
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Enabling Fast and Slow Lanes for Content
Providers Using Software Defined Networking

Hassan Habibi Gharakheili†, Vijay Sivaraman†, Tim Moors†, Arun Vishwanath∗, John Matthews⋆, Craig Russell⋆
†University of New South Wales, ∗IBM Research-Australia, ⋆CSIRO Data61, Sydney, Australia

{h.habibi, vijay, t.moors}@unsw.edu.au, arvishwa@au.ibm.com, {john.matthews, craig.russell}@data61.csiro.au

Abstract—Residential broadband consumption is growing
rapidly, increasing the gap between ISP costs and revenues.
Meanwhile, proliferation of Internet-enabled devices is congesting
access networks, degrading end-user experience and affecting
content provider monetization. In this paper we propose a new
model whereby the content provider explicitly signals fast- and
slow-lane requirements to the ISP on a per-flow basis, using
open APIs supported through SDN. Our first contribution is to
develop an architecture that supports this model, presenting ar-
guments on why this benefits consumers (better user experience),
ISPs (two-sided revenue) and content providers (fine-grained
control over peering arrangement). Our second contribution is
to evaluate our proposal using a real trace of over 10 million
flows to show that video flow quality degradation can be nearly
eliminated by the use of dynamic fast-lanes, and web-page load
times can be hugely improved by the use of slow-lanes for bulk
transfers. Our third contribution is to develop a fully functional
prototype of our system using open-source SDN components
(Openflow switches and POX controller modules) and instru-
mented video/file-transfer servers to demonstrate the feasibility
and performance benefits of our approach. Our proposal is a
first step towards the long-term goal of realizing open and agile
access network service quality management that is acceptable to
users, ISPs and content providers alike.

Index Terms—Software Defined Networking; Access Network;
Service Quality; Fast-Lanes; Slow-Lanes

I. INTRODUCTION

Fixed-line Internet Service Providers (ISPs) are increasingly
confronting a business problem – residential data consumption
continues to grow at 40% per annum [2], increasing the
cost of the infrastructure to transport the growing traffic
volume. However, revenues are growing at less than 4%
per annum, attributable mainly to “flat-rate” pricing [2]. To
narrow this widening gap between cost and revenue, ISPs have
attempted throttling selected services (such as peer-to-peer),
which sparked public outcry (resulting in “net neutrality”
legislation), and now routinely impose usage quotas, which can
stifle delivery of innovative content and services. It is increas-
ingly being recognised that ensuring sustainable growth of the
Internet ecosystem requires a rethink of the business model,
that allows ISPs to exploit the service quality dimension (in
addition to bandwidth and download quota) to differentiate
their offerings and tap into new revenue opportunities [3], [4].

Simultaneously, end-user expectations on service quality are
evolving as personal and household devices proliferate and

This submission is an extended and improved version of our paper presented
at the ACM CoNEXT 2013 conference [1].

traffic types change. Real-time and streaming entertainment
content (e.g. Netflix and YouTube) have replaced peer-to-peer
as the dominant contributor to Internet traffic [5]. However,
maintaining quality of experience (QoE) in online video
viewing over best-effort networks remains a challenge. The
rapid growth in the number of household devices (computers,
phones, tablets, TVs, smart meters, etc.) concurrently access-
ing the Internet has increased peak-load and congestion on
the access link, which is often the bottleneck between the
(wired or wireless) residential LAN and the ISP backbone
network [6]. The consequent impact on video quality (startup
delays and rebuffering events) has been shown to lead to higher
user abandonment, lower user engagement, and lower repeat
viewership [7].

Content providers (CPs), who monetize their video offerings
via ad-based or subscription-based models, are seeing a direct
impact on their revenue from reduced user QoE. Though
they use sophisticated techniques such as playback buffering,
content caching, adaptive coding, and TCP instrumentation
to improve video quality, these approaches are inherently
limited and often involve trade-offs (e.g. increasing playback
buffers can reduce rebuffering but increase startup delay).
The frustrations associated with providing good QoE to users
over a third-party access network may explain why some
CPs (e.g. Google) are building their own fiberhoods, while
some other CPs are merging with access network operators
(e.g. NBC and Comcast). However, we believe that these
proprietary solutions cannot be replicated world-wide (for cost
and regulatory reasons), and open solutions are needed that
allow any CP to improve the delivery of their services over
any ISP access network.

Given the strong motivation for all parties (ISPs, users,
and CPs) to want service quality capability in the network,
one can rightly ask why it does not already exist. Indeed,
user QoS/QoE has been studied extensively over the past
two decades, and many researchers (including the authors)
have worked to develop numerous technical solutions ranging
from ATM-SVC to RSVP and IntServ/DiffServ. However, we
believe that the limited success of these prior frameworks
is partly because they have not satisfactorily addressed two
critical aspects: (a) who exercises control over the service
quality? and (b) how is it monetized? These challenges are
elaborated next.

Control: Today, the control of network service quality
is largely left to the ISP, who carefully hand-crafts policy
and device configurations, likely via mechanisms (e.g. mark-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 2

ing, policing, resource reservation, and queueing) from the
DiffServ frameworks. Users have no visibility into the ISP’s
doings, and are left powerless and suspicious, wondering if
“neutrality” is being violated (e.g. peer-to-peer traffic being
de-prioritized). Further, exposing controls to the user also
raises challenges around user expertise needed to configure
and manage QoS. At the other end, CPs can exert little (if any)
control over service quality in ISP networks today. They do
not have access to end-to-end quality assurance frameworks
(e.g. RSVP/IntServ based) since ISPs deem them either too
onerous to operate or too dangerous to expose; at best CPs
can indicate relative priority levels for their packets (e.g. via
DiffServ code-points), but these assurances are “soft”, being
qualitative and subject to other traffic in the network. These
concerns exacerbate further when the ISP and CP do not peer
directly, i.e. connect via a transit provider. Any viable quality
enhancement solution therefore has to tackle the issue of how
the control is shared amongst the various players involved.

Monetization: An ISP has little incentive to deploy service
quality mechanisms unless there is a monetary return. Con-
sumers are very price sensitive, and it is unclear if sufficient
consumers will pay enough for the QoS enhancement to allow
the ISP to recoup costs. CPs potentially have greater ability to
pay; however, current “paid peering” arrangements are based
on aggregate metrics such as transfer volume or transfer rate.
A CP is unlikely to pay more for “wholesale” improvement in
service quality, especially if a non-negligible fraction of their
traffic gets delivered at adequate quality anyway. A viable QoS
solution should therefore allow the CP to make fine-grained
(e.g. per-flow) decisions in an agile way so that service quality
can be aligned with their business models. For example, the
CP may want to deliver traffic at higher quality only for
certain customers or certain content, and these decisions can
vary dynamically (e.g. depending on time-of-day or loss/delay
performance of the network).

The above two challenges have been poorly addressed in
earlier frameworks, dissuading ISPs from deploying service
quality mechanisms and causing frustration for CPs and end-
users. We believe that the emerging paradigm of software
defined networking (SDN) provides us a new opportunity
to overcome this old impasse. Logical centralization of the
control plane under SDN helps in many ways:

1) A central “brain” for the network makes it easier for the
ISP to expose (e.g. via APIs) service quality controls
needed by an external party, such as the CP. We believe
that a software-driven API is a far superior method
for information exchange rather than inter-connecting
existing protocols (e.g. RSVP) to external parties, since
(a) protocols often reveal information (e.g. network
topology or network state) that is both private to the
ISP and unnecessary for the external entity, whereas
APIs can be crafted specifically for the negotiation task
at hand, (b) protocols do not easily straddle transit
domains, whereas APIs can be invoked by a remote
entity that does not peer directly with the ISP, and (c)
protocols are typically embedded into network switches
and routers, which are not only difficult to upgrade in
operation, but also take longer to converge; by contrast,

APIs are implemented at the central controller that can
respond rapidly to external requests and can be upgraded
with relative ease. We believe that the above advantages
of APIs make SDN a more suitable paradigm by which
the ISP can expose and share QoS control with external
entities.

2) The centralized brain in SDN is more amenable for
optimal decision making. Since the SDN controller has a
global view of resources, it can make informed decisions
based on current availability and requests. Indeed, the
decision making can also include policy rules and pric-
ing models that could change dynamically (e.g. based
on time-of-day or total resource demand and supply),
which is difficult to achieve in distributed systems that
have limited visibility into global state.

3) Lastly, SDN provides a cross-vendor solution that does
not require protocol support from the various forwarding
elements. The resource partitioning can be executed by
the centralised software across any forwarding element
over any access technology that supports a standardized
SDN interface such as OpenFlow.

At a high level, our solution encourages the ISP to create
fast- and slow-lanes (henceforth referred to as special lanes)
for specific traffic flows by dedicating bandwidth to them on
the last-mile access network link using SDN. The creation
of such lanes is driven by open APIs that are exposed
to external entities (CPs in our case), who can choose to
invoke it to negotiate service quality with the network on
a per-flow basis. For the ISP, the API offers a monetization
opportunity, while also obtaining explicit visibility into traffic
stream characteristics for better resource planning. For CPs,
the API provides an enforceable assurance from the access
network, and the pay-as-you-go model gives them freedom
to align quality requirements with their business models.
For users, we equip them with a simple control into the
degree to which their access network resources are partitioned,
allowing them to match it to their usage patterns. While
past experience has taught us that any large-scale deployment
of QoS faces significant practical obstacles, we believe our
solution approach has the potential to overcome the business,
regulatory and administrative impediments, and offers the right
set of incentives for ISPs, CPs and users to collaborate for its
success.

Our specific contributions are as follows. We use video
streaming and file transfers as two motivating examples, and
first develop a system architecture and associated APIs that
allow the content provider to dynamically request special
traffic lanes – video flows avail of “fast-lanes” with dedicated
bandwidth over a specified duration, while large file transfers
avail of “slow-lanes” that leverage the elasticity of non-
time-critical traffic to provide better performance to other
(streaming and browsing) traffic over the broadband link. We
discuss the incentives for each party to participate in this
model, and the SDN mechanisms needed for realizing it.
For our second contribution we evaluate the efficacy of our
approach via simulations of a real traffic trace comprising
over 10 million flows. We show how fast-lanes improve video

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 3

experience by nearly eliminating stalls, and how slow-lanes
can significantly improve web page-load times by leveraging
the elasticity of large transfers. For our last contribution, we
prototype our system using open-source SDN platforms, com-
modity switches/access-points, and instrumented video/file-
transfer servers, and conduct experiments in a test-bed emulat-
ing three residences running real applications to demonstrate
how user-experience of video streams and page downloads is
benefited from our scheme. We believe our work presents a
first step towards a viable and pragmatic approach to delivering
service quality in access networks in a way that is beneficial
to ISPs, users, and CPs alike.

The rest of the paper is organized as follows: §II describes
the use-cases considered in this paper. §III describes our
system architecture, trade-offs, and algorithm. In §IV we eval-
uate our system via simulation with real traffic traces, while
§V describes the prototype development and experimentation.
Relevant prior work is summarized in §VI, and the paper
concludes in §VII.

II. USE-CASES AND OPPORTUNITIES

The set of applications that can benefit from explicit net-
work support for enhanced service quality is large and diverse:
real-time and streaming videos can benefit from bandwidth
assurance, gaming applications from low latencies, voice ap-
plications from low loss, and so on. In this paper we start with
two application use-cases: real-time/streaming video, chosen
due to its growing popularity with users and monetization
potential for providers, and (non-real-time) bulk transfers,
chosen for their large volume and high value to users. The
APIs we develop and demonstrate for these use-cases will help
illustrate the value of our approach, and can be extended in
future work for other application types.

A. Real-Time / Streaming Video

Online video content, driven by providers such as Netflix,
YouTube, and Hulu, is already a dominant fraction of Internet
traffic today, and expected to rise steeply in coming years.
As video distribution over the Internet goes mainstream, user
expectations of quality have dramatically increased. Content
providers employ many techniques to enhance user qual-
ity of experience, such as CDN selection [8], client-side
playback buffering [9], server-side bit-rate adaptation [10],
and TCP instrumentation [11]. However, large-scale studies
[12], [7] have confirmed that video delivery quality is still
lacking, with startup delays reducing customer retention and
video “freeze” reducing viewing times. Since variability in
client-side bandwidth is one of the dominant contributors to
quality degradation, an ideal solution is to create network
fast-lane to explicitly assure bandwidth to the video stream.
Eliminating network unpredictability will (a) reduce playback
buffering and startup delays for streaming video, (b) benefit
live/interactive video streams that are latency bound and
cannot use playback buffering, and (c) minimise the need for
sophisticated techniques such as bandwidth estimation and rate
adaptation used by real-time and streaming video providers.

There are however important questions to be addressed in
realizing the above fast-lane solution: (a) what interaction is
needed between the application and the network to trigger the
bandwidth reservation? (b) is the bandwidth assured end-to-
end or only on a subset of the path? (c) which entity chooses
the level of quality for the video stream, and who pays for
it? (d) what rate is allocated to the video stream and is it
constant? (e) what is the duration of the reservation and how
is abandonment dealt with? and (f) how agile is the reservation
and can it be done without increasing start-up delays for the
user? Our architecture presented in §III will address these non-
trivial issues.

B. Bulk Transfer

After video, large file transfers are the next biggest contrib-
utors to network traffic. Examples include peer-to-peer file-
sharing, video downloads (for offline viewing), software up-
dates, and cloud-based file storage systems [5]. Unlike video,
bulk transfers do not need a specific bandwidth, and user
happiness generally depends on the transfer being completed
within a “reasonable” amount of time. This “elasticity” creates
an opportunity for the ISP to provision dynamic slow-lanes to
bulk transfers, based on other traffic in the network. This can
allow the ISP to reduce network peak load, which is a dom-
inant driver of capital expenditure, improve user experience
by reducing completion times for short flows such as web-
page loads, and release capacity to admit more lucrative traffic
streams (e.g. real-time/streaming video) requiring bandwidth
assurances.

Though the idea of slow-lanes to “stretch” bulk data trans-
fers based on their elasticity is conceptually simple, there
are challenges around (a) how to identify bulk transfer pa-
rameters such as size and elasticity? (b) how to incentivize
the user/provider to permit such slow-lanes? and (c) how to
dimension the network resource slice for this elastic traffic?
These are addressed in §III.

III. SYSTEM ARCHITECTURE AND ALGORITHM

Motivated by the above use-cases, we now propose a system
architecture for creation of fast and slow lanes on the access
link. We first outline the major architectural choices and trade-
offs (§III-A), then describe the operational scenario (§III-B),
and finally develop the detailed mechanisms for special lanes
creation (§III-C).

A. Architectural Choices and Trade-Offs

The aim of creating special lanes is to partition resources
dynamically amongst flows in a programmatic way, so that
the network is used as efficiently as possible for enhancing
application performance or reducing cost. We briefly discuss
why open APIs are needed to achieve the creation of special
lanes, what part of the network is used for special lanes
creation, and who exercises control over the special lanes.

Why Open APIs? Current mechanisms used by ISPs
to partition network resources require cripplingly expensive
tools for classifying traffic flows (e.g. using DPI), encourage

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 4

applications to obfuscate or encrypt their communications, and
risk causing public backlash and regulation. Therefore, we
advocate that the creation of special lanes be driven externally
via an explicit API open to all CPs. This allows CPs to choose
a resource requirement commensurate with the value of the
service, while letting ISPs explicitly obtain service attributes
without using DPI.

What is Used for Special Lanes Creation? Assuring
application performance ideally requires end-to-end network
resource allocation. However, past experience with end-to-
end QoS frameworks has taught us that getting the consensus
needed to federate across many network domains is very
challenging. In this paper we therefore focus on the achievable
objective of partitioning resources within a single domain.
A natural choice is the last-mile access network as there is
evidence [6], [13] that bottlenecks often lie here and not
at the interconnects between networks. Our solution can in
principle be adapted to any access technology, be it dedicated
point-to-point (DSL, PON) or shared (e.g. cable, 3G). In
this paper we focus our evaluation on point-to-point wired
access technologies, wherein each subscriber has a dedicated
bandwidth. The case of shared media (cable or 3G) deserves
a separate discussion around the policies needed to be fair
to different users who embrace the special lanes scheme to
different extents, and is left for future work.

Who Controls the Special Lanes? Though the special
lanes APIs can be invoked by any entity, we envisage initial
uptake coming from CPs rather than consumers, since: (a)
uptake is needed by fewer, since as much of 60% of Internet
traffic comes from 5 large content aggregators [13], (b) CPs
have much higher technical expertise to upgrade their servers
to use the APIs, and (c) client-side charging for API usage
can significantly add to billing complexity. For these reasons,
we expect CPs to be the early adopters of the fast and slow
lanes APIs, and defer consumer-side uptake to future study.

The end-user still needs to be empowered with a means
to control the special lanes, e.g. a user might not want her
web-browsing or work-related application performance to be
overly affected by streaming video that her kids watch. We
therefore propose that each household be equipped with a
single parameter α ∈ [0, 1] which is the fraction of its access
link capacity that the ISP is permitted to create special lanes.
Setting α = 0 disables provision of special lanes, and the
household continues to receive today’s best-effort service.
Households that value video quality could choose a higher
α setting, while households wanting to protect unpaid traffic
(web-browsing or peer-to-peer) can choose a lower α. Higher
α can potentially reduce the household Internet bill since it
gives the ISP more opportunity to monetize from CPs [14],
[15]. Our work will limit itself to studying the impact of α
on service quality for various traffic types; determining the
best setting for a household will depend on its Internet usage
pattern and the relative value it places on the streams, which
is beyond the scope of this study.

B. Operational Scenario
We briefly describe the operational scenario, the reference

topology, the flow of events, the API specifications, and the

API

Internet

Content provider

…

S
D

N
 C

o
n

tr
o

ll
e

r

ISP Network

Antivirus Update

DSLAM/Head-End
OpenFlow Switch

Home
Gateway

Content provider

Fig. 1. Network topology of a typical residential broadband access network.

roles of the CP and the user.
1) Topology and Flow of Events: Fig. 1 shows a typical

access network topology. Each residence has a wireless home
gateway to which household devices connect. The home
gateway offers Internet connectivity via a broadband link (e.g.
DSL or PON), connecting to a line termination device at
the ISP local exchange, which is in turn back-ended by an
Ethernet switch that has SDN capability. The Ethernet switches
at each local exchange connect via metro- or wide-area links
to the ISP’s backhaul network. The ISP network houses an
SDN controller that exposes the APIs discussed below, and
executes the scheduling of special lanes (described at the end
of this section) to reconfigure the network. The ISP network
can either peer directly, or via other ISPs, to content providers
that source the data that is consumed by users. Our solution
works equally well when the data is sourced from CDNs or
content caches within or outside the ISP network.

The operational flow of events is as follows. The user’s
request for content (e.g. YouTube video link click or Dropbox
file transfer command) goes to the CP, who can instantly
call the API into the ISP network to associate resources for
this flow. If the negotiation succeeds, the ISP assures those
resources for the flow, and charges/pays the CP for it. In what
follows we describe the APIs in more detail and elaborate on
the specific actions required by the CP and the user.

2) The APIs: We now develop minimalist specifications
of the APIs for the two use-cases considered in this paper;
detailed specifications are left for future standardization.

API for Fast-Lanes: This specifies: (a) Caller id: The iden-
tity of the entity requesting the service. Authentication of some
form (such as digital signature of the message) is assumed
to be included, but we do not discuss security explicitly in
this work. (b) Call Type: A type field indicates the service
being requested, in this case minimum bandwidth assurance.
(c) Flow tuple: The 5-tuple comprising the IP source and
destination addresses, the transport protocol, and the source
and destination port numbers, that identify the flow (consistent
with the OpenFlow specification). Note that wildcards can be

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 5

used to denote flow aggregates. (d) Bandwidth: The bandwidth
(in Mbps) that is requested by the flow. (e) Duration: The
duration (in seconds) for which the bandwidth is requested.

This API creates fast-lane and assures minimum bandwidth
to a service like video streaming. Note that the flow can
avail of extra bandwidth if available, and is not throttled or
rate-limited by the network. Further, we have intentionally
kept it simple by using a single bandwidth number, rather
than multiple (e.g. peak and average) rates. The value to
use is left to the CP, who knows best their video stream
characteristics (peak rate, mean rates, smoothness, etc.) and the
level of quality they want to support for that particular session.
The duration of the bandwidth allocation is decided by the
caller. To combat abandonment, the CP may choose to reserve
for short periods (say a minute) and renew the reservation
periodically; however, this runs the risk of re-allocation fail-
ures. Alternatively, the caller can choose to reserve for longer
periods, and the APIs can be extended to include cancellation
of an existing reservation. These implementation decisions are
left for future standardization. Lastly, the ISP will charge the
caller for providing bandwidth assurance to the stream. The
pricing mechanism is outside the scope of the current study,
but we refer the reader to our companion study [14] that
evaluates the benefits for both ISPs and CPs under various
cost/revenue models.

API for Slow-Lanes: This includes: (a) Caller id: as before.
(b) Call Type: in this case bulk transfer. (c) Flow tuple:
as before. (d) Size: The volume of data to be transferred,
in MegaBytes. (e) Deadline: The duration (in seconds) to
which the transfer can be stretched. This API is for large
data transfers that are not time critical, namely have a slack
deadline. The elasticity can be leveraged by the ISP to stretch
the flow, making way for bandwidth-sensitive flows (e.g. video
streaming) and latency-sensitive flows (e.g. web-browsing).
The incentive for the CP to call the slow-lane API can be
monetary, namely the ISP can give a rebate to the CP for
relaxing deadlines; in turn, the CP could choose to pass on
the discounts to the user who is patient, such as one who
is happy to download a movie for later viewing rather than
streaming it in real-time (we note that the Apple TV interface
does indeed ask the user if they intent to stream or download
a movie; soliciting a deadline parameter directly from the user
is therefore also conceivable).

The mechanism we propose for implementing slow-lanes
is simple: bulk transfers are given low minimum bandwidth
guarantees, set periodically by the ISP in proportion to the
rate they require in order to meet their deadline. Note that this
eliminates the need for the ISP to warehouse the data in transit
from the CP to the user, thereby obviating technical complex-
ities (such as proxies and split connections) and associated
liabilities (e.g. with pirated data). Further, our approach is
work-conserving (i.e. does not waste idle capacity), responsive
to changes in demand, and does not require any user-client
changes.

3) Changes for Content Provider and User: The changes
required at the content servers are well-within the technical
expertise of the CPs. They can identify a client’s ISP based
on the client IP address, and a DNS entry can be created

for the controller advertised by that ISP. We note that the
CP has full visibility of the flow end-points (addresses and
ports), irrespective of whether the home uses NAT or not.
For streaming video, the CP has knowledge of the bandwidth
requirement based on format and encoding of the content. For
bulk transfers, delay bounds can either be explicitly solicited
from the user (via an option in the application user interface)
or chosen based on previously acquired knowledge about the
consumer (e.g. deadlines to ensure delivery before prime time
viewing). Lastly, CPs are at liberty to align the API usage
with their business models, such as by invoking it only for
premium customers or based on network conditions.

Subscribers are provided with a single knob α ∈ [0, 1] that
controls the fraction of their household link capacity that the
ISP is permitted to carve special lanes from, adjusted via their
account management portal. This parameter can be tuned by
the user to achieve the desired trade-off between quality for
reserved (video/bulk) flows and unreserved (browsing/peer-to-
peer) flows for their household. All user clients (computers,
TVs, phones, etc.) running any operating system can thereafter
benefit from special lanes without requiring any software or
hardware changes. For bulk transfer applications, the user
interface may be updated by CPs to explicitly solicit transfer
deadlines from users, potentially giving users financial incen-
tive to choose slacker deadlines.

C. The Slow-Lane Scheduling
The time “elasticity” of bulk transfers, inferred from the

deadline parameter in the slow-lane API call, is used to
dynamically adjust the bandwidth made available to such
flows. Upon API invocation, the ISP creates a new flow-table
entry and dedicated queue for this flow in the switches (though
scalability is a potential concern here, we note that a vast
majority of flows are “mice” and will not be using the API).
Periodically, the minimum bandwidth assured for this queue
is recomputed as the ratio of the remaining transfer volume
(inferred from the total volume less the volume that has already
been sent) to the remaining time (deadline less the start time of
the flow). Note that the flow can avail of additional bandwidth
(above the specified minimum) if available. Also, the flow
bandwidth requirement is reassessed periodically (every 10
seconds in our prototype) – this allows bandwidth to be freed
up for allocation to real-time streams in case the bulk transfer
has been progressing ahead of schedule, and gives the bulk
transfer more bandwidth to catch-up in case it has been falling
behind schedule. Lastly, the dynamic adjustment of slow-lane
for this flow is largely transparent to the client and server.

IV. SIMULATION AND TRACE ANALYSIS

We now evaluate the efficacy of our solution by applying it
to real trace data. Obtaining data from residential premises
at large scale is difficult; instead we use a 12-hour trace
comprising over 10 million flows taken from our University
campus network. Though the latter will differ in some ways
from residential traces, we believe it still helps us validate our
solution with real traffic profiles. We describe the character-
istics of the data trace and the network topology, and then
quantify the benefits from our scheme of special lanes.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 6

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

x: Video bandwidth (Mbps)

C
C

D
F:

 P
ro

b
[b

an
dw

id
th

 >
 x

]

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

x: Elephant volume (MB)

C
C

D
F:

 P
ro

b
[v

ol
um

e
>

x]

Fig. 2. Campus trace CCDF of (a) video flow bandwidth and (b) elephant flow size.

A. Trace Data and Campus Network

Our trace data was obtained from the campus web cache,
containing flow level logs stored in the Extended Log File
Format (ELFF). Each row pertains to a flow record, and
includes information such as date and time of arrival, duration
(in milliseconds), volume of traffic (in bytes) in each direction,
the URL, and the content type (video, text, image, etc.). Our
flow logs cover a 12 hour period (12pm-12am) on 16th March
2010, comprising 10.78 million flows and 3300 unique clients.

For our evaluation we categorize flows into three types:
video, mice, and elephants. Video flows are identified by the
content type field in the cache log, and were found to be
predominantly from YouTube. We categorize the remaining
flows as mice or elephants based on their download volume:
flows that transfer up to 10 MB we call mice (chosen to be
conservatively above the average web-page size of 2.14 MB
reported in [16]), and are representative of web-page views for
which the user expects an immediate response; flows transfer-
ring 10 MB or more we call elephants, and assume that they
are “elastic” in that the user can tolerate longer transfer delays.
Of the 10.78 million flows, we found that the vast majority
(10.76 million or 99.8%) of flows were mice, while there
were only 11, 674 video and 1, 590 elephant flows. However,
in terms of volume, the three categories were roughly equal,
constituting respectively 32%, 32%, and 36% of the traffic
download volume. Note that peer-to-peer traffic does not go
through the web-cache, and consequently elephant transfers
are likely to be under-represented in our trace. Nevertheless,
the traffic characteristics of our trace are reasonably consistent
with prior observations of Internet traffic.

A time trace of the traffic volume in each category, averaged
over 1-minute intervals over the 12-hour period, is shown in
Fig. 3. The bottom curve corresponds to mice flows, and we
found that very few (0.1%) mice flows download more than
300 KB, consistent with published findings [17].

Video traffic volume (as an increment over the mice traffic
volume) is shown by the middle line in Fig. 3. To evaluate
the impact of our solution on video quality, we assume that
video flows have a roughly constant rate (this allows us to
measure quality as the fraction of time that the video stream
does not get its required bandwidth). This rate is derived by

12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 11pm 12am
0

20

40

60

80

100

120

140

160

180

200

Time

A
g

g
re

g
a

te
 l
o

a
d

 (
M

b
p

s
)

Mice

Video

Elephant

Fig. 3. Aggregate load over a 12 hour period taken from campus web cache.

dividing the video flow traffic volume by its duration. To
account for the fact that video streaming uses playback buffers
that download content ahead of what the user is watching, we
added 40 seconds to the video flow duration, consistent with
the playback buffer sizes reported for YouTube [9]. The video
flow traffic rate CCDF1 is depicted in Fig. 2(a), and shows that
more than 98% of video flows operate on less than 5 Mbps,
and less than 0.2% of flows use more than 10 Mbps. The video
flow duration distribution (plot omitted) also decays rapidly –
only 10% of video views last longer than 3 minutes, and only
1% are longer than 10 minutes.

The total elephant traffic volume (as an increment over
the mice and video traffic) is shown by the top curve in
Fig. 3. We observe several large spikes, indicating that bulk
transfers can sporadically impose heavy loads on the network.
In Fig. 2(b) we plot the CCDF of the file size, and find that
it decays rapidly initially (about 8% of flows are larger than
100 MB), but then exhibits a long tail, with the maximum
file size being close to 1 GB in our trace. The above traffic
trace is simulated over a residential network topology that
comprising 10 households, each with a 10 Mbps broadband
link, as described next.

1Complementary Cumulative Distribution Function

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 7

B. Simulation Methodology and Metrics

We wrote a native simulation that takes flow arrivals from
the trace as input, and performs slot-by-slot (where a slot is
of duration one second) service. Video flows invoke the fast-
lane API while elephant flows invoke the slow-lane API. The
invocation (and acceptance) of these APIs for each flow is
entirely at the CP’s (and ISP’s) discretion, but to make our
study tractable we equip the video CP with a single threshold
parameter θv, which is the fraction of available bandwidth on
the access link below which the fast-lane is invoked for the
video flow – a video CP that never wants to use fast-lanes is
modeled with θv = 0, whereas θv = 1 models a video CP that
invokes the fast-lane API for every video session irrespective
of network load. In general, an intermediate value, say θv =
0.2, represents a CP that requests a fast-lane for the streaming
video only when the residual capacity on the broadband access
link falls below 20%, and takes its chances with best-effort
video-streaming otherwise. Similarly, we equip the ISP with
parameter θb for slow-lane creation for elephant flows: θb = 0
prevents slow-lane creation, θb = 1 permits creation of slow-
lane for every elephant flow, and intermediate values allow
the ISP to permit slow-lane creation only when the access
link load is higher than a threshold.

User-configured parameter α signifies the fraction of the
access link capacity that is available for fast-lane creation.
Admitted video flows are allocated their own fast-lane queue,
elephant flows invoking the API are assigned their own slow-
lane queue, and the remaining flows (including mice flows
that do not call any API and video/elephant flows whose API
calls are denied) share a best-effort queue. Fast lanes, that
can in total take at most fraction α of the broadband link
capacity, are assumed to each be served at a constant bit rate.
The remaining bandwidth is shared in a weighted-fair manner
amongst the best-effort queue and the slow-lane queues. The
weights for the slow-lanes are updated dynamically based
on their progress, computed as the ratio of the remaining
transfer volume to the time remaining to reach the deadline
of the respective elephant flow. The best-effort queue has a
constant weight of (1 − α)C, where C is the access link
capacity, i.e. 10 Mbps in our simulation setting. Further, the
bandwidth available to the best-effort queue is shared amongst
the flows in that queue in a weighted fair manner, whereby the
weight for a video stream is its CBR volume over a slot, for
an elephant flow is the delay-bandwidth product over a slot
(since the elephant flow is expected to be in TCP congestion
avoidance phase), and for a mice flow its volume (since it
is expected to be in TCP slow-start phase). Our simulation
therefore models a weighted-fair-queueing discipline across
queues, and TCP-fairness within the best-effort queue, while
ensuring that the server is work conserving and does not waste
any link capacity if traffic is waiting to be served.

Metrics: A video flow is deemed “unhappy” if it does not
receive its required CBR bandwidth for at least 10% of its
duration, and a mice flow is deemed “unhappy” if it takes
longer than 2 seconds to complete. The performance for an
elephant flow is measured in terms of its “elongation”, namely
the ratio of its finish time when it is put into a slow-lane versus

when it is in the best-effort queue. We will be looking into
average values as well as distributions of the above metrics.

C. Performance Results

We now quantify how the performance for video, mice,
and elephant flows is affected by the following parameters
that control fast/slow-lanes: (a) user-chosen parameter α that
denotes the fraction of the access link capacity that can be used
to carve out fast-lanes; (b) the elasticity parameter β of the
delay bound for elephant bulk transfers – this corresponds to
the factor by which the transfer time can stretch as a multiple
of the time it would require if it had exclusive use of the
entire access link bandwidth; thus β = 10 permits the flow
to be squeezed to one-tenth the link capacity on average,
while β = 60 allows it to be squeezed to one-sixtieth (to
reduce parameter space we will assume all elephant flows use
identical β); (c) parameters θv and θb that denote the threshold
below which residual link capacity has to fall in order for the
fast/slow-lane APIs to get invoked (we will restrict ourselves to
binary 0/1 values in this paper to disable/enable special lanes).
We study the impact of these parameters on performance of
video, mice and elephant flows in three scenarios: (a) no spe-
cial lanes – best-effort service for all flows, i.e. θv = θb = 0,
(b) only fast-lanes for all video flows, i.e. θv = 1, θb = 0,
and (c) fast-lanes for all video flows and slow-lanes for all
elephant flows, i.e. (θv = θb = 1), for both small and large β
settings.

Impact of fast-lanes: In Fig. 4(a) we plot the percentage
of video flows that are unhappy (i.e. obtain less than required
bandwidth for at least 10% of their duration) as a function
of fraction α of access link capacity that the user allows
fast-lane creation from. The top curve shows for reference
performance under today’s best-effort service with no special
lanes, revealing that more than 47% of video flows are
unhappy. It can be observed that increasing α and allowing
fast-lane creation improves video performance significantly
(second curve from top), reducing the number of unhappy
video flows to just 10% for α = 0.2, corroborating with a
real trace that fast-lanes do indeed improve video experience.

Improving video performance with fast-lanes can degrade
performance for other traffic – in Fig. 4(b) we show per-
formance for mice flows. Whereas best-effort service yielded
unhappy performance (load-time of more than 2 seconds) for
26% of the mice flows (solid curve), introduction of fast-
lanes for video causes the percentage of unhappy mice flows
to increase steadily with α (top curve), since the available
bandwidth for the best-effort queue shrinks – for example, an
α = 0.2 increases the percentage of unhappy mice flows to
28% – this can constitute a disincentive for the user to choose
a higher α, particularly if they value their web-browsing expe-
rience as much or more than video. Similarly, elephant flows
also experience lower throughput as α increases: whereas an
elephant flow received about 5 Mbps average throughput in
the best-effort scenario, this dropped by about 6% when fast-
lanes are enabled with α = 0.2. This marginal decrease in
throughput seems to be a reasonable price to pay for improving
video experience via fast-lanes.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 8

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

α: fraction of access link capacity available to fast lanes

%
 o

f u
nh

ap
py

 V
id

eo
 fl

ow
s

best−effort (θ
v
=θ

b
=0)

only fast lanes (θ
v
=1, θ

b
=0)

fast and slow lanes (θ
v
=θ

b
=1, β=10)

fast and slow lanes (θ
v
=θ

b
=1, β=60)

(a) Video unhappiness

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

α: fraction of access link capacity available to fast lanes

%
 o

f u
nh

ap
py

 M
ic

e
flo

w
s

(b) Mice unhappiness

0 100 200 300 400
0

10

20

30

40

50

Elephant size (MB)

E
le

ph
an

t e
lo

ng
at

io
n

ra
tio

α=0.8, β=60

(c) Elephant elongation ratio

Fig. 4. Performance of video, mice and elephant flows.

Impact of slow-lanes: The results discussed above showed
that the negative impact of fast-lanes on mice flows can
cause users to set their fraction α of access capacity that
can be used for fast-lane creation to be low, so as to protect
their web-browsing experience. This reduces the ISP’s ability
to monetize on fast-lanes, which can be disastrous. Slow-
lanes have the ability to combat this problem, whereby large
downloads (elephants) are peeled off into separate queues and
elongated (as per their specified stretch factor β) to allow
better service for other traffic flows. Indeed, Fig. 4(a) shows
that when elephant flows are stretched (β = 10, 60 in bottom
two curves) using slow-lanes, the number of unhappy video
flows reduces significantly, though the benefits diminish with

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x: Fraction of time video bandwidth unavailable (%)

C
C

D
F:

 P
ro

b[
ba

nd
w

id
th

−u
na

va
ila

bl
e−

fo
r−

fra
ct

io
n

>
x]

α = 0

α = 0.1

α = 0.2

α = 0.3

α = 0.4

α = 0.6

α = 0.8

(a) CCDF of video bandwidth unavailability

2 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1

x: mice page−load time (sec)

C
D

F:
 P

ro
b

[p
ag

e−
lo

ad
−t

im
e

≤
x]

best−effort

only fast lanes (α=0.2)

only fast lanes (α=0.8)

both fast and slow lanes (α=0.8, β=10)

both fast and slow lanes (α=0.8, β=60)

(b) CDF of mice page-load time

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x: elongation ratio

C
C

D
F:

 P
ro

b
[e

lo
ng

at
io

n−
ra

tio
 >

 x
]

α=0.8, β=10

α=0.8, β=60

(c) CCDF of elephant elongation ratio

Fig. 5. A detailed look on performance of video, mice and elephant flows

α, since a high α allows video flows to have their own fast-
lanes anyway.

The most dramatic impact of slow-lanes is on mice flows.
In Fig. 4(b), the bottom two curves (corresponding to stretch
factors β = 10 and β = 60) represent the percentage
of unhappy mice flows (that have load-time longer than 2
seconds) – it is seen that at α = 0.2, introduction of slow-
lanes reduce the number of unhappy mice flows from 28% to
below 8%. Though the mice performance still degrades with
α, the use of slow-lanes for elephant flows permit the ISP
to serve mice flows far better than before – indeed, even if
the user chooses a fairly high α of say 0.8, only 8% of their
mice flows take longer than 2 seconds to complete, provided

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 9

elephant transfers are given slow-lanes with elasticity β = 60
(bottom curve in Fig. 4(b)).

The impact of slow-lanes on elephants is shown in Fig. 4(c).
Each point in the scatter plot corresponds to a flow, and shows
how much it got elongated in time (in multiples of the baseline
time obtained from best-effort service with no special lanes) as
a function of the file size (this plot is for chosen stretch factor
β = 60). For small file sizes (10-50 MB), the file transfer
time can be elongated ten-fold or more – this should not be
surprising, since the slow-lane is meant to take advantage of
elephant elasticity to better accommodate the transient needs
of other traffic. What is interesting to note in this scatter plot
is that as the elephant size gets larger, the elongation drops
(elephants larger than 200 MB rarely get elongated more than
two- or three-fold) – a little thought will reveal that this should
indeed be expected, since large elephants in slow-lanes will
give way to transient spikes in other traffic, but will catch-
up during lulls in other traffic (since the scheduling is work-
conserving), so their long-term average rate will be no worse
than in a best-effort queue.

A detailed look at performance: In Fig. 5 we show in more
detail the impact of special lanes on performance quality for
video, mice, and elephant flows. Fig. 5(a) plots the CCDF of
the fraction of time for which a video flow does not receive its
required bandwidth, for various values of α. In the absence of
fast-lanes (α = 0, top curve), more than 78% of video flows
experience some level of degradation, with around 21% of
flows not receiving their required bandwidth more than half
the time. By contrast, allowing video fast-lanes using even just
α = 0.1 fraction of the link capacity (second curve from the
top) reduces the number of flows experiencing any degradation
to 26%, and this can be reduced to below 10% by setting
α = 0.3.

Fig. 5(b) shows the CDF of mice flow completion times.
Best-effort service (solid line) with no special lanes allows
74% of mice flows to finish within 2 seconds and 80% within
10 seconds. Creation of fast-lanes worsens latency for mice
flows (bottom two curves), with the number of mice finishing
within 10 seconds falling to 77% for α = 0.2 and 74% for
α = 0.8. However, when fast-lanes (for video) and slow-lanes
(for elephants) are both invoked using their respective APIs
(top two curves), well over 95% of mice flows complete within
10 seconds (for α = 0.8 and β = 60), corroborating that high
α values are compatible with good mice performance.

Lastly, Fig. 5(c) shows the CCDF of the elongation experi-
enced by elephant flows using slow-lanes. It is observed that
with β = 10, only 28% of elephants are elongated two-fold or
more, and 0.1% ten-fold or more. When elasticity is increased
to β = 60 (dashed line), about 30% of elephants elongate two-
fold or more while 6% elongate ten-fold or more. We believe
this is an acceptable price to pay for improved performance
of video and mice flows.

Summary: The key observations to emerge from our evalu-
ations are: (a) Fast-lanes significantly improve bandwidth per-
formance for video traffic, though at the expense of increasing
latency for mice flows; (b) Slow-lanes leverage the elasticity
of bulk transfers to improve performance, particularly for mice
flows; (c) Combined use of fast- and slow-lanes allow the user

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

x: Fraction of time video bandwidth unavailable (%)

C
C

D
F

:
P

ro
b
[b

a
n
d
w

id
th

−
u
n
a
v
a
ila

b
le

−
fo

r−
fr

a
c
ti
o
n
 >

 x
]

dynamic lanes

static lanes

Fig. 6. CCDF of video bandwidth unavailability (α = 0.1, β = 10)

to obtain good performance for both streaming and browsing
traffic, while allowing the ISP to monetize them from content
providers (economic models to support this are discussed
separately in [14], [18]).

D. Comparison to Static Lanes

We now compare the performance of our dynamically
signalled fast/slow-lane scheme to a statically provisioned
approach, whereby traffic flows are classified into static queues
of different priority levels. We specifically choose the Metro
Ethernet Forum (MEF) 23.1 [19] framework that advocates
the use of three Class-of-Service (CoS) priority labels namely
high (H), medium (M) and low (L); though our comparison
can equally be applied to other frameworks like DiffServ that
use a larger number of static queues. A set of performance
objectives (e.g. bandwidth., latency, jitter) is associated to each
service label. To make our comparison study fair, we provision
three queues as per the MEF specifications, and serve video,
mice and elephant flows by queue H, M and L respectively,
with the following minimum rate configurations: we allocate
α fraction of total link capacity to high priority queue H (to
match the user-selected fraction of access link capacity that is
allocated to video flows in our dynamic fast-lane scheme); we
allocate fraction 1/β of the link capacity for the low-priority
queue L (to match the bandiwdth given to an elephant flow at
its commencement in our dynamic slow-lane scheme); and the
remaining capacity is allocated to the M queue serving mice
flows.

We simulate the static queue provisioning method above,
and compare the performance of video, mice, and elephant
flows against our dynamic allocation scheme. Fig. 6 depicts
the CCDF of the fraction of time for which a video flow
does not receive its required bandwidth under both schemes,
for α = 0.1 and β = 10. It is seen that with static
allocation around 33% of video flows experience some level of
degradation (dotted curve), while under our dynamic fast-lane
scheme this fraction reduces to 26%. This can be explained

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 10

Web server

Emulated ISP switch

network

Access network switch

100Mbps

AP 1

10Mbps

ISP

File Transfer

server

Video

server

Network

Controller

OpenFlow switch

Home 1 Home 2

API

Corporate Network

Delay Emulator

AP 2 AP 3

Home 3

Fig. 7. Network Architecture

as follows: when video bandwidth demand exceeds the band-
width available to video flows (fraction α = 0.1 of access link
capacity in this case), under the static scheme all video flows
will suffer since they share the common (priorty H) queue,
whereas under our dynamic scheme the video flows that are
accepted will receive their requested bandwidth, while video
flows whose request is rejected will be served in the best-
effort queue. In other words, during times of over-subscription,
the latter preserves quality for video flows that are accepted
for fast-lane service, while the former violates it for all video
flows. This demonstrates the value of dynamic allocations that
can be honored at all times, unlike a static allocation that relies
on over-provisioning.

V. PROTOTYPE IMPLEMENTATION AND EXPERIMENTATION

We prototyped our scheme in a small testbed, depicted in
Fig. 7, hosted in a 18m×12m two-level shed, to emulate a
small part (3 homes, each with multiple clients) of a residential
ISP network. The objectives of this experimental setup are to
demonstrate the feasibility of our scheme with real equipment
and traffic, and to evaluate the benefits of special lanes for
real video and bulk-transfer streams.

A. Hardware and Software Configuration
Network Topology: The clients are connected wirelessly to

their home AP, each of which has uplink broadband capacity

of 10 Mbps emulating a DSL/cable/PON service. The APs
connect back to an access switch (emulating a DSLAM, cable
head-end, or OLT), which is back-ended with an OpenFlow
capable Ethernet switch. This connects through a network
of switches (emulating the ISP backbone network) to the
controller (that implements the API) and to a delay emulator
that introduces 5 ms of delay before forwarding traffic on to
the servers through the corporate network (the delay emulator
and corporate network together emulate the Internet).

Openflow switch: Our switch was a 64-bit Linux PC
with 6 Ethernet ports, running the OpenFlow 1.0.0 Stanford
reference software implementation. It supported 200 Mbps
throughput without dropping packets, which is sufficient for
our experiments. The switch has a default best-effort FIFO
queue for each home, and a separate queue was created for
each flow that made a successful API call to the controller.
Linux Hierarchical Token Buckets (HTBs) assure minimum
bandwidth to those queues in proportion to their weights.

Network controller: We used the POX OpenFlow con-
troller and developed Python modules that used the messenger
class to execute the API calls using JSON from our video
and bulk-transfer servers. Successful API calls result in the
installation of a flow table entry at the OpenFlow switch to
direct the traffic along the desired path. We also implemented
the mechanism at the controller, which makes call admission
decisions, and polls the switch every 10 seconds to check
the volume sent for each bulk-transfer flow, computes the
minimum bandwidth required to complete the transfer within
the agreed time, and configures this for the HTB queue at the
switch. This periodic reconfiguration of bandwidth for bulk-
transfer flows involved very low transmission overhead (of the
order of a few bytes per second per flow).

Video server: A Python scripted video on demand server
was developed using Flup. For each user video request, the
server calls the fast-lane API via a JSON message to the net-
work controller. An example is: {hello: jukebox, type: minbw,
nwsrc: 10.10.7.31/32, nwdst: 10.10.5.18/32, proto:
6, sprt: 8080, dprt: 22400, bw: 7600}. In this case the server
requests a fast-lane with minimum bandwidth of 7.6 Mbps
for TCP on the path from 10.10.7.31:8080 (server) to
10.10.5.18:22400 (client). The server executes a new
VLC (v2.0.4) instance for each video stream, and periodically
renews the bandwidth reservation until user video playback
ends with TCP disconnection.

Bulk transfer server: When the bulk transfer server re-
ceives a request from a client, it calls the slow-lane API
at the network controller via a JSON message. An example
is: {hello: jukebox, type: bulk, nwsrc: 10.10.7.31/32,
nwdst: 10.10.5.18/32, proto: 6, sprt: 24380, dprt: 20,
len: 1800000, deadline: 3600}. In this case the server re-
quests a bulk transfer of 1.8GB by TCP on the path from
10.10.7.31:24380 to 10.10.5.18:20. The deadline
parameter indicates that the transfer can take up to 1 hour. If
the controller accepts the request, the flow is given a dedicated
queue, whose weight is adjusted periodically as described
earlier.

Wireless APs: We used standard TP-LINK WR1043ND
APs, which were run in layer-2 mode (i.e. routing, DHCP,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 11

TABLE I
VIDEO, BROWSING, AND FTP PERFORMANCE WITH VARYING α.

App α = 0 α = 0.8 α = 1
mean std mean std mean std

C1 MOS 2.87 0.44 3.10 0.31 3.25 0.01
C2 MOS 3.25 0.00 3.25 0.01 3.25 0.01

Page load (s) 2.84 0.86 3.10 1.61 4.85 3.55
FTP stretch 1.60 0.20 1.97 0.77 2.45 1.07

and NAT disabled) with dd-wrt v24.
User clients: Each home has three clients, implemented

using standard computers. Client C1 represents a large-screen
device (e.g. PC or TV) and client C2 a small-screen device
(e.g. tablet/phone) on which users watch videos, while client
C3 represents a PC or media gateway that does both web-
browsing and bulk transfers. Browsing took place within Inter-
net Explorer (IE) v10, and a web-page of 1.1 MB containing
text and images is accessed. All videos were played by the
VLC IE plugin.

User Traffic: Clients run PowerShell scripts to automat-
ically generate traffic representative of the average home.
Clients C1 and C2 are either idle or streaming video, and a
Markov process controls the transitions, as in [20], with 40%
of time spent idle and 60% watching video. Client C1 streams
a high bandwidth video in MPEG-1/2 format, allocated a peak
bandwidth of 7.5 Mbps, and having mean rate of 5.9 Mbps
averaged over 3-second interval samples. Client C2 streams a
lower bandwidth video in MPEG-4v format, allocated a peak
bandwidth of 2.1 Mbps and having a mean rate of 1.3 Mbps.
Client C3 can be in idle, browsing, or bulk-transfer states. For
browsing it opens IE and loads a 1.1 MB web-page from our
web-server. The user is assumed to read the web-page for 10
seconds, reloads the web-page, and the process repeats. We
disabled IE’s cache so that it downloaded the full web page
on every access, which lets us compare the download times for
the page across various runs. For bulk-transfers the file sizes
were chosen from a Pareto distribution with shape parameter
4.5, and scale parameter such that files are between 100 and
500 MB with high probability. The idle periods are log-normal
with mean 10 minutes and standard deviation 2 minutes.

Metrics: The video streaming quality is measured in terms
of Mean Opinion Scores (MOS). To automatically evaluate
MOS, we rely on the technique of [21] that combines initial
buffering time, mean rebuffering duration, and rebuffering
frequency to estimate the MOS (with a configured playback
buffer of 3 seconds). Our VLC IE plugin was instrumented
with Javascript to measure these parameters and compute the
MOS. Our client script also measured the times taken for each
bulk transfer and web-page download.

B. Experimental Results
We conducted tens of experiments varying the user selected

parameter α that controls the extent to avail special lanes, and
the elasticity β for bulk transfer flows. The impact of these
parameters on video quality, file transfer times, and browsing
delays is discussed next.

In Table I, we show how the quality for the various applica-
tions depends on the fraction α of household link capacity that

is made available by the user. The low-rate video (2.1 Mbps
peak) on client C2 always gets a near-perfect MOS of 3.25.
This is unsurprising, since a fair share of the link capacity
suffices for this video to perform well in our experiments, and
fast-lane reservations are not necessary. The high-rate video
stream (7.5 Mbps peak) on client C1 however sees marked
variation in quality: disabling special lanes with α = 0 makes
the video unwatchable most of the time, with low average
MOS of 2.87 (standard deviation 0.44), while complete fast-
lane provisioning with α = 1 always successfully allocates
bandwidth to this stream, yielding a perfect MOS of 3.25.
With α = 0.8, the average MOS degrades to 3.10 (standard
deviation 0.31) since allocations fail when the other video
stream is also active.

The table also shows that α has the converse effect on web-
page load time: when α = 0, the web-page loads in 2.84s on
average (standard deviation 0.86s), while increasing α to 0.8
and 1 steadily increases the average time taken for page loads;
furthermore, the standard deviation also increases, indicating
that download times become more erratic as α increases.
This is not surprising, since web-page downloads (and mice
flows in general) will not allocate resources via the API call,
and their performance suffers when bandwidth is allocated to
other reserved flows. This trade-off between video quality and
web-page load-time illustrates that users should adjust their
household α value (via trial-and-error or other means beyond
the scope of this paper) in line with their traffic mix and the
relative value they place on each traffic type.

The performance of a bulk transfer flow is measured in
terms of its “stretch”, i.e. the factor by which its transfer
delay gets elongated compared to the baseline case where
it has exclusive access to the entire access link capacity.
Table I shows that with no special lanes, bulk transfer flows
get stretched by a factor of 1.6, and the stretch increases to
1.97 at α = 0.8 and 2.45 at α = 1. This is both expected
and desired, since increasing α allows the video streams to
get higher quality, which comes at the cost of stretching the
elastic bulk-transfers.

VI. RELATED WORK

The body of literature on QoS/QoE is vast, and bandwidth-
on-demand capabilities have been envisaged since the days of
ATM, IntServ and RSVP. These mechanisms equip the ISP
with tools to manage quality in their own network, but little
has been done by way of exposing controls to end-users and
content providers. Early attempts at exposing QoS to external
entities include the concept of bandwidth broker for ATM
networks [22], and protocols for QoS negotiation (e.g. XNRP
[23]). Tools for exposing network bandwidth availability are
starting to emerge, though predominantly for data center users,
such as Juniper’s Bandwidth Calendaring Application [24]
implemented over an OpenFlow-based network. Bandwidth-
on-demand for bulk data transfers between data centers has
also been explored in the Globally Reconfigurable Intelligent
Photonic Network [25] and NetStitcher [26], with the latter
exploiting the elasticity in bulk data transfer to schedule
it during diurnal lulls in network demand. Elasticity has

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 12

also been leveraged by [27] to improve ISP access network
performance, with time-dependent pricing explored in [28].

ISPs can also provide class-based QoS support via frame-
works like MEF Carrier Ethernet interfaces [19], which sup-
ports multiple classes of service over Ethernet Virtual Con-
nections. However, these data-plane interfaces (which mark
packets) are only accessible to entities directly connected
to the ISP (or a set of contiguous Operator Metro Ethernet
Networks, in the case of Operator Virtual Connections) and
so are unsuitable when the ISP/Operator-MEN and CP do not
peer directly, and would require the CP to be able to identify
users by their MAC address if it is to differentiate service
for/between its users. Carrier Ethernet also differentiates traffic
on the basis of SLAs, which are unlikely to be as agile as flow
based mechanisms, e.g. operating on the time scale of days
rather than sessions, preventing a CP from differentiating flows
of the same form, e.g. movie vs advertising video. A Carrier
might use the IEEE 802.1Q Stream Reservation Protocol [29]
to implement traffic control within its own network, though it
remains unclear how this mechanism would be exposed to the
CP.

Greenstein describes [30] how recent US regulatory changes
have allowed ISPs to provide fast lane services, but that an
impediment to such services is user demand for options to
control such prioritisation. Our approach gives users direct
control of the fraction of the access link capacity that can
be used to carve out fast-lanes through the parameter α.
Google’s Bandwidth Enforcer [31] is another system that uses
SDN techniques to manage bandwidth allocations across a
network. The weight that it gives to best-effort traffic performs
a role that is similar to our elasticity parameter β. While
it identifies such bulk transfer parameters and dimensions
network resources in a globally max-min fair manner, it is
designed for use in a private WAN, and so does not address
user (receiver) incentives for allowing slow lanes, and so has
no equivalent of our user-controlled parameter α.

The works closest to ours are those that virtualize the
access [32] and home [33], [34] networks. NANDO [32]
allows multiple ISPs to share infrastructure, and consumers
can choose the ISP on a per-service basis. This model is very
attractive for public access infrastructure (e.g. in Australia or
Singapore), but it remains to be seen if private ISPs will be
willing to share infrastructure with each other. In [33], the
home network is sliced by the ISP amongst multiple content
providers. With this approach the ISP cedes long-term control
of the slice to the CP (it is however unclear what policies
dictate the bandwidth sharing amongst the slices), which is
different from our architecture in which the ISP only “leases”
well-specified resources to the CP on a short-term per-flow
basis. Both models have merits and are worth exploring,
though we believe our approach is likely to be more palatable
to ISPs as they can retain more control over their network.
Lastly, [34] gives users control of how their home network is
sliced, but requires a higher level of user sophistication that
we have tried to bypass.

VII. CONCLUSIONS

In this paper we have proposed an architecture for fast-
and slow-lanes in the access network that can be invoked by
an external entity via open APIs. Our architecture provides
the motivation and means for all parties to engage: content
providers can selectively choose to avail fast or slow lanes for
flows in line with their business models; ISPs can monetize
their access infrastructure resources on a per-flow basis rather
than relying on bulk-billed peering arrangements; and users
can readily adjust the degree of (or opt out of) special lanes
provisioning to suit their usage pattern. We developed a mech-
anism that achieves efficient creation of special lanes via SDN-
based centralized control. We simulated our algorithm on real
traffic traces comprising over 10 million flows to show that fast
lanes can almost eliminate video quality degradations and slow
lanes enhance web page-load time significantly for a modest
increase in bulk transfer delays. Finally, we prototyped our
scheme on a small testbed comprising OpenFlow-compliant
switches, off-the-shelf access points, and unmodified clients,
to show how the user can control the trade-off between video
experience, bulk transfer rates, and web-page load-times.

Our work is a first step towards showing how the agility and
centralization afforded by SDN technology presents a unique
opportunity to overcome the long-standing impasse on service
quality in access networks. Needless to say, many challenges
are yet to be overcome to make this a reality, such as
enriching the API to include other application use-cases (e.g.
low-latency gaming or virtual reality applications), extending
the API end-to-end across network domains via federation,
and ultimately developing appropriate pricing models that can
derive economic benefits for ISPs, CPs, and end-users.

VIII. ACKNOWLEDGEMENTS

The authors thank Google for supporting this project via a
Research Award, and specifically Josh Bailey who has been a
close collaborator throughout this work.

REFERENCES

[1] V. Sivaraman, T. Moors, H. Habibi Gharakheili, D. Ong, J. Matthews,
and C. Russell. Virtualizing the Access Network via Open APIs. In
Proc. ACM ConNEXT, CoNEXT ’13, December 2013.

[2] Cisco Internet Business Solutions Group. Moving Toward Usage-Based
Pricing. http://goo.gl/QMEQs, 2012.

[3] The European Telecom. Network Operators’ Association. ITRs Proposal
to Address New Internet Ecosystem. http://goo.gl/VutcF, 2012.

[4] M. Nicosia, R. Klemann, K. Griffin, S. Taylor, B. Demuth, J. Defour,
R. Medcalf, T. Renger, and P. Datta. Rethinking flat rate pricing for
broadband services. White Paper, Cisco Internet Business Solutions
Group, July 2012.

[5] Sandvine. Global Internet Phenomena Report. http://goo.gl/l7bU2, 2012.
[6] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford,

and A. Pescapè. Broadband Internet Performance: A View from the
Gateway. In Proc. ACM SIGCOMM, August 2011.

[7] S. Krishnan and R. Sitaraman. Video Stream Quality Impacts Viewer
Behavior: Inferring Causality Using Quasi-Experimental Designs. In
Proc. ACM IMC, November 2012.

[8] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang.
A Case for a Coordinated Internet Video Control Plane. In Proc. ACM
SIGCOMM, August 2012.

[9] A. Rao, Y. Lim, C. Barakat, A. Legout, D. Towsley, and W. Dabbous.
Network characteristics of video streaming traffic. In Proc. ACM
CoNEXT, December 2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING 13

[10] S. Akhshabi, A. Begen, and C. Dovrolis. An Experimental evaluation of
rate-adaptation algorithms in adaptive streaming over HTTP. In Proc.
ACM MMSys, February 2011.

[11] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate Limiting
YouTube Video Streaming. In Proc. USENIX ATC, June 2012.

[12] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang. Understanding the Impact of Video Quality on User
Engagement. In Proc. ACM SIGCOMM, August 2011.

[13] Internet Society. Bandwidth Management: Internet Society Technology
Roundtable Series. http://goo.gl/ZMOTx, Nov 2012.

[14] H. Habibi Gharakheili, A. Vishwanath, and V. Sivaraman. Pricing User-
Sanctioned Dynamic Fast-Lanes Driven by Content Providers. In Proc.
IEEE INFOCOM workshop on Smart Data Pricing (SDP), April 2015.

[15] H. Habibi Gharakheili, A. Vishwanath, and V. Sivaraman. An Economic
Model for a New Broadband Ecosystem Based on Fast and Slow Lanes.
IEEE Network, 30(2):26–31, 2016.

[16] HTTP Archive. http://www.httparchive.org/.
[17] S. Ramachandran. Web metrics: Size and number of resources. http://

goo.gl/q4O4X, 2010.
[18] H. Habibi Gharakheili, V. Sivaraman, A. Vishwanath, L. Exton,

J. Matthews, and C. Russell. Broadband Fast-Lanes with Two-Sided
Control: Design, Evaluation, and Economics. In Proc. IEEE/ACM
IWQoS, June 2015.

[19] MEF Forum. Implementation Agreement MEF 23.1: Carrier Ethernet
Class of Service, Phase 2, January 2012.

[20] X. Cheng, C. Dale, and J. Liu. Statistics and Social Network of YouTube
Videos. In Proc. IEEE/ACM IWQoS, June 2008.

[21] R. Mok, E. Chan, and R. Chang. Measuring the quality of experience
of HTTP video streaming. In Proc. IFIP/IEEE Int’l Symp. on Integrated
Network Management, May 2011.

[22] K. Nahrstedt and J. M. Smith. The QoS Broker. IEEE Multimedia,
2:53–67, 1995.

[23] K. Rothermel, G. Dermler, and W. Fiederer. QoS negotiation and
resource reservation for distributed multimedia applications. In Proc.
IEEE International Conference on Multimedia Computing and Systems,
June 1997.

[24] H. Sugiyama. Programmable Network Systems Through the Junos SDK
and Junos Space SDK. In World Telecommunications Congress, 2012.

[25] A. Mahimkar, A. Chiu, R. Doverspike, M. Feuer, P. Magill, E. Mavro-
giorgis, J. Pastor, S. Woodward, and J. Yates. Bandwidth on Demand for
Inter-Data Center Communication. In Proc. ACM HotNets Workshop,
November 2011.

[26] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez. Inter-Datacenter
Bulk Transfers with NetStitcher. In Proc. ACM SIGCOMM, August
2011.

[27] P. Danphitsanuphan. Dynamic Bandwidth Shaping Algorithm for
Internet Traffic Sharing Environments. In Proc. World Congress on
Engineering, July 2011.

[28] C. Joe-Wong, S. Ha, and M. Chiang. Time-dependent broadband pricing:
feasibility and benefits. In Proc. IEEE ICDCS, June 2011.

[29] IEEE. IEEE Standard for Local and metropolitan area networks –
Bridges and Bridged Networks. IEEE Std 802.1Q-2014, 2014.

[30] S. Greenstein. The fault lines along fast lanes. IEEE Micro, 34(2):64–64,
Mar 2014.

[31] A. Kumar et al. BwE: Flexible, Hierarchical Bandwidth Allocation for
WAN Distributed Computing. In Proc. ACM SIGCOMM, August 2015.

[32] J. Matias, E. Jacob, N. Katti, and J. Astorga. Towards Neutrality in
Access Networks: A NANDO Deployment With OpenFlow. In Proc.
Int’l Conf. on Access Networks, June 2011.

[33] Y. Yiakoumis, K. Yap, S. Katti, G. Parulkar, and N. McKeown. Slicing
Home Networks. In Proc. SIGCOMM HomeNets Workshop, August
2011.

[34] Y. Yiakoumis, S. Katti, T. Huang, N. McKeown, K. Yap, and R. Johari.
Putting Home Users in Charge of their Network. In Proc. ACM
UbiComp, September 2012.

Hassan Habibi Gharakheili received his B.Sc.
and M.Sc. degrees of Electrical Engineering from
the Sharif University of Technology in Tehran,
Iran in 2001 and 2004 respectively, and his Ph.D.
of Electrical Engineering and Telecommunications
from the University of New South Wales in Sydney,
Australia in 2015. He is currently a postdoctoral
researcher in the School of Electrical Engineering
and Telecommunications at the University of New
South Wales. His research interests include net-
work architectures, software-defined networking and

broadband networks.

Vijay Sivaraman (M ’94) received his B. Tech.
degree from IIT in Delhi, India, in 1994, his M.S.
from North Carolina State University in 1996, and
his Ph.D. from the University of California at Los
Angeles in 2000, all in Computer Science. He has
worked at Bell-Labs and a silicon valley startup. He
is now an Associate Professor at the University of
New South Wales in Sydney, Australia. His research
interests include software-defined networking, and
sensor networks for environmental and health appli-
cations.

Tim Moors is a Senior Lecturer in the School of
Electrical Engineering and Telecommunications at
the University of New South Wales, in Sydney, Aus-
tralia. He researches transport protocols for wireless
and optical networks, wireless LAN MAC protocols
that support bursty voice streams, communication
system modularity, and fundamental principles of
networking. Previously, he was with the Center
for Advanced Technology in Telecommunications
at Polytechnic University in New York, and prior
to that, with the Communications Division of the

Australian Defence Science and Technology Organisation. He received his
PhD and BEng(Hons) degrees from universities in Western Australia (Curtin
and UWA).

Arun Vishwanath (SM ’15, M ’11) is a Research
Scientist at IBM Research - Australia. He received
the Ph.D. degree in Electrical Engineering from the
University of New South Wales in Sydney, Australia,
in 2011. He was a visiting Ph.D. scholar in the
Department of Computer Science at North Carolina
State University, USA in 2008. His research interests
include software defined networking and energy-
efficient networking. Arun is a Senior Member of
IEEE.

John Matthews received his B.Sc. (with honours)
in 1988 from the Electronic Engineering Department
of Southampton University, UK. He is a Software
Engineer at CSIRO Astronomy and Space Science
where he is presently active with the design of the
Central Signal Processor for the international Square
Kilometre Array radio telescope. His research inter-
ests include high speed and low latency networking
using FPGAs and network automation.

Craig Russell received his Ph.D. in Applied Mathe-
matics from Macquarie University, Sydney in 1997.
He is currently a Principal Research Engineer in the
Cyber-Physical Systems Program of CSIRO Data61.
He has design, implementation and operational ex-
perience in a wide range of advanced telecommu-
nications equipment and protocols. His professional
interest is the application of advanced Ethernet and
IP-based technologies to Australian industries.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2627005

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

