improve the overall ensemble accuracy.

We propose three categories of disagreement. The first
category is No Disagreement, which occurs when all clas-
sifiers provide the exact same label prediction for a given
input instance. This label may or may not be the same
as the ground truth label. The second category is Partial
Disagreement, which arises when the majority of classifiers
agree on a particular label for the input instance. Finally, the
third category is Full Disagreement, which happens when
none of the classifiers share the same predicted label for the
input instance.

In this paper, we ensemble three recent state-of-the-art
packet-based classifiers [4]–[6]. We then group the data by
the number of labels the packets receive and analyze if the
labels differ from the ground truth. This study focuses on
packet-based classifiers; however, this method can be modified
to work with other types of classifiers, such as flow-based.

The objective of this paper is to analyze a gap in the
evaluation of classifiers and identify the cause of mislabeled
data points. Our contributions include:

1) Identifying a measure of disagreements across classifiers,
which can be used to quantify the performance of an
ensemble of classifiers.

2) Applying the measure of disagreements to three packet
classifiers trained on public traffic traces and demonstrat-
ing the accuracy of the ensemble increases by 14.63%
when discarding packets with disagreeing predictions.

The remainder of the paper is organized as follows. §II
presents prior research followed by §III that covers reliable
inference using our measure of disagreement. Our evaluation
results and disagreement insights are discussed in §IV. The
paper is concluded in §V.

II. BACKGROUND

Obtaining visibility into the identity of connected devices
is a network management task that can be done actively or
passively. Active techniques send specific packets to target
devices that are classified based on their responses. However,
this technique is based on the assumption that the device
sends truthful responses. Compromised, infected, or rogue



devices, however, can deceive monitoring tools by spoofing
their responses. Passive techniques overcome this issue by
using the traffic to/from the device as input data for their
classification. However, shortcomings include (i) limited traffic
to facilitate fast identification or (ii) spoofed traffic. Given their
resilience, recent research has increasingly focused on passive
techniques utilizing some of the knowledge from the general
traffic classification [7].

Passive techniques match features or raw time-series signals
from device traffic against known signatures or patterns. There
are four broad types of methods used for these techniques:
(a) Port-based [8], (b) Payload-based [9], (c) Statistical-based
[10], and (d) Behavioral-based [11]. Port-based classification
is the simplest technique. It maps port numbers to applications
and classifies a device based on those applications. Payload-
based techniques inspect the contents of packets and match the
payload patterns to signatures learned from training devices.
Statistical-based techniques analyze the raw network traffic to
construct input features for data mining algorithms, such as
a measure of average, min, or max packet size and/or count.
In the data mining process, patterns in the data are found and
matched against patterns that have been extracted from the
training data. Behavioral-based methods identify a device by
monitoring all the network traffic that the device sends/receives
to build a behavioral profile. These profiles are then compared
with each other and the device is labeled based on profile
similarity [12].

In practice, the ground truth labels are not always available.
This makes it difficult to determine whether the predictions are
accurate and reliable. Previous research assumes that uncertain
predictions must be rejected as they are most likely incorrect
[13]. To purify predictions, [13] applies thresholds to the
confidence score of models. [5] aggregates the output labels by
MAC address and then replaces the labels with the mode. We
argue that the level of variance among the results returned by
different classifiers can be used to decide whether to accept or
reject the device type predictions when monitoring a network.

A gap in the current literature is the lack of studies on when
and why mispredictions occur, and a lack of evidence to prove
that uncertain predictions are incorrect. Also, the reported
performance metrics (e.g., accuracy, F1 score) provide limited
insights into the causes of classifiers predicting traffic classes.
We: (i) propose a disagreement metric that can be applied
to predictions from several models to discover the root cause
of the misclassification, (ii) analyze whether leveraging pre-
dictions from other models reveals mispredictions or confirm
less-confident predictions, and (iii) discuss possible methods
of using disagreements as an out-of-distribution detection
technique.

III. RELIABLE INFERENCE WITH MULTIPLE CLASSIFIERS

To investigate the reliability of models, we experiment with
three IoT packet classifiers from previous research [4]–[6].
These classifiers employ a diverse set of machine learning
algorithms trained on features from packet headers.

TABLE I
DISTRIBUTION OF NETWORK PACKETS

ACROSS IOT DEVICE CLASSES IN THE UNSW DATASET.

IoT class # packets
Dropcam 2.1m
Samsung SmartCam 966k
Belkin Wemo Motion Sensor 749k
Amazon Echo 705k
Belkin Wemo Switch 612k
Insteon Camera 500k
Netatmo Welcome 369k
Withings Smart Baby Monitor 350k
Smart Things 290k
Withings Aura Smart Sleep Sensor 239k
TP-Link Day Night Cloud Camera 198k
HP Printer 166k
Netatmo Weather Station 130k
Triby Speaker 111k
LiFX Smart Bulb 88k
Nest Dropcam 76k
PIX-STAR Photo-Frame 42k
iHome 35k
TP-Link Smart Plug 25k
Withings Smart Scale 2985
NEST Protect Smoke Alarm 2317
Blipcare Blood Pressure Meter 131

A. Dataset

For this paper, we use the public packet traces of IoT devices
from “UNSW dataset” [14], which has been widely used,
curated, and validated in a variety of use-cases and IoT-focused
research problems [5], [7], [11], [12], [14]. This dataset
contains network traffic (in the form of PCAP files) of IoT
and non-IoT devices over the course of two weeks collected
from a lab testbed. We exclude non-IoT device traffic from
our study as it is beyond the scope of this paper. Table I lists
22 unique IoT devices and their corresponding contribution
(number of packets) to the UNSW dataset, consisting of a
total of 7.8 m packets.

We note that this dataset contains both autonomously-
generated and user-generated traffic. Also, there is no mali-
cious or spoofed traffic, meaning noise is kept to a minimal
level during the learning process for the classifiers.

We do not apply any class sampling techniques since [15]
showed that such techniques do very little to improve the
overall performance of the model. To ensure a comprehensive
evaluation, we use a combination of metrics in our experiments
(Accuracy, F1, Precision, Recall, Matthews coefficient). We
did not make changes to the dataset after filtering out the
packets that came from non-IoT devices. This was done by
comparing the packet’s source IP/MAC address against a list
of known IoT IP/MAC addresses. We keep all IoT devices in
our analysis, even those classes that are relatively less active
such as the NEST Protect Smoke Alarm. The reason being
classifiers are expected to handle such realistic heterogeneous
classes and behaviors.

We split the dataset into 70% for training and the remaining
30% for testing. Note that the split is done temporally and
not randomly. This approach was chosen to mimic real-



(a) No Disagreement. (b) Partial Disagreement. (c) Full Disagreement.

Fig. 1. Measure of disagreement: (a) no, (b) partial, and (c) full, across three IoT device classifiers.

world scenarios where data streams continuously. Doing so,
we found that the training portion of this split does not
contain any packets of Nest Dropcam; hence, this class is
never seen/learned by our models. We will use this device
(§IV-C) to see how the models predict an unseen class. In
addition, three devices do not appear in the test data (Blipcare
Blood Pressure Meter, PIX-STAR Photo-Frame and TP-Link
Day Night Cloud Camera). These devices continue to serve
a purpose in the experiment by increasing the difficulty for
classifiers to accurately identify the correct class.

B. Chosen Classifiers

We selected three models for our research based on the
criteria of accepting packets as input, ease of implementation,
ability to handle encrypted traffic, and not being trained on
the UNSW dataset. In what follows, we provide a summary
of each selected model.

IoTSentinel: This classifier [6] uses features from packet
headers. [6] identifies IoT devices based on initial packets
sent during a network onboarding process, such as associating
with a WiFi gateway. A fingerprint matrix is created using 23
features from the first 12 packets in sequence. The majority
of features are binary values indicating the use of certain pro-
tocols across the datalink, network, transport, and application
layers. To avoid retraining the entire model, the authors trained
a specific model per each known IoT class instead of a multi-
class classifier.

IoTSense: This classifier [4] employed features from packet
headers and payload. For packet header features, it uses the
majority of binary protocol features in IoTSentinel. In total,
20 features were selected. IoTSense creates a 100-attribute
fingerprint by extracting data from the first five packets of
each session. This fingerprint was found to be best modeled
by Gradient Boosting.

IoTDevID: Work in [5] started with a total of 112 packet
features. The authors applied a filtering process to select the
top 30 features. These features were then used to evaluate six
independent classifiers to determine which was best suited for
a real-time detection system. From the analysis, it was revealed
that the decision tree had the highest accuracy and F1 score
of 94.3% and 93.7%, respectively.

C. Classifier Adaptation

Analysis of the dataset revealed two features used by
IoTSense [4] and IoTSentinel [6], namely “IP padding”

and “IP alert” had a value of zero throughout the entire
dataset. These features relate to the Router Alert option in
the IP header. Since they provided no information for the
models, we excluded them. We also modified IoTDevID and
IoTSense. Firstly, to diversify the modeling techniques used
by our classifiers, we replaced the decision tree learner (DT)
with a K-Nearest Neighbour (KNN) classifier for IoTDevID
[5]. For IoTSense, we replaced the Gradient Boosting classifier
with a Histogram-based Gradient Boosting classifier due to our
large dataset (§III-A). This substitution had no impact on the
accuracy but decreased the execution time.

For our experiments, we created the classifiers (Random
Forest, KNN, and Histogram-based Gradient Boosting) that
underlie the models using the Python package sklearn [16].
We configure hyperparameters with the values defined in their
original experiments. The primary objective of this experiment
is to combine multiple classifiers at different performance
levels rather than focusing on optimizing their individual
accuracy. We also note that customizing hyper-parameters
for every data stream is practically infeasible in real-world
settings, and models are often expected to be generalizable.
The features identified by IoTSentinel [6], IoTSense [4], and
IoTDev [5] are extracted from packet traces in the dataset
[14] and recorded into three CSV files using the IoTDevID
extraction code [17]. The CSVs are presented as input to their
respective classifiers, where we quantify their performance and
measure disagreement. The causes of the different levels of
disagreement are also analyzed in the next section.

D. Measure of Disagreement Among Classifiers

In this research, we present the “Disagreement” metric
that represents the number of different labels assigned to a
single instance. We define three different ways classifiers can
disagree:

• No Disagreement: As shown in Fig. 1(a), all classifiers
predict the same label for the input instance of traffic.
This can also be interpreted as a full agreement.

• Partial Disagreement: As shown in Fig. 1(b), the ma-
jority of classifiers predict the same label.

• Full Disagreement: As shown in Fig. 1(c), none of
classifiers share their predicted label.

A classified instance can only be in one of the three states.
When more than three models are available, Partial Disagree-
ment could be further broken up into “Majority Disagreement”
when there is a plurality (less than 50% of classifiers agree),



TABLE II
PERFORMANCE OF INDIVIDUAL CLASSIFIERS WHEN APPLIED TO

THE UNSW DATASET (TESTING PORTION: 30%).

Classifier IoTSentinel IoTSense IoTDevID
Accuracy 73% 80% 81%

F1 76% 81% 82%

Precision 84% 86% 85%

Recall 73% 80% 81%

Matthews coefficient 70% 77% 79%

and “Minority Disagreement” when the majority of classifiers
agree. Since this paper experiments with only three classifiers,
the current definition of Partial Disagreement is sufficient.

In our experiments (§IV), the most common label will be
selected as the final label when there is Partial Disagreement.
The most confident prediction will be chosen when there is
a Full Disagreement. The final labels may or may not align
with the ground truth.

IV. MODELS EVALUATION AND DISCUSSION

In this section, we analyze the measure of disagreement
across the three models. We begin by quantifying the per-
formance of the models by applying them to the UNSW
dataset and highlighting differences in our results with those
reported by the original works [4]–[6]. We also analyze how
disagreements vary across IoT classes and communication
protocols. We draw some insights into why the three classifiers
disagree in their predictions. We then present how the measure
of disagreement can be used to identify new classes of devices.

A. Individual Classifier Results

Table II presents the performance metrics, including the
overall accuracy, F1 score, precision, recall, and Matthews
Coefficient of the individual classifiers. The values have
been transformed into a percentage, and percentages are used
throughout this paper.

In the original experiments, the accuracies for IoTSentinel,
IoTSense and IoTDevID’s decision tree were 81.5% [6], 99%
[4] and 94.3% [5], respectively. Their performance, however,
dropped 8-20% in our evaluations. Such performance devia-
tions could be due to multiple reasons. Firstly, we apply no
output purification. In the original experiments, all packets
belonging to a MAC address were considered for classification
at an aggregate level. This means that a prediction (e.g.,
majority label) is assigned to a group of packets associated
with a MAC address. For example, [5] used the mode of
predictions as the final label for those packets. Instead, we
measure the performance on a per packet basis. Additionally,
the original models were trained and tested on a different
dataset [18]. The UNSW dataset contains more varied traffic
than the set-up traffic only Aalto dataset [18] and model
performance can vary across different datasets [19].
B. Ensemble Disagreements

This analysis aims to draw insights into the cause of various
models predicting the class of packets differently. Overall, the
classifiers together correctly labeled 82.15% of the packets,
scoring higher than the individual models. We found that: more

than 70% of tested packets (1.65m) received the same predic-
tion from the three models (No Disagreement), where 97% of
those were correct; 564K packets received two different labels
(Partial Disagreement) – some are attributed to the relatively
poor performance of IoTSentinel compared to the other two
classifiers; and, 123K packets caused Full Disagreement. If
we discard the packets with any disagreement, the accuracy
goes up to 96.78% for individual packet labeling. Additionally,
if packets with No Disagreement are aggregated and the
mode label selected, the device classification accuracy is
94.74% (100% if out-of-distribution devices are not included).
However, we are interested in the reason for disagreement, so
we studied the quantity and quality of disagreements across
devices and measured the disagreements across protocols. This
is reported by Table III, Table IV, and Table V.

1) Disagreement across Classes: The Withings Smart scale
experiences the highest level of disagreement, with 18.43% of
its packets receiving three different labels from the classifiers,
followed by the LiFX Smart Bulb at 13.72%. The Nest Drop-
cam was not considered because its packets were not in the
training dataset. All other IoT classes see Full Disagreements
in less than 10% of their packets. Withings Smart Scale had a
relatively high level of disagreement because there were only
917 test packets. 169 of them caused Full Disagreement as
there was a minimal amount of Smart Scale training data.
Despite this, 157 of the Full Disagreement packets were
correctly labeled. For the LiFX Smart Bulb, manual verifi-
cation revealed the cause of the disagreements is due to the
similarity to Smart Things. 72.78% of the Full Disagreement
packets were DNS packets, and both LiFX Smart Bulb and
Smart Things have identical patterns for their DNS packets.
Since there are more DNS packets associated with Smart
Things, a classifier predicted Smart Things over LiFX Smart
Bulb with a confidence of 100%. However, another classifier
correctly predicted Smart Things for these packets at a lower
confidence (68%). The remaining 28.22% were TCP packets
that caused disagreement, yet the most confident classifier
correctly labeled them as LiFX Smart Bulb. In this study,
we treat the models equally. However, to maximize accuracy,
certain models could be weighted more on certain classes
when their historical behavior has shown they consistently
make correct predictions.

Dropcam had the least number of disagreements, with
97.51% of its packets receiving a shared prediction from the
three models and 99.88% of those predictions were correct.
This is most likely due to Dropcam’s patterns being unique
compared to the rest of the devices and having the greatest
number of training packets. Such uniqueness leads to distinct
traffic patterns, which the classifiers can easily distinguish.
Generally, the closer a device’s function is to that of another
device, the more disagreements there are.

2) Disagreement across Protocols: Table V reports the
measure of disagreement across communication protocols at
the application, transport, network, and datalink layers. Among
application layer protocols, Simple Service Discovery Protocol
(SSDP), Dynamic Host Configuration Protocol (DHCP), and



TABLE III
OVERALL MEASURE OF DISAGREEMENT ON TESTING DATA

ACROSS IOT CLASSES.
IoT class No Disagreement Partial Disagreement Full Disagreement
Dropcam 97.51% 2.48% 0.01%

Samsung SmartCam 68.77% 27.32% 3.90%

Belkin Wemo Motion Sensor 64.58% 32.37% 3.05%

Amazon Echo 77.24% 22.14% 0.62%

Belkin Wemo Switch 63.22% 34.54% 2.24%

Insteon Camera 60.57% 35.60% 3.83%

Netatmo Welcome 41.75% 57.28% 0.97%

Withings Smart Baby Monitor 73.12% 25.83% 1.04%

Smart Things 81.20% 17.82% 0.98%

Withings Aura Smart Sleep Sensor 31.33% 61.60% 7.07%

HP Printer 23.77% 66.53% 9.70%

Netatmo Weather Station 75.37% 24.06% 0.56%

Triby Speaker 24.18% 74.42% 1.40%

LiFX Smart Bulb 55.22% 31.06% 13.72%

Nest Dropcam (Not in training set) 0.17% 6.20% 93.63%

iHome 38.98% 53.81% 7.22%

TP-Link Smart Plug 43.99% 55.28% 0.73%

Withings Smart Scale 9.60% 71.97% 18.43%

NEST Protect Smoke Alarm 63.86% 34.30% 1.84%

Total 70.64% 24.10% 5.26%

Hypertext Transfer Protocol Secure (HTTPS) packets receive
more agreement (about 90% or more) from the three models.
This means those three protocols display distinct patterns in
their packets that the three models reliably learn. We found
that the majority (about 93%) of SSDP packets in the UNSW
dataset belong to the Samsung SmartCam, and 87% of the
DHCP protocol came from the Netatmo weather station. Thus
leading to 99.72% of the SSDP packets and 92.76% of the
DHCP packets causing No Disagreement. HTTPS is used
by only 11 of the devices and 75% of the packets are sent
by Dropcam. This imbalance makes it easier to distinguish
Dropcam packets. On the other hand, Domain Network Sys-
tem (DNS) packets received the largest Full Disagreement
(12.51%). This can be attributed to the fact that the features are
dissociated to the payloads, and the headers of DNS packets
often lack strong identifiable patterns. Finally, Network Time
Protocol (NTP) packets have the most partial agreements as
they also have no unique patterns in the dataset. 67.52% were
labeled correctly because the Insteon Camera made up 67.39%
of the testing data NTP packets.

In the transport layer, despite the lack of information ex-
tracted from User Datagram Protocol (UDP) packets, 87.45%
received full agreement (No Disagreement). This percentage
is 10% higher than for Transmission Control Protocol (TCP)
packets. Full Disagreements for TCP packets (6.66%) is more
than five times (1.27%) UDP packets. Further analysis re-
vealed that most TCP packets with Full Disagreement contain
zero payload, as they are parts of the TCP handshake. For
example, 40-byte TCP packets are simple acknowledgments
and resets. TCP packets with non-zero payloads comprise a
small fraction of the full-disagreement cohort.

No strong insight can be drawn from the network-layer pro-
tocols. More than 45% of Internet Control Message Protocol
(ICMP) packets get full agreement from the three models,
while more than half lead to Partial Disagreements. The three
models partially disagree in predicting ICMPv6 packets as
HP Printer and Netatmo Welcome generate over 50% of the
packets together. More than a third of ICMPv6 packets were
labeled correctly, despite receiving low confidence scores of

TABLE IV
MEASURE OF DISAGREEMENT ON TESTING DATA

WHEN PREDICTION IS “CORRECT”.
IoT class No Disagreement Partial Disagreement Full Disagreement
DropCam 99.88% 9.41% 28.57%

Samsung SmartCam 96.25% 72.86% 36.22%

Belkin Wemo Motion Sensor 84.68% 50.62% 43.85%

Amazon Echo 99.45% 42.61% 94.37%

Belkin Wemo switch 88.64% 58.41% 0.85%

Insteon Camera 98.39% 69.63% 99.63%

Netatmo Welcome 98.33% 26.55% 8.92%

Withings Smart Baby Monitor 100% 96.53% 100%

Smart Things 100% 0.05% 100%

Withings Aura Smart Sleep Sensor 99.76% 62.71% 24.87%

HP Printer 99.99% 79.77% 14.90%

Netatmo Weather Station 100% 13.92% 92.98%

Triby Speaker 65.36% 58.35% 11.56%

LiFX Smart Bulb 99.77% 0.10% 7.22%

Nest Dropcam (Not in training set) 0% 0% 0%

iHome 85.86% 54.39% 67.27%

TP-Link Smart Plug 74.20% 15.75% 42.86%

Withings Smart Scale 53.41% 84.09% 92.90%

NEST Protect Smoke Alarm 84.17% 78.57% 58.33%

Total 96.78% 53.49% 17.03%

less than 40%. In this paper, we utilize raw confidence scores
reported by individual models. These scores can be normalized
to better interpret corresponding predictions; however, this is
outside the scope of this study.

Finally, in the datalink layer, Logical Link Control (LLC)
packets of IoT devices contain distinct patterns that are learned
by our classifiers (All the packets had No Disagreement).
More than 90% of LLC packets in our dataset are generated
from the Netatmo weather station; thus, this situation is
comparable to the SSDP packets mentioned above. Despite
Address Resolution Protocol (ARP) packets having a greater
balance across classes, the packets using this protocol received
Partial Disagreement. More than 13% of the training ARP
packets came from the Withings Smart Baby Monitor and
since no distinct patterns were extracted by the feature set,
most classifiers predicted ARP packets as Withings Smart
Baby Monitor. Extensible Authentication Protocol over LAN
(EAPOL) packets mainly originate from Netatmo weather
station (40% of all EAPOL packets). Similar to ARP, EAPOL
packets also do not have many unique statistical patterns for
the classifiers to learn.

The main reason certain protocols have close to 100% No
Disagreement or Partial Disagreement is that the feature sets
do not yield unique patterns for those protocols. As there is no
patterns to learn, the classifiers will predict the most common
label for that protocol. IoTSentinel [6], IoTSense [4], and
IoTDev [5] focus on extracting information from TCP and
UDP protocols because of their predominant presence. Packet
aggregation techniques are then used to correctly classify other
protocols.

C. Out-of-Distribution Detection

The Nest Dropcam packets were absent during training.
Therefore, it became an out-of-distribution class for the clas-
sifiers during the testing phase and resulted in the greatest
disagreement across the classes with 93.63% of its packets
causing Full Disagreement. Less than 0.2% of the packets
received No Disagreement. However, the packets that had full
agreement were incorrectly labeled as Dropcam because they



TABLE V
MEASURE OF DISAGREEMENT ACROSS COMMUNICATION PROTOCOLS.

Protocol No Disagreement Partial Disagreement Full Disagreement
Application layer
DNS 70.77% 16.72% 12.51%

HTTPS 88.77% 3.02% 8.21%

DHCP 92.76% 7.24% 0%

MDNS 77.81% 18.44% 3.75%

SSDP 99.72% 0.25% 0.03%

NTP 0.01% 99.99% 0%

Transport layer
TCP 77.35% 16.59% 6.06%

UDP 87.45% 11.28% 1.27%

Network layer
ICMP6 0.26% 99.74% 0%

IP 78.78% 15.37% 5.85%

ICMP 45.16% 50.25% 4.59%

Data-Link layer
ARP 0% 100% 0%

LLC 100% 0% 0%

EAPOL 71.44% 20.35% 8.21%

were using HTTPS. Thus, the classifiers had a confidence
between 50% and 100% for the No Disagreement labels.
This shows that the confidence of the prediction does not
necessarily correlate with its reliability.

This example shows that using the heuristic of the number
of Full Disagreements being greater than the number of Partial
and No Disagreements (i.e., Full Disagreements > 50%) could
be useful in detecting out-of-distribution classes. Furthermore,
this heuristic could be extended to monitor device behavior
by using a sliding window. When the number of full disagree-
ments in the window reaches 50%, then a new behavior has
likely started. There will be a tradeoff with the window size as
smaller sizes would detect new behavior quickly but be more
susceptible to false positives. Larger windows would have the
opposite attributes. Future work will verify the efficacy of this
heuristic.

V. CONCLUSION

The inference reliability of an ensemble can be improved
by investigating the structure of disagreement. This paper has
introduced a novel metric for measuring disagreement among
packet classifiers and has demonstrated its utility for inter-
preting and rectifying predictions. By employing three models
from previous research and applying them to a public dataset,
we have uncovered insightful results regarding the agreement
and disagreement among the models. Notably, approximately
70% of packets in our dataset exhibited full agreement among
the predicted labels from the three models, with an accuracy
rate of over 96%. This finding indicates that when the models
converge on a unanimous prediction, the reliability of the
ensemble increases significantly.

Conversely, around 5% of the packets resulted in full
disagreement among the models, highlighting instances where
the ensemble’s reliability may be compromised. Intriguingly,
more than 80% of these packets were misclassified by the
models. This indicates that the best strategy for device clas-
sification is to discard those predictions and rely only on No
Disagreement predictions. Additionally, our analysis revealed
that certain protocols, such as HTTPS, DHCP, and LLC, exhib-

ited relatively lower levels of disagreement. These protocols
displayed unique patterns in the packets of IoT devices, sug-
gesting the presence of distinct characteristics that contribute
to higher prediction agreement. However, these patterns will
be impacted by the feature selection. By recognizing and
leveraging these patterns with appropriate features, we can
further improve the inference reliability of ensemble learners
when classifying packets from these specific protocols.
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