
Programmable Active Scans Controlled by Passive
Traffic Inference for IoT Asset Characterization

Hugo Sullivan, Arunan Sivanathan, Ayyoob Hamza, and Hassan Habibi Gharakheili
School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia.

Emails: {hugo.sullivan@student., a.sivanathan@, m.ahamedhamza@, h.habibi@}unsw.edu.au

Abstract—The proliferation of Internet-of-things (IoT) assets
has expanded the attack surface of enterprise networks exposed
to malicious actors. Therefore, obtaining visibility into connected
assets and their behavioral characteristics is increasingly becom-
ing essential to security teams in better managing their network
and connected assets. Scheduled vulnerability scans are widely
used by enterprises to manage traditional information technology
(IT) assets. However, resource-constraint IoT assets may not
always withstand disruptive active scans. Passive traffic inference
tools have recently emerged for continuous network detection
and response capabilities that can be safely applied to IoT and
IT networks. Both active and passive approaches come with
advantages and limitations in the insights they provide versus
measurement and computing costs. This paper attempts to sys-
tematically and dynamically leverage the combined capabilities
offered by these two approaches. Our contributions are twofold.
(1) We highlight capabilities (richness of insights, response time,
and temporal utility) and quantify costs (overhead traffic and
computing resources) across five active scanning tools (open-
source and commercial) and a commercial passive inference tool
by applying them to our testbed consisting of 12 commercial IoT
devices; and, (2) We develop “pScan”, a programmable packet
emitter with open APIs that is dynamically controlled to perform
contextualized scans on target IoT assets via SNMP, mDNS, and
SSDP packets, as well as banner grabbing and custom probing via
TCP connections. We show on our testbed how pScan integrated
with the commercial passive inference tool helps to maximize the
insights into the characteristics of IoT assets and their utility at
significantly reduced costs. We contribute pScan as open source.

Index Terms—IoT asset characterization, active scans, passive
inference

I. INTRODUCTION

Enterprises and businesses are increasingly becoming digi-
tized and hyper-connected by adopting diverse classes of IoT,
OT (Operational Technology), or cyber-physical assets (e.g.,
cameras, programmable logic controllers, building sensors,
air quality monitors, printers, or screens). This trend has
led to an expanded attack surface and significant growth in
the frequency and impact of cyber attacks [1]. Therefore,
enterprise security teams find that it has never been a more
important time to know what assets are present on the network
(asset composition visibility) and what they do (asset behavior
monitoring), helping them manage the fast-changing attack
surface [2].

Traditionally, enterprise operators relied upon network scan-
ning tools to obtain “point-in-time” (scheduled) visibility into
IT assets (i.e., physical or virtual machines). These tools ac-
tively and often aggressively generate tailored request packets

(e.g., TCP/UDP, ICMP, SNMP) towards the networked assets,
interrogating them to produce specific responses revealing
installed OS/software, open ports, make/model, security con-
figuration settings, or known malware. However, relatively
broad and uncontrolled active scans can risk the operation of
sensitive IoT assets by overwhelming their limited compute
resources (due to excessive traffic and workload) and hence
degrading and/or disrupting their intended functions. As a re-
sult, network administrators often isolate the network segments
of IoT assets from active scanners, which results in limited
visibility. Additionally, if compromised or instrumented by
agents like IpMorph [3], target assets can obfuscate their
identity against known aggressive scan queries (e.g., TCP SYN
packets from tools like Nmap, Xprobe2, and SinFP).

More recently, non-invasive tools [4] have emerged that
passively and continuously analyze network traffic to classify
connected assets [5], characterize their behavior [6], determine
cyber-risks in their profiles [7], detect anomalous patterns [8],
and infer their software components [9]. Fortunately, passive
techniques are equally applicable to IoT and IT assets, po-
tentially obtaining fresher and richer visibility into connected
assets and their attack surface. With pure passive inference,
however, it may take a while before certain behavior (possibly
infrequent) or explicit knowledge pertinent to networked assets
is observed. In this paper, we aim to leverage the combined
capabilities of passive and active approaches in a controlled
(“selective”) and cost-effective manner.

We make two specific contributions. Our first contribution
(§III) systematically experiments with five (four open-source
plus a commercial) active scanning tools and a commercial
passive inference tool by applying them to our lab testbed
consisting of 12 commercial IoT devices. We highlight the
individual capabilities of these tools and quantify their costs
in terms of temporal utility, obtained insights, overhead traffic,
and computing resources. Our second contribution develops a
tool called pScan to emit packets on the network programmati-
cally and dynamically via API calls—we open-source our tool.
We build a system by integrating pScan with the commercial
passive inference tool (we used for benchmarking) to perform
contextualized scans on target IoT assets. We demonstrate how
controlled scans help operators of IoT networks maximize
insights into characteristics of certain IoT assets while costs
are kept at a minimum.

Cyber-physical
Network

Active scanner

mirror of entire data-plane
traffic (uni/multi/broadcast)
to/from connected assets

scan requests

scan responses

Passive Inference

IoT assets

Fig. 1. Active versus passive characterization methods.

II. RELATED WORK

Asset Characterization: Mapping and characterizing net-
work assets have been of interest to academia and industry
for more than two decades. Both active [10], [11], [12] and
passive [13], [14], [15], [12] monitoring methods have been
employed to profile the behavior of various IT (servers and/or
end-hosts) and IoT networked assets. In the context of IT
asset management, OS fingerprinting [16] is the top use-
case whereby active scans are primarily employed to assist
network administrators in detecting unauthorized, outdated, or
vulnerable versions of operating systems on their network.

Work in [3] highlights the practical challenges of asset
fingerprinting and demonstrates how known tools can be
actively disturbed (misled) by target assets. Similar to the
popular search engine “shodan.io”, work in [17] builds upon
an open-source active scanner (ZMap) to conduct Internet-
wide scans, and grabs protocol banners (e.g., HTTP, FTP, SSH)
to identify vulnerable assets and networks. In the context of
home networks, work in [10] utilizes user-initiated network
scans to draw insights into the adoption of consumer IoT
devices and their security posture across the globe.

Recent research extensively focused on IoT assets and
employed network packets and/or flows to passively infer
their identity (clusters [18], make/models [19]) or behavioral
characteristics [20], [21]. Authors of [11] attempted to discover
known IoT assets on the network by way of custom TCP scans.

IoT Attack Surface Management: Large-scale cyberse-
curity incidents like Mirai botnet [22] have given rise to
research on quantifying [23], [7] and managing [24], [25]
cyber risks of IoT assets in residential, enterprise, and critical
infrastructure settings. Policymakers, regulatory bodies, and
standard agencies have attempted to propose approaches, such
as Manufacturer Usage Description (MUD) [26] or Software
Bill of Material (SBoM) [9], to enhance the transparency of
IoT characteristics, leading to systematically managing their
vulnerabilities and attack surfaces at network/device levels.
Authors of [23] actively subject IoT devices to reflective
attacks quantifying their amplification factors. Work in [7]
passively analyze HTTP traffic exchanged by IoT devices to
assess their authentication vulnerabilities. Work in [25] proac-
tively enforces intended network flows (supplied by known
MUD files) of each connected IoT device to lock their network
behaviors and isolate/inspect unintended communications.

Our paper is inspired by prior work and focuses on a
new method for characterizing IoT assets, developing a base
knowledge from passive inference, and expanding it by contex-
tualized and controlled active scans. This work helps operators
of large IoT/OT/cyber-physical environments map connected
assets on their network and determine their fine-grained char-
acteristics (make/model, role, firmware, network behaviors).
This systematically enables them to perform subsequent man-
agement tasks (e.g., appropriate segmentation, firmware up-
grade, access rules configuration, assessing security posture).

III. QUANTIFYING EFFICACY OF ACTIVE SCANNERS
VERSUS PASSIVE INFERENCING

There exist a number of open-source tools and commer-
cial products for active network scanning and passive traf-
fic inferencing. Fig. 1 illustrates how these two approaches
fundamentally differ. Active scanners (shown on the top left)
send custom requests (orange packets) to assets on target
subnets and analyze scan responses (green packets), if any,
from one or more assets connected to the network. On the
other hand, the passive inference engine (shown on the top
right of Fig. 1) continuously ingests the entire network traffic
(unicast/multicast/broadcast packets) sent and received by in-
dividual connected assets. In what follows, we will experiment
with a collection of these tools/products on our IoT testbed,
measure performance metrics, and highlight their capabilities
versus costs.
A. Experimental Testbed

Our testbed comprises a TP-Link Archer C7, serving as a
local switch and the Internet gateway for 12 unique consumer
IoT devices, including cameras (×3), switches and triggers
(×3), printer (×1), lightbulb (×1), and entertainment electron-
ics (×4) devices. The testbed also serves two host machines (a
Linux and a Windows) running scan tools and feeds a second
Linux machine running a passive inference tool. Connected
devices and machines share an IPv4 subnet of 192.168.1/24.
The gateway is flashed with OpenWrt firmware (and additional
packages) for mirroring the network traffic to the second Linux
machine. The first Linux machine hosting open-source active
scan tools has an Intel i5 with four cores at 3.20 GHz and
8 GB of memory; the Windows machine for the commercial
active scanner has an Intel i5 with four cores at 3.20 GHz and
8GB of memory; and, the second Linux machine running the
passive software has an Intel Xeon(R) Gold with eight cores
at 2.20GHz, and 16 GB of memory.
B. Tools

For the research of this paper, we experiment with four
open-source scanners, a demo version of a commercial scanner
(“Comm. Scanner”), and a demo version of a commercial pas-
sive inference tool (“Comm. Passive”) with well-documented
inbound and outbound APIs.

Nmap is a powerful, well-documented, and popular active
OS fingerprinting tool. It is well supported with an extensive
operating system database with corresponding signatures, an
excess of features, and a graphical interface (Zenmap). Its OS

TABLE I
EVALUATING PERFORMANCE OF ACTIVE SCANNING AND PASSIVE INFERENCE TOOLS.

Insights Traffic Overhead (# packets / asset) Computing Average
Tools Emitted Packet Types

OS Mnfctr
Services

Open/Exposed
Services
Accessed

Hostname
Basic

Reconnais.
OS

Services
Exposed

Host name
CPU
(%)

RAM
(KB)

Response time (s) Utility

Nmap ARP, HTTP, ICMP, TCP, UDP ✓(5) ✓(9) ✓(6) ✗ ✓(8) 378.58 89.92 17.92 0 1.15% 46, 220 191.20 79.5%
XProbe2 ICMP, TCP ✓(1) ✗ ✗ ✗ ✗ 61.83 11.58 ✗ ✗ 26.33% 8, 040 2791.88 79.5%
Masscan TCP ✗ ✗ ✓(6) ✗ ✗ 2135.75 ✗ 6.75 ✗ 0.92% 44, 220 38.08 79.5%

Angry IP
ARP, HTTP, NBNS,
TCP, UDP, MDNS

✗ ✓(8) ✓(2) ✗ ✓(9) 123.00 ✗ 6.42 0.50 0% 600 12.42 79.5%
Active

Comm. Scanner
TCP, SSDP, SNMP, SIP,
MDNS, LLMNR,
NBNS, ICMP, ARP

✓(1) ✓(12) ✓(2) ✗ ✓(9) 422.75 2.10% 166, 800 116.81 79.5%

Comm. Passive – ✓(5) ✓(12) ✓(12) ✓(12) ✓(8) 0 11.96% 7, 930, 000 0 100%

fingerprinting tool is relatively comprehensive, using thirteen
TCP probes1, one UDP probe, and two ICMP probes. Nmap
[27] also offers port scanning and banner grabbing with addi-
tional probes to detect the version of services running on open
TCP/UDP ports. By default, Nmap begins by banner grabbing,
using 3000 “NULL probe signatures” to recognize different
types of welcome banners. If services are not fully detected, it
will send additional probes progressively until the service and
version are determined. These probes are dynamically chosen
based on what is inferred from the welcome banner and the
rarity value associated with each built-in probe.

Xprobe2 was introduced to overcome practical challenges
(e.g., the existence of network filtering devices, load balancers,
and scrubbers, or modifications made on target machines) for
active OS fingerprinting. This tool primarily relies on the
ICMP-based probes, sending four packets, including two echo
requests, a Timestamp request, and an Address Mask request.
It may also emit a few TCP SYN followed by UDP packets
masquerading as DNS queries. In contrast to the TCP-based
OS detection tests, Xprobe2 uses fewer scan packets. Still,
it applies its sophisticated “fuzzy” algorithm, a matrix-based
fingerprinting matching approach based on OCR recognition,
inferring the OS. This matching algorithm is more intensive
computationally than Nmap’s strict matching [28].

Masscan is a tool optimized to perform fast scans (similar
to ZMap/ZGrab) at the Internet scale to discover vulnerable
connected hosts. Masscan is claimed [29] to be able to scan
the entire Internet in under 3 min by sending 25 M packets
per second. In addition to standard TCP SYN port scan
on the entire subnet, this tool relies on banner grabbing
performed on well-known TCP protocols like FTP, HTTP,
IMAP4, Memcached, POP3, SMTP, SSH, SSL, SMBv1/v2,
Telnet, RDP, and VNC.

Angry IP Scanner is a lightweight [30] network man-
agement tool with a graphical user interface that discovers
network devices and host-names primarily based on NetBIOS,
mDNS, and DNS protocols. Additionally, this tool employs
two HTTP probes if TCP/80 is found open, determining
whether a web service is exposed by the target asset.

Comm. Scanner focuses more on identifying the
make/model of connected devices rather than simply identi-
fying their OS and comes with a comprehensive GUI. By
manually analyzing the network traffic generated by this

1A probe is a packet with custom-crafted headers and/or content designed
to elicit specific responses.

commercial tool while performing a scan, we found that it
employs SNMP (with specific OIDs2) and more common
probes like TCP, UDP, and ICMP to gather information about
its target asset.

Comm. Passive aims at automatically generating and pro-
filing the network behavior (in a form compatible with the
MUD standard) for individual networked assets by ingesting
and processing their network traffic in real time. It also comes
with engines to opportunistically infer asset make/model and
OS from typical packets (e.g., DHCP, ICMP, SNMP, HTTP,
SSDP, mDNS) assets that may exchange on the network for
their normal operation. Additionally, this tool highlights cyber
risks and detects anomalies (deviations from a baseline) in
asset network behaviors on its web-based dashboard.
C. Performance Metrics

We quantify the performance of these tools by five specific
metrics: (i) as briefly mentioned above, each tool comes
with specific objectives. Therefore, they employ certain tech-
niques/strategies to draw various insights into connected de-
vices and their characteristics. We split insights into five pil-
lars: OS, device manufacturer, network services open/exposed,
network services accessed, and host names; (ii) for each
category of insights (wherever applicable), we measure traffic
overhead by the average number of packets emitted per asset
on the network; (iii) the tools consume computing resources
to ingest received packets. For passive scanning tools, we
measure the average CPU/RAM utilization during the course
of one scan round for the entire testbed. For the passive
tool, we measure the average computing resources over 30
minutes; (iv) for active tools, expected insights can be obtained
only when networked assets respond to probing packets. We
measure the total duration of each scan round as a proxy for
response time. For the passive tool, we consider this measure
zero as it continuously analyzes traffic and generates/updates
insights; and, (v) the freshness of insights diminishes in time
and can be modeled by a utility metric. In other words, utility
is a non-increasing function of the age of information (AoI)
[31] that we estimate by:

U(t) =
2

eαt + e−αt
(1)

where the utility U(t) realizes its maximum value (100%)
at t = 0 when insights are first obtained, and the value tends to

2An Object Identifier is a string of numbers that identify a device within the
Management Information Base (MIB) hierarchy and the status of its specific
variables.

⊛

ICMP code(*)

ICMP type(8)

Managed servers

ICMP ipv4-acl-type

⊛

443 hpeprint.com

TCP
5222

15.73.182.64

80

⊛

8080

53

Managed domain servers

UDP

5353

224.0.0.251

ff02::fb
ipv6-acl-type

68

67
Gateway

161

546

547
fe80::/64

ff02::1:2
5353

Fig. 2. Full behavioral profile of the HP printer obtained by the passive
inference tool.

zero at infinity. Parameter α defines how quickly this function
decays. The rate of decay can be perceived differently across
IoT environments and/or network operators. For the sake of
quantitative measures, let us assume it drops to half after a
unit of time (say, a day), meaning α = cosh−1(2).
D. Evaluation Results

We now apply individual tools to our experimental testbed.
Note that Nmap and Masscan require an intended list of
scanned ports to be specified as arguments. Nmap allows
scanning of the most common ports with two separate built-in
lists for TCP and UDP, but by default, it goes with TCP only.
Note that these two active tools can also perform full scans,
covering more than 65000 possible ports for each TCP and
UDP. However, full scans can be significantly expensive (traf-
fic overheads) and long (response times). To balance insights
against costs, we choose the top 100 ports from the Nmap
built-in TCP list. For consistency, we feed the same list to
Masscan. We employ Xprobe2, Angry IP, and Comm Scanner
with their default/basic configurations. Table I summarizes the
five categories of performance metrics measured for individual
tools. It is important to note that the tools we study in this
paper differ in their capabilities across performance metrics.
Missing or not-applicable metrics are indicated by “✗” marks.

Starting from the insights column, cells with a “✓” highlight
the number of IoT assets (out of a total of 12) for which
the corresponding characteristic can be obtained. For example,
Nmap determines the OS for five IoT devices connected to our
testbed, while Masscan cannot provide this specific insight. It
can be seen that Masscan only obtains information about the
services open/exposed by six networked IoT assets. Standard
port scans can determine open services. For the services
exposed, active tools may use two methods: banner grabbing,
and service and version detection. Banner grabbing is the
process of establishing a TCP connection with a target asset
and waiting (typically 5 sec) for the asset to respond with a
packet called a welcome banner. Service and Version detection
is a term used by Nmap and is a process by which the scanner
sends a series of probes on a specific port being investigated,
attempting to verify a service (e.g., HTTP) and/or determine
the service version running on that port. For example, for
an HTTP server (e.g., open ports TCP/80, TCP/8080, or
TCP/8000), Nmap would start checking HTTP/1.0 followed
by HTTP/1.1 with corresponding GET requests, determining
whether a specific version of HTTP is present or not.

A key observation is that the passive tool uniquely differ-
entiates itself from all active scanners in determining services
(ports) accessed for all 12 IoT assets. Note that active tools are
inherently incapable of obtaining this specific insight. Also, it
can be seen that the passive tool maps exposed services for
all IoT assets on our testbed at no cost – the next best tools,
by this metric, are Nmap and Masscan, which detect services
open/exposed by half of the IoT assets. We found that the
passive tool detected a total of 166 exposed services across
12 IoT devices. The five active scanners together, on the other
hand, detected only 16 services exposed by these IoT devices.
The reason for such a significant gap could be twofold: (a)
some assets with a certain service exposed, for some reason
(e.g., security/privacy), may choose not to respond to scanners’
standard port scans and/or synthetic probes of banner grabbing
or service&version detection, and (b) scanners often (like
in our experiments) look for a subset of popular services,
missing less-popular or non-standard ones. Passively observing
networked assets, naturally communicating with their intended
endpoints, on the other hand, would probably increase the
chance of detecting services (ports) they expose on the net-
work. Fig. 2 illustrates the behavioral profile (Sankey diagram
obtained by the passive tool) for a representative device, the
HP printer, connected to our testbed. Darker lines highlight
outgoing communications from the asset (services accessed),
and lighter lines highlight incoming communications to the
asset (services exposed). In these Sankey diagrams, columns
from the left-most to the right-most are the asset, asset port
number or ICMP code, the remote port number or ICMP type,
remote endpoint (e.g., “hpeprint.com” or “244.0.0.251”),
transport-layer or network-layer protocol (e.g., TCP, UDP,
ICMP), and IP protocol (IPv4, IPv6), respectively.

Moving to traffic overhead, we observe that Massscan
comes first, with an average of more than 1300 packets emitted
per IoT asset, followed by Nmap and Comm Scanner, each
with more than 400 packets per asset (on average). It is
important to note that such overheads strongly correlate with
the number of insights these three tools provide. It can be
seen that scanning tools tend to spend most of their emitted
packets on basic reconnaissance (presence on the network,
open ports, and/or manufacturers) with a combination of ARP
and/or ICMP Echo packets, plus (in some tools) simple TCP
port scans. The MAC address in ARP responses can help
determine asset manufacturers. We found that Massscan (pri-
marily designed for use across the Internet) performs “blind”
TCP scans (of 100 popular ports) on the entire /24 subnet
in our testbed, though only 14 IPv4 addresses (twelve IoT
assets plus two machines) are active on the network, hence
resulting in significant overheads. On the other hand, Nmap
and Comm Scanner (designed for more controlled/closed
networks) launch TCP port scan only on those IPv4 addresses
discovered by ARP queries. For Comm Scanner, we could
not precisely determine what packets were used to obtain
what pieces of information about the target device; hence an
aggregate measure of traffic overhead is reported accordingly
in Table I. Also, it can be seen that XProbe2 and Angry IP, as

expected, impose comparatively less overhead on the network
due to their narrow focus on specific protocols (e.g., ICMP,
mDNS) and not using wide-range scans. Finally, Nmap relies
on DNS queries to obtain asset host names – probably cached
on the Linux machine before our experiments, hence zero
packets. However, tools like Comm Scanner and Angry IP
use mDNS on top of DNS queries, thus non-zero packets. We
note that active tools lack context, resulting in unnecessary
costs. For example, they often need to discover open/available
ports/services by way of relatively blind and wide scans before
they start collecting meaningful insights. We will see in §IV
how scans can be contextualized by foundational knowledge
obtained from passive inference at no traffic cost.

For computing costs, we employed the htop application on
Linux machines to measure and record CPU/RAM utilization
every three seconds. On the Windows machine, we used the
Resource Monitor application to measure these two metrics.
For comparison, all measurements of CPU utilization are
normalized to 4 cores operating at 3.2 GHz. We see in Table I
that the passive tool, unsurprisingly, consumes a substantial
amount of resources (≈11% CPU and ≈8GB RAM). Recall
this tool continuously analyzes and makes inferences from
the entire network traffic, as opposed to certain response
packets analyzed by active scanners – hence, relatively high
RAM utilization is expected. XProbe2 demands a high amount
(26.33%) of CPU among the five active tools due to its intense
matching algorithm, while others are relatively light. Comm
Scanner costumes the highest amount (>160 MB) of RAM
among the five scanners. Thanks to a few scanned packets
judiciously and efficiently chosen, Angry IP outperforms the
scanner rivals by its tiny usage of both CPU and RAM.

Looking at response time in Table I, Masscan performs
impressively fast (≈38 sec), given its highest traffic overhead.
This is because Masscan operates asynchronously (as opposed
to other scanners) with two independent threads (one for
sending queries and one for receiving responses), meaning it
does not have to wait for replies before sending more port scan
packets. Xprobe2, surprisingly (given its lowest overhead),
performs the worst among the five active tools with a response
time of ≈2800 sec. This is mainly attributed to its complex
matching method coupled with the single threading, severely
slowing down its operation. The remaining tools give response
times comparable to their way of emitting packets.

Finally, in terms of utility, all active scanners are equally
suboptimal. To address this issue, network operators often
schedule periodic scans. We model (not measure) this metric
with the parameter α in Eq. 1. Let us assume scans are
repeated every day to make active scanners, to some extent,
comparable with passive inference. Note that scans are typ-
ically scheduled quarterly or monthly. Even with an unusual
frequency (daily), we see the average utility of active scanners
is less than 80% versus 100% of the passive approach. Though
the visibility of the passive approach is always fresh, it is
incomplete at the beginning of traffic observation. It progres-
sively gets enriched over time as more behavioral patterns and
characteristics emerge in the network traffic.

Cyber-physical
Network

pScan

mirror of entire data-plane
traffic (uni/multi/broadcast)
to/from connected assets

controlled
scan packets
emitted

Passive InferenceAPI calls for
contextualized scans

IoT assets

Fig. 3. Our proposed solution: passive inference combined with pScan, a
programmable packet emitter.

IV. OUR COMBINED PASSIVE-ACTIVE METHOD

We saw in the previous section that passive inference is
inherently more capable than active scanning to obtain rich
and real-time visibility into assets and their characteristics at
no risk of downtime or disruption (zero overhead traffic) for
sensitive IoT assets. Particularly, active scanners are blind to
services accessed by networked assets. Also, exposed UDP
services in our experiments remained undiscovered by active
scanners since only the top 100 TCP ports were targeted
(primarily because we aimed to reduce overhead traffic). It
is, however, important to note that active scanners can quickly
characterize well-known (but rarely-used) services IoT assets
expose. In other words, active scans can help accelerate
obtaining (close to) complete visibility without waiting for
infrequent/rare patterns to emerge on the network. In this sec-
tion, we aim to leverage the capabilities of active and passive
approaches, realizing efficient and comprehensive visibility
into IoT asset characteristics. In what follows, we outline the
technical details of our solution and evaluate its efficacy.

System Architecture: Fig. 3 illustrates the architecture of
our proposed solution. The key component of the solution
is a programmable scanner, shown as an orange box on the
top left of Fig. 3, that emits specific packets dynamically
on demand. We developed and open-sourced a software tool3

called “pScan” for this programmable scanner. It can be seen
that API calls (dashed green arrow from right to left in Fig. 3)
from other tools drive our packet emitter. The tool unifies
existing libraries and exposes a simple API to other tools
to utilize. In this paper, the passive inference engine (the
blue box on the top right of Fig. 3) is the caller, making
dynamic calls whenever additional information is needed for
one or more IoT assets. It is important to note that the emitter
module solely sends scan requests (to specified assets) and
does not process responses to those request packets. Needless
to say, the passive inference tool will ingest scan requests and
corresponding responses (orange and green packets carried by
the mirror link in Fig. 3) in conjunction with other packets
to/from all networked assets.

APIs: Our packet emitter exposes APIs, allowing for
dynamic (on-demand) and contextualized scans. Each POST
API call would specify target devices (e.g., a device unit,
multiple units, or a subnet), an intended type of scan packet

3https://github.com/hugo-sullivan/pScan

(e.g., SNMP, mDNS), the number and timing of packets, and
parameters specific to each packet type (e.g., OID for SNMP).

Packet Types: pScan is extensible and currently supports
four packet types, namely “TCP banner grabbing”, “SNMP”,
“mDNS”, and “SSDP”. Banner grabbing is an efficient way
of detecting services running on the target device and actively
verifying whether there is any change from the last measure-
ment (some devices may not display event-based behaviors for
days/weeks). The parameters of this call include intended TCP
ports to be checked and a boolean variable if additional probes
are required. For this specific functionality, pScan uses Nmap
under the hood, supporting 650 protocols. pScan calls for
SNMP packets require a boolean indicating get or get-bulk, a
string for the OID (a tree structure), and two integers (start and
iteration times) specifying a region of the OID tree for a get-
bulk request, as parameters. The required parameters of mDNS
calls is a query name. Subsequently, pScan emits a PTR query
(aiming at discovering services and hostnames) to the default
multicast address 224.0.0.251. For SSDP an integer between
1 and 5 for the MX (max waiting time in seconds). pScan
emits an M-Search query to the default multicast address
239.255.255.250. The tool supports additional packet types
being added in the future – pScan’s public repository provides
instructions on how it can be extended.

Benefits of Contextualized Scans: Based on the results
from §III-C, we start using the passive tool as a base to char-
acterize IoT assets of our testbed, assisted by the pScan contex-
tualized scans. The passive tool discovered that SNMP is only
supported by one of the connected devices, but no informative
OID is set in those generic SNMP communications by that
device. The passive tool thereby calls pScan to emit an SNMP
packet to that device with OID set to 1.3.6.1.2.1.1.5.0
(SNMP MIB-2), leading the device to reveal its model “SNH-
6410”. It next requested a second SNMP packet with the OID
equal to 1.3.6.1.2.1.1.1.0 obtaining a description “Samsung
iPolis H.264 Premium Level IP Camera” from the device.
The passive tool found a device port TCP/80 long inactive
following initial discovery. Therefore, it makes a call to pScan
to emit an HTTP 1.1 probe to that specific device which
responds with its model “HP ENVY 5540 series - G0V47A”
and serial number. Finally, the passive tool discovered two
devices manufactured by Google. A request for emission of
a multicast mDNS packet querying for a Google Cast service
was sent to pScan, resulting in a response from one of those
devices revealing its model “Google Chromecast Ultra”.

V. CONCLUSION

Characterizing connected assets is paramount to manufac-
turing and industrial operators to manage the attack surface of
their IoT networks. This paper started by systematically as-
sessing the efficacy of two approaches, active scanning versus
passive inference, by their insights and the costs/risks they
impose. We next developed pScan, a programmable packet
emitter (open-sourced), integrated it with the passive tool, and
demonstrated how contextualized scans enrich insights into
IoT assets of our testbed in a controlled and cost-effective
manner.

REFERENCES

[1] S. Chhillar and D. Geach, “Digital Transformation and Emerging
ICS/OT Cyber Attacks,” in Proc. ACM CPSIoTSec, Nov 2021.

[2] H. Habibi Gharakheili et al., “Cyber-Securing IoT Infrastructure by
Modeling Network Traffic,” in Security and Privacy in the Internet of
Things: Architectures, Techniques, and Applications, A. Ismail Awad
and J. Abawajy, Eds. John Wiley & Sons, 2021, ch. 6, pp. 151–176.

[3] G. Prigent et al., “IpMorph: Fingerprinting Spoofing Unification,” Jour-
nal in Computer Virology, vol. 6, no. 4, pp. 329–342, Nov 2010.

[4] Gartner, “Market Guide for Network Detection and Response,” 2020.
[Online]. Available: https://bit.ly/3BXL9Pl

[5] A. Sivanathan et al., “Classifying IoT Devices in Smart Environments
Using Network Traffic Characteristics,” IEEE Transactions on Mobile
Computing, vol. 18, no. 8, pp. 1745–1759, Aug 2019.

[6] A. Hamza et al., “Combining Device Behavioral Models and Building
Schema for Cyber-Security of Large-Scale IoT Infrastructure,” IEEE
Internet of Things Journal, pp. 1–1, Jul 2022.

[7] J. Anand et al., “PARVP: Passively Assessing Risk of Vulnerable
Passwords for HTTP Authentication in Networked Cameras,” in Proc.
ACM Workshop on DAI-SNAC, Dec 2021.

[8] A. Sivanathan et al., “Detecting Behavioral Change of IoT Devices
Using Clustering-Based Network Traffic Modeling,” IEEE Internet of
Things Journal, vol. 7, no. 8, pp. 7295–7309, Mar 2020.

[9] E. Lear and S. Rose, “Discovering and Retrieving Software Transparency
and Vulnerability Information,” IETF, Internet-Draft, Oct 2022.

[10] D. Kumar et al., “All Things Considered: An Analysis of IoT Devices
on Home Networks,” in Proc. USENIX Security, Aug 2019.

[11] A. Sivanathan et al., “Can We Classify an IoT Device using TCP Port
Scan?” in Proc. IEEE ICIAfS, Colombo, Sri Lanka, Dec 2018.

[12] J. Bauer, “An Algorithm for IoT Device Identification,” in Proc. ICOIN,
Barcelona, Spain, Jan 2020, pp. 255–261.

[13] T. Karagiannis et al., “BLINC: Multilevel Traffic Classification in the
Dark,” ACM CCR, vol. 35, no. 4, p. 229–240, Aug 2005.

[14] ——, “Profiling the End Host,” in Proc. PAM, Louvain-la-neuve, Bel-
gium, Apr 2007.

[15] M. Lyu et al., “Classifying and Tracking Enterprise Assets via Dual-
Grained Network Behavioral Analysis,” Computer Networks, vol. 218,
p. 109387, Dec 2022.

[16] B. Anderson and D. McGrew, “OS fingerprinting: New Techniques and
a Study of Information Gain and Obfuscation,” in Proc IEEE CNS, Las
Vegas, NV, USA, Oct 2017.

[17] Z. Durumeric et al., “A Search Engine Backed by Internet-Wide
Scanning,” in Proc. ACM CCS, Denver, Colorado, USA, Oct 2015.

[18] S. Marchal et al., “AuDI: Toward Autonomous IoT Device-Type Iden-
tification Using Periodic Communication,” IEEE JSAC, vol. 37, no. 6,
pp. 1402–1412, Mar 2019.

[19] A. Pashamokhtari et al., “Progressive Monitoring of IoT Networks Using
SDN and Cost-Effective Traffic Signatures,” in Proc. IEEE ETSecIoT,
Sydney, Australia, Apr 2020.

[20] A. Hamza et al., “Verifying and Monitoring IoTs Network Behavior
Using MUD Profiles,” IEEE TDSC, vol. 19, no. 1, pp. 1–18, May 2020.

[21] A. Pashamokhtari et al., “PicP-MUD: Profiling Information Content of
Payloads in MUD Flows for IoT Devices,” in Proc IEEE WoWMoM,
Belfast, United Kingdom, Jun 2022, pp. 521–526.

[22] M. Antonakakis et al., “Understanding the Mirai Botnet,” in Proc.
USENIX Security, Vancouver, BC, Canada, Aug 2017.

[23] M. Lyu et al., “Quantifying the Reflective DDoS Attack Capability of
Household IoT Devices,” in Proc. ACM WiSec, Jul 2017.

[24] A. Hamza et al., “Detecting Volumetric Attacks on LoT Devices via
SDN-Based Monitoring of MUD Activity,” in Proc. ACM SOSR, San
Jose, CA, USA, Apr 2019.

[25] ——, “Combining MUD Policies with SDN for IoT Intrusion Detec-
tion,” in Proc. ACM IoT S&P, Budapest, Hungary, Aug 2018.

[26] E. Lear, R. Droms, and D. Romascanu, “Manufacturer Usage Descrip-
tion Specification,” RFC 8520, Mar 2019.

[27] F. Gordon Lyon, Nmap Network Scanning, 12th ed. Insecure, 2009.
[28] F. Y. Ofir Arkin, “Xprobe v2.0:a “fuzzy” approach to remote active

operating system fingerprinting,” Aug 2002.
[29] R. Graham, “Masscan: the entire internet in 3 minutes,” Sep 2013.
[30] “Angry IP Scanner Documentation,” last accessed Oct 2022. [Online].

Available: https://angryip.org/documentation/
[31] R. D. Yates et al., “Age of Information: An Introduction and Survey,”

IEEE JSAC, vol. 39, no. 5, pp. 1183–1210, 2021.

