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ABSTRACT

Deploying Internet-of-Things (IoT) assets, such as cameras, printers,
and building sensors, at scale introduces operational and cyber risks
to organizations. While public repositories such as the National
Vulnerability Database (NVD) or Exploit-DB provide valuable data
on known cyber risks, each comes with its specific query format,
and their knowledge is often fragmented, lacking a comprehensive
perspective. Organizations often require the capability to assess
current vulnerabilities and forecast future risks from distributed
and nonunified sources. This paper aims to empower digital in-
frastructure teams to obtain a complete view of IoT cyber risks.
First, we map public repositories for digital product vulnerabilities,
exploits, and patches (solutions). This includes highlighting their
interrelationships and the information they offer. Second, we de-
velop a data schema to detail cyber risks associated with specific
products, like equipment, operating systems, or applications. We
build “vEsDATA", a tool that takes a product name as input and
automatically produces a machine-processable data structure of
its risk knowledge. We apply our tool to obtain public risk data of
about 20 consumer IoT products in our lab—our tool and data will
be released openly. Third, we demonstrate a preliminary use case
of our structured IoT risk data, which predicts new vulnerabilities,
patches, and exploits for existing ones.

CCS CONCEPTS

« Security and privacy — Network security; - Networks —
Network monitoring; - Information systems — Data man-
agement systems.
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1 INTRODUCTION

The IoT market is large and diverse, with manufacturers operating
at various maturity levels in terms of security, privacy, and reli-
ability [17]. The disparity in security postures across the market
has increased the scale and sophistication of cyber threats against
ToT-rich networks and critical infrastructures [9]. Operators of IoT
networks are, therefore, urged to develop or acquire a suite of
capabilities for cyber asset attack surface management (CAASM)
[11]. It is imperative for organizations to obtain real-time visibility
into connected assets and their intended behavioral characteristics
[18, 19, 23]. Once asset registers are established, a pressing need
arises for a reliable assessment of vulnerabilities and systematic
risk estimation and prediction. Understanding the extent of cyber
risks associated with IoT devices enables network operators to effec-
tively manage vulnerable devices on their networks, implementing
control policies to reduce attack surfaces [13]. Additionally, the
magnitude of cyber risk serves as an important metric for insurers
in calculating cyber insurance premiums for organizations [40].

Currently, security firms and individual contributors curate and
publish repositories [1, 24, 35], each containing specific types of cy-
ber risk data like information on device vulnerabilities, past exploit
instances, or solutions (patches) for certain vulnerabilities. Notable
examples include the Common Vulnerabilities and Exposures (CVE)
database by MITRE and the National Vulnerability Database (NVD)
by NIST, which report vulnerabilities of networked devices along
with their respective data coverage specifications. Relying solely
on specific databases, such as CVE and NVD, may offer limited
data coverage and types, leading to an inaccurate estimation of the
actual cyber risks associated with a given IoT product. For a reli-
able risk assessment, it is essential to consider that some products
(e.g., air quality sensors or power switches) may have numerous
vulnerabilities yet remain unattractive to attackers for various rea-
sons (e.g., limited footprints). However, a popular printer or camera
with multiple exposures and exploits may receive support from
the security community, frequently releasing solutions or patches.
Accurate risk assessment and prediction require comprehensive
cyber risk information obtained from diverse and heterogeneous
data repositories. Furthermore, security teams prefer structured
data formats for systematic consumption in analytical tasks.

Prior works [2, 10, 15, 16, 20, 26] developed tools to collect cyber
risk data from public sources. However, they focused on certain risk
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categories rather than aiming for a comprehensive collection of all
data types (i.e., vulnerability, exploit and solution) for intended IoT
products. For example, CVEfixes [2] and CyVIA [20] concentrate
on vulnerability data. CVEfixes automatically collects and curates
all common vulnerability and exposure (CVE) records available on
the NVD dataset, while CyVIA combines vulnerability data from
multiple public repositories. Works in [15, 26] analyzed data from
exploit-related databases. To our knowledge, no open-source tool
or public repository provides a comprehensive set of cyber risk data
from all three categories for given product identifiers (e.g., names).
To address the identified gap in this paper, we develop a tool named
VESDATA, designed to automatically gather cyber risk records spe-
cific to a given IoT product from diverse public repositories and
organize them into a detailed structured format. Our tool allows
cybersecurity and digital infrastructure teams to gain comprehen-
sive insights into vulnerabilities, exploits, and solutions associated
with their deployed IoT products. This empowers them to quantify
and predict the exposed cyber risk effectively. This paper makes
three specific contributions.

Our first contribution (detailed in §3) involves a systematic re-
view and mapping of 16 popular public cyber risk databases main-
tained by governmental entities or security organizations. Based on
the type of cyber risk records about digital (IoT) products in each
database, we categorize them as vulnerability, exploit, or solution
repositories, respectively. Additionally, we highlight the connectiv-
ity among the repositories, illustrating instances such as records in
NVD and CVE Details directly referencing the respective records
in the CVE database.

Building upon the categorization of diverse public repositories,
our second contribution (discussed in §4) introduces a structured
data schema that comprehensively describes cyber risk information
for a specific (IoT) product. Additionally, we present an automatic
tool, VESDATA, designed to generate a data file instance for a given
product name by iterating through selected repositories. By con-
structing data files for 23 IoT products (to be released publicly), we
demonstrate the quality of data collected by our techniques and
commendable timing performance.

To underscore the utility of our structured data schema for cyber
risk measurement and prediction, the third contribution (discussed
in §5) describes our preliminary effort in using temporal hetero-
geneous graph neural networks to predict the number of vulner-
abilities, exploits, and solutions for three representative products:
HP printer, Apache proxy, and Linux IoT kernel. Leveraging the
structured data files of these three products, we demonstrate that
the predicted cyber risk counts closely align with the ground-truth
values. Furthermore, we emphasize the importance of incorporating
all three categories of cyber risk data for reliable predictions.

2 RELATED WORK

Tools for Gathering Cyber Risk Data: Previous research efforts
have introduced methods and open-source tools for collecting cy-
ber risk data from public repositories, but their focus differs. For
instance, CVEfixes [2] has developed a tool that retrieves the entire
NVD database, augmenting each record with additional information
(e.g., commits, fixes) about vulnerable and patched codes available
on platforms like GitHub, GitLab, and Bitbucket. This extended
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database aids researchers in categorizing software vulnerabilities
based on attributes at an aggregate level. Similarly, CyVIA [20, 21]
combines all records from the CVE and NVD databases to predict
popular vulnerabilities (e.g., unauthorized access and DoS) that may
impact the global cyberspace in the future. In contrast, our vESDATA
tool narrows its focus on device-specific risk data while encompass-
ing three interconnected pillars: vulnerability, exploit, and solution.
We contend that our data provides network operators and cyberse-
curity teams with a fine-grained and more comprehensive view of
the attack surfaces exposed by their connected devices.
Inference Analysis of Cyber Risk Data: Previous studies pri-
marily analyzed cyber risk data from individual public repositories
or multiple repositories of a specific type, such as vulnerability,
exploit, or solution. For example, works like [2, 3, 6, 12, 31, 33]
focus on vulnerability data, utilizing the National Vulnerability
Database (NVD) to assess current risk levels for specific products,
predict future risks (at global/aggregate levels), and identify miss-
ing elements in records. In contrast, studies like [15, 26] examine
exploit data from exploit-DB to gauge the popularity of various
exploit types, particularly those induced by IoT malware. Addition-
ally, works discussed in [10, 16, 20] concentrate on solution data
for cyber risk. However, due to the limited coverage of cyber risk
data in existing databases, which typically focus on only one of
the three categories (vulnerability, exploit, or solution), prior anal-
yses have not fully considered the semantic correlations between
product-specific vulnerabilities, exploits, and solutions, especially
in the temporal domain. This limitation becomes pronounced in §5.

3 MAP OF PUBLIC KNOWLEDGE
REPOSITORIES ON CYBER RISKS

To establish a unified knowledge base for a given product, we iden-
tify 16 popular repositories of cyber risks and categorize them
into three data domains: vulnerability of devices (§3.1), exploit
events of a certain device type by cyber attackers (§3.2), or solution
and countermeasure (§3.3) of exploit events. Fig. 1 visually repre-
sents this categorization. Solid lines connecting repositories signify
shared or overlapped knowledge, while dashed lines indicate linked
items (such as pointers or IDs).

3.1 Vulnerability
As depicted in the brown frame on top of Fig. 1, our first category
of cyber risk knowledge is vulnerability, detailing the potential
weaknesses a product (device) may expose to attackers. A total
of 12 major repositories considered in this paper contain vulnera-
bility information. Out of these, five repositories solely maintain
vulnerability information and are exclusively framed within the
brown region. NVD, which primarily carries vulnerability data and
includes solution information, is framed in the brown and green re-
gions but is discussed in this section. We now discuss the features of
these six repositories. It is worth noting that the three red-titled and
three green-titled repositories, which primarily maintain exploit
and solution information, also host vulnerability data. These will
be discussed in the following sections §3.2 and §3.3, respectively.
CVE: Visually situated as the center top box in the brown frame,
CVE (Common Vulnerabilities and Exposures) [35] is a repository
that catalogs computer security flaws, overseen by MITRE. MITRE
updates the CVE repository with information gathered from various



Systematic Mapping and Temporal Reasoning of loT Cyber Risks using Structured Data

Vulnerability

AINTEC ’24, August 09, 2024, Sydney, NSW, Australia

OVAL

CVE Details

PYXYP

CVEs

CVEs

CWE

VulDB W

Eval. Metrics
Statistics

Vulnerabilities
CVE ID

Tipping Point

OpenCVE Team
CPE
Exploit Price Zero-day OpenCVE
CTi Analysis Vulnerabilities pen
Statistics g CVEID CVEs
. 5 Patch ID CPE__ [owE
EXpIOlt Eval. Metrics Eval. Metrics Solution
Offensive Security NIST
ICS CERT ,_
e :,"‘ 3 - NVD OzLabs
Exploit-DB | Rapid7 ICS Advisory
Exploits T CVEs
Google Hacking DB P:{:;’:S Sl CPE__|CWE Patchwork
CVE D Vulnerability & Exploit = Eval. Metrics [Patches |
Security Papers CVEs CWED
Codes Explofts Eval. Metrics
CXSecurity Team 3 N
Computer Security i Foens T,
Evolution Security The Packet Storm Team e SecurityFocus Team Sun Security Lab
CXSecurity = |V —
SoE Vulnerability-Lab Packet Storm Security Snyk Vulnerability DB SecurityFocus PatchDB
CVED Vulnerabilities CVEs Vulnerabilties Patches Patches
CWE ID Exploits Exploits Patches CVEID
Code PoC Instructions PoC Instructions CVEID
: CWE ID
PoC Instructions Eval. Metrics

Figure 1: Map of public repositories on product cyber risks across vulnerability, exploit, and solution pillars.

sources, including Bug Bounty Programs, Hosted Services, National
and Industry CERTs, vendors of a specific vulnerable product, and
research groups working on vulnerability projects. Each record of
vulnerability information is registered and tracked in the repository
with an identifier in the format “CVE-{year}-{ID}”. The ID is
assigned by one of the 319 authorized organizations (by MITRE),
known as CVE Numbering Authorities (CNA), such as IT/security
vendors, manufacturers, cloud operators, open-source projects, and
governmental bodies.

In addition to the identifier, a CVE record includes the date, a
concise description of the security vulnerability, and references
(links) to source reports and advisories. As of the time of writing
this paper, the CVE repository hosts a total of 222,759 CVE records,
with instances of records being occasionally merged and/or pruned
over time. Within the CVE repository, MITRE also curates the
Common Weakness Enumeration (CWE), a community-developed
list of software and hardware weakness types. Ideally, each CVE
record should be linked to a CWE type; however, such direct linkage
is currently unavailable in the repository.

NVD: The National Vulnerability Database (NVD) serves as a
U.S. government repository for standards-based vulnerability man-
agement data and is sponsored by the National Institute of Stan-
dards and Technology (NIST). The database is regularly updated by
importing and accumulating newly added records from the CVE
repository, encompassing 236,729 CVE records and corresponding
CWE types. Furthermore, the NVD repository assigns evaluation
scores to each CVE record using metrics provided in two schemes:
Common Platform Enumeration (CPE), a structured naming scheme
for information technology systems, software, and packages, and
CVSS, a systematic scheme for assessing the severity of security
vulnerabilities in software.

Other Repositories: In addition to the two primary vulnera-
bility repositories, namely CVE and NVD, maintained by leading
security organizations MITRE and NIST, other repositories built

upon them, incorporating supplementary vulnerability metrics. For
instance, CVE Details [4] by OVAL includes more than 164,000
CVE records, CWE types, and evaluation metrics from the NVD
repository while augmenting them with additional statistics such
as device vendors, firmware versions, and the presence of known
exploits for each CVE record. CVE Details maintains the exploit
information as a reference to Exploit-DB [7], as visually depicted by
the dashed line connecting the two repositories in Fig. 1. Another
example is OpenCVE [25], a repository built on top of the NVD
database. It incorporates a distinct set of metrics totaling 236,691,
including quantitative and qualitative risk assessment scores for
vulnerabilities and exploits and the status of risk records (such as
published, rejected, disputed, or reserved). In our VESDATA tool
discussed later in §4.2, these metrics are attributed as scores in their
respective categories.

Some repositories provide links to entries in the CVE or NVD
repositories by storing their respective IDs rather than full records.
An example is VulDB [36], positioned on the left side of the brown
region in Fig. 1. VulDB is an official numbering authority certi-
fied by MITRE and a data publisher authorized by NIST. Therefore,
besides the referenced CVE IDs, it maintains its own records, doc-
umenting device vulnerabilities reported since 1970. VulDB also
hosts Cyber Threat Intelligence (CTI) analysis, the monetary cost of
exploits, and vulnerability statistics for various device types. This
macro-level information is particularly valuable for large-scale eco-
nomic analysis. Similarly, the Zero-day repository by Tipping Point
contains referencing IDs of CVE entries and unique vulnerabilities
discovered by researchers of the Tipping Point Zero Day initiative
since 2006. Those repositories are often small in size and host less
structured data, such as text-based reports and source code)—thus,
they may not be useful for IT, network, or cybersecurity teams.

Understanding the diverse array of public repositories, intercon-
nected directly or indirectly, each specializing in specific facets of
device vulnerabilities, empowers network operations and security
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teams to gain richer insights to assess the vulnerability landscape
of their deployed IoT assets and infrastructures. Recognizing the
challenges inherent in collecting data from distributed sources, we
address this practical concern in §4.2 by an automated tool.

3.2 Exploit

An exploit is a piece of code designed to take advantage of a specific
vulnerability in a device, system, or application. When successfully
executed, an exploit can lead to severe consequences, including
unauthorized access, exfiltration of critical information, or denial of
service. The security community maintains repositories to record
known exploits along with sample executable code or processes.
These repositories serve as valuable resources for manufacturers,
security researchers, or cybersecurity teams, allowing them to test
their deployed devices/systems against known vulnerabilities and
enhance their defenses.

Purely Exploit Repositories: One of the primary exploit repos-
itories is the Exploit Database (ExploitDB) [7], actively maintained
by Offensive Security, the same organization behind the widely
used penetration testing tool, Metasploit. Positioned in the left red
region of Fig. 1, this repository aggregates exploit instances from di-
verse sources, including white papers, research articles, shell codes,
and submissions to technical forums, totaling over 45,000 entries
in the exploit list. Notably, it monitors updates from the Google
Hacking database, specifically designed for exploits using Google’s
search engine syntax language. The repository also includes CVE
IDs for entries from the CVE repository. Due to its comprehensive
coverage and regular updates, many prior works ([15, 26]) rely on
Exploit-DB as a primary data source. Another noteworthy exploit
database is CXSecurity [5], a community-driven platform recog-
nized for its rich collection of exploit code and Proof-of-Concept
(PoC) instructions. Both Exploit-DB and CXSecurity exclusively
contain full records for exploit instances rather than just IDs for
vulnerability CVE entries found in other databases. Note that CXSe-
curity relies on user contributions for vulnerabilities. As a result,
its trustworthiness and comprehensiveness may not match that of
Exploit-DB.

Exploit Repositories with Vulnerability Records: In certain
repositories primarily focused on exploit records, a smaller yet
noteworthy fraction of vulnerability data exists. Examples include
Packet Storm Security [27], Vulnerability-Lab [38], and Vulner-
ability and Exploit [37]. These repositories are visualized in the
intersection region of brown and red frames and offer a unique mix
of exploit and vulnerability records. The Vulnerability & Exploit
repository, for instance, not only includes full records from the CVE
database but also houses a rich collection of exploit instances. The
other two curate their exclusive set of vulnerabilities, introducing
new instances of vulnerability and exploit that may not be available
in other databases.

3.3 Solution

The final category within cyber risk knowledge repositories is des-
ignated as “solution”, as depicted in the green frame in Fig. 1. This
category encompasses the strategies and measures to be employed
by cybersecurity and/or asset management teams to address specific
vulnerabilities that may lead to exploits. Examples of such solutions
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include the implementation of security patches (i.e., blocks of code
added to existing software), updating device firmware, enforcing
access controls, and integrating monitoring techniques, all aimed
at mitigating identified vulnerabilities.

The repository we want to highlight in this category is NVD[24],
maintained by NIST. Beyond storing CVE and CWE vulnerability
records, the NVD database includes crucial solution information
for each CVE record. This encompasses a comprehensive list of ex-
ternal resources or references, patch submissions, curation details,
and integration processes related to the identified vulnerability. In
addition to the CVE/CWE records and their corresponding solu-
tions, NVD incorporates CPE and evaluation metrics inherited from
databases such as CVE Details and OpenCVE.

Three databases, namely ICS Advisory [14] by ICS CERT, Snyk
Vulnerability DB [34] by Computer Security, and SecurityFocus [32],
predominantly focus on solution information. They provide patches
with referencing IDs linked to CVE and/or CWE records found in
other vulnerability databases, as illustrated in Fig. 1. Consequently,
these databases are designated with green titles and positioned
within the region encircled by both the vulnerability (brown) and
solution (green) frames.

The remaining two databases, namely PatchDB [28] and Patch-
work [29], are exclusively framed within the green region in Fig. 1,
indicating their sole focus on hosting patch information. PatchDB,
described in detail in [39], boasts around 36,000 patches derived
from real-world deployments. On the other hand, the Patchwork
repository contains patch data meticulously maintained by Sun
Security Lab.

3.4 Our Selected Databases

From the 16 databases discussed earlier in this section, we strate-
gically choose one representative repository for each of the three
domains: CVE for vulnerabilities, Exploit-DB for exploits, and NVD
for solutions. These repositories stand out as the most popular,
well-curated, regularly updated, and extensively referred to by both
industry and academia. As elaborated in the next section, their
inclusion is integral to developing our tool, VESDATA.

4 INTEGRATING AND GATHERING OF 10T
CYBER RISK DATA

Building upon insights gleaned from public databases categorized
into vulnerabilities, exploits, and solutions, we present our schema
named VESDATA (§4.1). This schema integrates data fields sourced
from diverse sources into a structured, machine-readable file. We,
next, introduce our tool designed to accept a product name as input,
traverse selected public repositories to extract relevant data records,
and produce a structured JSON-formatted file as output (§4.2). To
validate the efficacy of our tool, we test it with 23 IoT products,
measuring its response time performance (§4.3).

4.1 Structured Cyber Risk Data

We envision a minimal structure of cyber risk data comprising
four sections: Product, Vulnerabilities, Exploits and Solutions, as
depicted in Fig. 2. Individual sections are discussed as follows.
The “ves-product” section () in Fig. 2) provides high-level
information about the product identity and risks, featuring essential
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@ Vulnerabilities

"ves:vulnerability": {
<cve-id>: {

"basic-info": {
"description": string,
"vulnerability-timestamps" {
"nvd-published": <dd-mm-yy>,
"nvd-last-modified": <dd-mm-yy>

"impact-score": float,

"exploitability-score” float, T

"cwe-id™ uint8,

"cwe": string,

"cwe-1ink": string,

"eve-url": string,
"affected-product-versions": list<cpe-id>

“evaluation”: {
"exploitability-info": {

"attack-vector": string,
"attack-complexity": string,

"privileges-requires": string,

“user-interaction": string,
"scope": string

"impact-info" {

"confidentiality" float,
"integrity": float,
“"availability": float

}
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©Product

“ves:product": {
"name": string,
"manufacturer": string,
“models”: {
"<model-name>": {
"vulnerability": list<cve-id>
"exploit": list<exploit-id>

h

O Solutions
"ves:solution™: {
<cve-id>: {
<solution-number>: { .
"url": string,
"type": string,

"isPatch": string,

O Exploits

"ves:exploit": {

<exploit-id>: {
"exploit-title": string,
"platform": string,
"exploit-timestamps": {
"created": <dd-mm-yy>,
"edb-published": <dd-mm-yy>
b
"eve": list<cve-id>,
“content": string

b

"created": <dd-mm-yy>,
"last-updated": <dd-mm-yy>,
"nvd-indexed": <dd-mm-yy>,

"solution-timestamps" {"nyd-updated": <dd-mm-yy>

}

Figure 2: The structure of cyber risk data generated by our vEsDATA tool.

fields such as “name” (e.g., HP printer) and “manufacturer” (e.g.,
HP). It is important to note that a product may exist in multiple
“models” (e.g., F2A70A, B5L26A), each associated with a specific
set of “vulnerability” and “exploit” IDs. Individual IDs are
expanded within their respective sections—note that each solu-
tion is mapped to and indexed by a unique vulnerability (CVE) ID,
discussed later in this section.

The section 2) of our data structure (“ves-vulnerability”)
hosts detailed information for each CVE ID (mentioned above) un-
der two subblocks: “basic-info” and “evaluation”. The basic-
info subblock stores details, such as vulnerability description, pub-
lished and modified timestamps, impact and exploitability scores,
corresponding CWE and CVE information, and affected product
firmware versions (different from product names earlier recorded by
the “ves-product” component). The evaluation subblock provides
information about the exploitability and impact of potential at-
tacks. Specifically, the “exploitability-info” section contains
knowledge about the attack vector, complexity, required system
privileges, user interactions, and the scope of the attack. Also, the
“impact-info” provides measures across the three security pillars:
confidentiality, integrity, and availability.

Moving to section () in Fig. 2, the “ves-exploit” component
in our data structure lists records, each distinguished by a unique
“<exploit-id>". Each record encompasses details such as the
name of the associated exploit, victim platform, creation and publi-
cation timestamps, exploited vulnerabilities identified by CVE IDs,
and content, including code and a comprehensive description of
the methodology.

Lastly, “ves-solution” is depicted in section @ of Fig. 2, en-
compassing solution records, each cross-referenced with a corre-
sponding CVE ID from the vulnerability section. A solution record
may comprise multiple published solutions, identified by their as-
signed numbers (“<solution-number>") from pertinent security
authorities. Furthermore, each record includes details such as the
address to the solution source, solution type (e.g., vendor advisory,
mailing list, proof of concept, or security focus), patch type (indi-
cating whether a solution is being patched), and timestamps for
creation, indexing, and updates.

Our existing data format comprehensively encompasses all cyber
risk data types extractable from public repositories, as outlined in

§3. Its structure is extensible, providing flexibility to accommodate
emerging data types in the future.

4.2 vEsDarta Tool: Collecting Data from Diverse
Repositories

Let us now present the design of our VESDATA tool, which, upon
receiving a user-specified IoT product name (e.g., “Amazon Echo”),
extracts relevant cyber risk data from chosen public repositories
using its web crawler and scraper modules. The tool compiles this
information into a JSON-formatted text file, as illustrated in Fig. 2,
for its output. As outlined in §3.4, our proof-of-concept implementa-
tion of the tool leverages the most widely-used repository in each of
the three categories (CVE for vulnerability, Exploit-DB for exploit,
and NVD for solution). Scaling up the proof-of-concept is deferred
to future work.

The data collection process is organized into distinct modules
that operate sequentially, each fulfilling a specific purpose. The
output JSON file is dynamically constructed on the fly as records
are retrieved from repositories instead of being assembled only at
the conclusion of the process. The process commences with the
“Product Identifier" module, which utilizes the provided product
name to retrieve the product identity (CPE) from the NVD data-
base, completing the section (D) in our data schema. The subsequent
module, the “Vulnerability Extractor", fetches vulnerability records
(CVE) and related metrics associated with the product identifier
from CVE and NVD databases, populating the section (2) in our
schema. The third module, “Exploit Collector" within VESDATA,
uses extracted vulnerability IDs to gather corresponding exploit
records from Exploit-DB, completing the section (3). Lastly, the “So-
lution Finder" module searches NVD databases for solution records
aligned with product name, vulnerability names/IDs, or exploit
names, concluding the construction of the section .

Considering the diverse access modes provided by different pub-
lic repositories—such as web-based browsing for CVE and NVD
and script-based APIs for Exploit-DB—our tool incorporates tai-
lored functions to facilitate data retrieval. It can either crawl/scrape
HTML webpages using HTTP tags or make direct API calls. To op-
timize the efficiency of the data-gathering process and mitigate the
risk of database blocking resulting from frequent connections, we
implement batch requests (e.g., 100 individual requests in a batch)
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Table 1: Representative (IoT) products we applied our vEs-

DArTa tool.
Product name Genre Size | Time (min)
Linux Kernel IoT firmware | 2.6 MB 519.000
HP printer Smart printer | 1.7 MB 7.000
Apache server IoT server 630 KB 311.000
TP-Link camera Smart camera 35 KB 3.638
Smart Things IoT hub 30 KB 0.068
TP-Link router Wireless router | 29 KB 3.507
Amazon Echo Smart speaker 16 KB 0.874
Bosch camera Smart camera 16 KB 0.092
Samsung SmartCam | Smart camera 14 KB 0.054
Netatmo camera Smart camera 3 KB 0.404

with reasonable time gaps (e.g., a minute) between two successive
batches. This approach is particularly emphasized for repositories
that support bulk operations, such as NVD and Exploit-DB.

4.3 Applying vEsDATA to Representative Assets

This section demonstrates the performance and usability of our
VESDATA tool, implemented in Python. We executed the tool on a
Windows laptop configured with an Intel Core i7 CPU with 16GB
RAM, conducting tests by inputting the names of 23 (IoT) products
available in our research lab. Seventeen of the products have as-
sociated data records in the repositories we utilized. Table 1 lists
ten of them, sorted by their data sizes. The source code of VESDATA
and the cyber risk data (in JSON files) associated with the tested
products are publicly available at [22].

Response Time: In our tests, VESDATA performed well with-
out interruptions. Note that data availability in public repositories
varies for each product, influenced by factors such as its popularity,
support, and interest from the community, including the manufac-
turer, cloud providers, and potentially malicious actors. A higher
volume of data records for a specific product (e.g., Linux IoT kernel
or Apache IoT server) likely leads to larger sizes of constructed
data and longer response times for our tool, shown as the third
and last columns in Table 1. The tool incorporates error-handling
mechanisms (e.g., skipping common web search errors like page
not found, internal server error, or unauthorized) to enhance data
collection efficiency. Table 1 summarizes the response time of our
tool when applied to each product. It took less than ten minutes to
construct the cyber risk data file for most tested products (20 out of
23). Notably, products with longer track records and greater com-
plexity, such as Linux kernel and Apache server, require relatively
more time (i.e., about ten hours and five hours, respectively) for our
tool to iteratively search, filter, and fetch relevant data entries in
the source repositories.

Practical Limitations: We recognize two specific limitations in
our tool identified during the evaluation. Firstly, precision in pro-
viding the product name is crucial for comprehensive data retrieval
from various public repositories. The tool relies on an exact match as
recognized by the technical community. For instance, a misspelling
in the product name (e.g., “Netamo camera” instead of “Netatmo
camera" with a missing “t") could lead to incomplete data retrieval,
as the incorrect name is not recognized by string matching and API
calls.Secondly, certain public repositories impose limitations on
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Figure 3: Temporal graphs of cyber risks for: (a) HP printer
and (b) Linux kernel.

query rates. For instance, the NVD database allows a maximum of 5
requests per 30 seconds for users of the free API and 50 requests per
30 seconds for those with paid API credentials. Similarly, Exploit-
DB permits 50 requests per day for free users. Consequently, for
product names associated with a significant number of records in
certain databases (e.g., for Linux Kernel), the execution time may
be considerably higher than that of lighter-weight products.

5 TEMPORAL PREDICTION OF CYBER RISKS
USING STRUCTURED DATA

This section showcases how structured data facilitates advanced
inference in temporal risk prediction or reasoning. We focus on
a fundamental yet representative use case: predicting the future
counts of vulnerabilities, exploits, and solution instances for a specific
product. These predictions can serve as valuable reference points for
organizations with large deployments of certain products (say, HP
printers), aiding them in more effectively planning their security
budgets.

5.1 Temporal Graph Forecasting

Considering the nature of our data, it can be conceptualized as
a graph with four major nodes: product (P)), vulnerabilities (V)),
exploits (), and solutions (). The central node, (), connects
with the other three nodes through edges. Each edge (with a set of
attributes) represents a unit of record in the corresponding section
of the VEsSDATA format, as illustrated in Fig. 2. Inspired by prior
work [8, 10], we employ heterogeneous temporal graphs that seem
capable of capturing dynamic interactions between diverse entities
that evolve. The entire graph corresponding to a given product’s
cyber risk data file can be decomposed into a sequence of graphs,
each representing a distinct time period with a preferred resolution,
such as years or months.

In Fig. 3, we present temporal graphs for two representative
products—HP printer and Linux kernel—spanning from 2000 to 2023
with a 5-year resolution. For simplicity, we depict only the number
of records (e.g., vulnerabilities) in the data file as edge attributes.
Solid edges represent new records in the respective period, while
dotted edges signify existing records from the past.

To demonstrate the efficacy of capturing the relational patterns
within the generated graphs of cyber risk data in forecasting future
vulnerabilities, exploits, and solutions for a specific product, we
employ a sophisticated deep neural network model known as the
Heterogeneous Temporal Graph Neural Network (HTGNN) [8].
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Figure 4: Performance of models for Linux Kernel with
complete risk data (all three categories).

(c) # solutions.

This model makes predictions by leveraging spatial and tempo-
ral dependencies within our generated temporal heterogeneous
graphs, with 1-year resolution. Our approach involves standard
procedures for training machine learning models, encompassing
data pre-processing, model training, parameter tuning, and model
selection. However, the details of these steps are not extensively
elaborated here. Utilizing a set of historical graphs (e.g., five) as
input, each trained HTGNN model for an IoT product aims to fore-
cast the potential count of vulnerabilities, exploits, and solutions
expected for the product over the next several years (e.g., one or
three). Acknowledging that certain fields in our structured data
schema, such as description and scope, are in text format and not
directly consumable by graph neural networks, we employed a pre-
trained natural language processing (NLP) model called “GloVe"
[30] to transform human-readable texts into machine-friendly vec-
tor representations/attributes. We emphasize that the fine-tuning
of models to achieve highly reliable predictions is beyond the scope
of this paper. This aspect is reserved for future work and further
exploration. Instead, our primary objective is to showcase the in-
trinsic value of our structured data for systematic reasoning and
inference.

5.2 Evaluations & Preliminary Insights

We train distinct neural network models tailored to the unique
knowledge base of three representative products: “HP Printer",
“Apache Server", and “Linux Kernel". We develop three specialized
models for each product, each dedicated to predicting outcomes
within a specific category—namely, vulnerabilities, exploits, or so-
lutions. These specialized models are designed to take the graph
representation of the entire vEsDATA for the past N years (with
N set to 5 in our default configuration) as input. Based on this
historical data, their primary objective is forecasting the number of
records in the next year. The models are trained on data from 2000
to 2014 (considered as seen data). They are next evaluated on both
seen data (from 2004 to 2014, for learning validation) and unseen
data (from 2015 to 2023, for open set evaluation).

Fig. 4 illustrates the results for the Linux product, which boasts
the largest amount of historical data among the three represen-
tative products under study. The dashed red lines represent the
predicted number of records, while the solid blue lines signify the
ground truth count. It is evident that the performance is relatively
decent, considering no extensive efforts were made to fine-tune
the model architecture and input parameters. The prediction curve
consistently mirrors the trend of the ground-truth curve across
vulnerabilities (Fig. 4a), exploits (Fig. 4b), and solutions (Fig. 4c).
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Figure 5: Performance of models for Linux Kernel with
partial risk data (only the relevant category).

Significantly, the predicted numbers of exploits and solutions post-
2014 show minimal errors, amounting to less than 10% compared to
the ground truth. Similar observations (but relatively more errors)
were noted in the results for the other two products with fewer
data records.

We next explore the necessity of having comprehensive knowl-
edge for meaningful inference. Specifically, we examine how model
performance is influenced when trained on only the relevant frac-
tion of risk data. For instance, in predicting the number of vul-
nerabilities, rather than providing the entire graph as input, we
feed only the vulnerability section of the knowledge graph to the
models. The results for the Linux kernel are illustrated in Fig. 5. In
contrast to our baseline results in Fig. 4, where input comprises all
three categories of data, the performance has become notably unre-
liable. Evidently, none of the predictions based on individual data
categories—solely vulnerability in Fig.5a, solely exploit in Fig.5b, or
solely solution in Fig. 5c—managed to capture the levels observed in
the ground-truth values. This leads to the conclusion that the rela-
tionships among all three types of risk data are crucial for achieving
more accurate predictions. We acknowledge that our exploration
of risk inference and temporal reasoning on a per-product basis is
preliminary. One may consider expanding the inference scope to en-
compass a network of diverse product types. As highlighted before,
this section primarily aimed at showcasing the value of structured
data, laying the foundation for potential further research endeavors
in this domain.

6 CONCLUSION

The current reliance on public repositories like NVD and Exploit-
DB poses challenges due to diverse query formats and fragmented
knowledge. Organizations require a unified approach to assess vul-
nerabilities and predict risks from distributed sources. This paper
first mapped public repositories for digital product vulnerabilities,
exploits, and patches, highlighting interrelationships and informa-
tion provided. We developed a data schema, VESDATA, automating
the generation of machine-processable risk knowledge for specific
products—our data is openly released along with the tool. Finally, we
represented the structured data by heterogeneous temporal graphs,
allowing the tracking of IoT cyber risk evolution over time. We
trained neural network models on cyber risk graphs for representa-
tive products and evaluated them to predict new vulnerabilities and
potential patches/exploits for existing ones. Our future work will
explore ways to unlock more values from vEsDATA by integrating
it with large language models (ChatGPT and Gemini).
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