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Experiences with IoT and AI in a Smart Campus
for Optimizing Classroom Usage

Thanchanok Sutjarittham, Hassan Habibi Gharakheili, Salil S. Kanhere, and Vijay Sivaraman

Abstract—Increasing demand for university education is
putting pressure on campuses to make better use of their real-
estate resources. Evidence indicates that enrollments are rising,
yet attendance is falling due to diverse demands on student
time and easy access to online content. This paper outlines our
efforts to address classroom under-utilization in a real University
campus arising from the gap between enrollment and attendance.
We do so by instrumenting classrooms with IoT sensors to
measure real-time usage, using AI to predict attendance, and
performing optimal allocation of rooms to courses so as to
minimize space wastage.

Our first contribution undertakes an evaluation of several
IoT sensing approaches for measuring class occupancy, and
comparing them in terms of cost, accuracy, privacy, and ease
of deployment/operation. Our second contribution instruments
9 lecture halls of varying capacity across campus, collects and
cleans live occupancy data spanning about 250 courses over two
sessions, and draws insights into attendance patterns, including
identification of canceled lectures and class tests, while also
releasing our data openly to the public. Our third contribution
is to use AI techniques for predicting classroom attendance,
applying them to real data, and accurately predicting future
attendance with an RMSE error as low as 0.16. Our final
contribution is to develop an optimal allocation of classes to
rooms based on predicting attendance rather than enrollment,
resulting in over 10% savings in room costs with very low risk
of room overflows.

Index Terms—IoT, smart campus, classroom occupancy, AI,
prediction.

I. INTRODUCTION

H IGHER education institutes continue to experience
steady growth in enrollment demand [2]. A major factor

limiting universities in fulfilling this demand is real-estate,
since enrollment in a course is capped by the capacity of
the classroom to which the course is allocated. However,
with recent trends towards student lifestyles that mix study
with work and other commitments, as well as greater access
to online content, there is ample anecdotal evidence that
classroom attendance is often well below the enrollment
number. This presents an opportunity for education institutes
to better optimize the usage of classroom space based on
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attendance rather than enrollments. Since class attendance
can vary significantly between courses and across weeks of
semester, visibility into actual class attendance and ability to
predict future attendance based on historical data are needed
to dynamically re-allocate courses to rooms while minimizing
risk of overcrowded lecture rooms where class attendance
exceeds room capacity.

Several methods are available to count the number of people
in an indoor space, such as WiFi-based approach [3], camera
image processing, thermal imaging, ultrasound imaging, and
beam counters affixed to entryways [1]. Each method has its
own pros and cons across various dimensions such as cost,
power, communications, ease of deployment and operations,
privacy, and accuracy. For example, using WiFi data and
cameras endanger privacy, thermal and ultrasound imaging
have low accuracy, and camera-based image processing is
computationally expensive. Furthermore, a method that works
well in a small room may not be as effective in a larger
lecture theater, and cost/accuracy may also be impacted by the
layout of the room, the number/width of doorways, and the
availability of power and wired/wireless network connections.
Hence understanding both benefits and challenges of various
approaches in order to adopt the most suitable methods for
the nature of the room is important for the real deployment of
classroom occupancy monitoring system.

This paper describes our experiences in adopting IoT to
measure and AI to predict the attendance of lectures in courses
at our University campus, and to use these to optimize the
usage of lecture rooms. Our specific contributions are four-
fold:

1) We begin by testing several sensing methods in a lab
environment and characterizing their trade-offs in aspects
such as cost, ease of installation, method of data extrac-
tion, privacy, and accuracy.

2) We then make appropriate sensor selections, build a full
system, and deploy it across 9 lecture theaters of varying
size across the university campus. We collect and clean
the data to obtain visibility of occupancy across these
rooms in real-time over a period of 18 weeks (i.e., a full
semester in 2017 and half a semester in 2018), integrate
it with University timetabling data to infer attendance
patterns of over 250 courses, and highlight interesting
findings such as attendance trends, canceled lectures, and
class tests. We also make our occupancy data openly
available to the research community.

3) We develop machine-learning models to predict class-
room attendance using three algorithms namely multiple
regression, random forest, and support vector regression



2

(SVR). We employ quantile regression technique, allow-
ing asymmetric penalties for under-prediction and over-
prediction of attendance. Our models are able to predict
attendance in advance with a root-mean-square error
(RMSE) of less than 0.16. We also make our attendance
dataset openly available to the research community.

4) Finally, we develop an optimization algorithm for allocat-
ing classes to rooms based on predicted attendance rather
than static enrollments, and show potential saving of over
10% in room costs.

The rest of this paper is organized as follows: §II de-
scribes relevant prior work. We present our lab evaluation
of various sensing methods and their trade-offs in §III, while
§IV describes our field deployment across campus and inter-
esting insights obtained therein. We present our techniques
for predicting classroom attendance in §V. Our optimization
formulation for dynamic classroom allocation is described in
§VI, and the paper is concluded in §VII.

II. RELATED WORK

Occupancy Counting: Various approaches have been pro-
posed in the literature to measure occupancy. Many studies
utilized special-purpose sensors to infer occupancy level of
a given space – a work in [4] used a network of sensors to
obtain various environmental parameters such as CO2, carbon
monoxide (CO), total volatile organic compounds (TVOC),
acoustics, motion, temperature, and humidity, to derive occu-
pancy count in an open office space using machine learning
techniques. The method achieved an average accuracy of 73%,
however it had only been tested in a space that accommodates
only less than 10 people at a time. Works presented in [5],
[6], [7] have also used indoor environmental sensors in com-
bination with supervised learning methods to infer occupancy
and achieved good accuracy results. Nevertheless, none of
these studies have evaluated their methods in a larger room
scenario where over 100 occupants can be accommodated.
This is important for our case as typical lecture room size
at a university can ranged from less than 100 to nearly 500 in
capacity.

In addition, several studies have used video camera based
approaches for people counting. The methods described in
[8], [9] achieved good accuracy of result, but they rely on
complex image processing algorithms which require signifi-
cant computational resources. The authors in [10] successfully
used image processing and Support Vector Machine (SVM) to
measure classroom occupancy in large rooms with more than
100 occupants. However, their method only produces accurate
results when there is minimal movement in the classroom.
Privacy also remains an issue, especially if images and videos
of people are taken without their explicit consent.

Another approach to deduce occupancy count is to leverage
information from existing WiFi access points (AP) infrastruc-
ture where network connection parameters, such as connec-
tions count and received signal strength indicator (RSSI), are
used to infer occupancy [11], [12], [13]. The advantage of
this approach over the others is the fact that no additional
hardware is required. However, there is a number of factors

that may impact accuracy of the count. For instance, people
who do not carry WiFi enabled devices would not get counted,
individuals with multiple devices (e.g., laptop and phone)
would get counted twice, and people outside the room may
be connected to the AP inside the room and get included
in the room occupancy count. Furthermore, obtaining WiFi
connectivity data may also constitute a violation of privacy if
the identities of connected users can be deduced.

Predicting Occupancy: Some studies have attempted to
perform future forecasting of occupany from historical data.
The authors in [14] compared two approaches of occupancy
estimation based on indoor climate parameters and 3D stereo-
vision camera. Both approaches were tested in 2 rooms (i.e., a
classroom and a study zone), and the camera-based approach
was shown to outperform the indoor climate-based approach.
Historical occupancy estimation with additional contextual
features including day name, day type (weekday or week
end), season, and holiday (binary) were used to perform future
count prediction using decision tree and random forest. The
prediction achieved the best accuracy of 3% error, yet it has
to be noted that the models had only been trained using 20
days data with 1 day test data (using sliding window method).
Moreover, for classroom occupancy, the dynamic variation of
class attendance, which is likely to be influenced by factors
such as courses and weeks of semester, were not captured by
the models. In [15], the authors collected occupancy data at
a commercial space using depth sensors (Kinect for XBOX
One) for a duration of 9 months, future occupancy prediction
was performed using historical data, however it had suffered
from a very high error of up to 2100 %.

Classroom Scheduling and Allocations: The majority of
existing works primarily use occupancy monitoring to improve
energy efficiency of heating, ventilation, and air conditioning
(HVAC) systems. To the best of our knowledge, there is no
work on the application of occupancy measuring in dynamic
allocation of classrooms.

The problem of course timetabling and classroom allocation
have been studied extensively in the past where a variety
of constraints, such as timing requirement of the events
and lecturer availabilities were captured. Several optimization
algorithms were employed to solve the problem, some of
the popular ones include genetic algorithm [16], simulated
annealing [17], and tabu search [18]. However, the number
of students accommodated in the classroom were based on
enrollment numbers rather than actual attendances, leading to
a significant under utilization of room spaces in real-world
scenarios.

We believe that our work is the first that combines occu-
pancy monitoring system to solve class allocation problem
where courses can be allocated to classrooms based on their
predicted attendance rather than the traditional enrollment
information.

III. SENSING CLASSROOM OCCUPANCY

In this section, we describe various sensing methods for
counting people, outline their relative trade-offs with a view
towards making appropriate selections suitable for a larger-
scale deployment across the campus, and briefly explain our
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system architecture for collecting, cleansing, and visualizing
sensing data.

A. People Counting Methods

Sensors: We investigated several commercial sensors and
straight-away eliminated those that send data to the vendor’s
cloud servers, since we wanted to: (a) keep the data entirely
on-premises and not risk it leaving our campus infrastructure;
and (b) not be beholden to a vendor to access our own data,
hence freeing us from ongoing service costs. In other words,
we wanted a “sale” model of the device so we could have
unfettered access to our data without any ongoing “service”
fees. We were quite happy to buy spares of the units to cover
for device failures; further, this model allows us to integrate
data into a centralized repository to facilitate better analytics
across the many data feeds we have on campus.

We narrowed our lab trials to four types of commercial
sensors: EvolvePlus Wireless Beam Counter [19], EvolvePlus
Overhead Camera [20], Steinel HPD Camera (pre-market
release), and Steinel Presence Detector [21]. In addition,
the University IT department provided us with timestamped
connections logs from two WiFi access points (one inside
our lab and one just outside), so we could compare our
approaches to those obtained from WiFi logs. We note that
the WiFi logs gave us personal user information such as their
device MAC address, user-ID, and connection durations; we
therefore obtained ethics clearance (UNSW Human Research
Ethics Advisory Panel approval number HC17140) for this
experiment.

The Beam Counter comprises a pair of infrared (IR)
break-beam sensors mounted on the door frame, and counts
the number of people passing through in each direction. It
communicates the counts (for “in” and “out” directions) to a
gateway every 30 seconds using a propriety wireless protocol,
and the gateway then posts these readings via Ethernet to
an SQL database (DB) server hosted on a VM in our on-
premises cloud infrastructure. The Overhead Camera is a
thermal sensor mounted on the ceiling close to the entrance
facing downwards, and counts the number of people passing
below it. It also communicates the counts in each direction to
the same gateway as the beam counter, which then forwards
it on to the SQL DB. We wrote a script that pulls data from
the SQL DB, stamps the data with the time and the unique
UUID of the gateway, and posts as a JSON string to our master
database (which holds data from many sources) via a REST
API.

The HPD Camera (pre-market release) is a people counting
sensor mounted in a corner with full view of the room. It uses
built-in image processing to compute the number of people
present within a configurable zone of interest. It is powered
over Ethernet, and comes pre-configured with a server that
be queried via a REST API. We wrote a “broker” script that
polls the camera every 30 seconds to get the people count,
and posts the time-stamped and sensor UUID-stamped data in
JSON format to our master database. The Presence Detector
is a passive infrared (PIR) sensor mounted on the ceiling in
the middle of the room, and detects motion. Though it does

not count the number of people in a room, it gives a binary
indication on whether the room is occupied or not – this
sensor can be used as a way to calibrate the other counting
sensors which may accumulate errors with time. The PIR
sensor sends its binary occupancy state every 60 seconds to
its corresponding gateway via a propriety wireless interface,
which then posts it to a broker script that again time- and
sensor-UUID-stamps the data and posts to our master database.

Lastly, we receive a CSV file of daily WiFi connection
logs for the two access points from our IT department every
morning at 7am – real-time feed of data was not possible due
to technical limitations of the AP vendor. We wrote a script
to parse the log file and compute the number of unique users
connected to each AP every 30 seconds – this was also posted
to our master database.

With possibility of sourcing data from various sensing
devices, one may want to perform sensor fusion for an accurate
occupancy measurement. At a very minimum, a combination
of PIR sensor and passing people counters (i.e., beam counter
and overhead camera) seems reasonable. PIR sensors are fairly
accurate in detecting whether a room is empty which can be
useful for resetting the errors accumulated over time via the
people counting sensors. It is important to note that detecting
presence is not a trivial task for a large lecture theater due
to limited coverage of PIR sensors, and thus configuring non-
overlapping zones for multiple units of PIR sensors can be
quite challenging. For a second step of fusion, adding WiFi
data or HPD camera would help infer an accurate occupancy
since these methods measure occupants count instantaneously
without keeping states (i.e., not cumulative). But, as explained
next, these sensors come with their own shortcomings. We note
that deploying a collection of sensors at the scale of a univer-
sity campus can significantly increase the cost. Therefore, our
primary focus in this paper is to select and deploy one sensor
type for each classroom, and demonstrate its value in optimal
allocation of rooms to courses.

B. Sensor Evaluation and Selection

Our lab trial helped us compare the various counting meth-
ods in terms of their ease of installation, calibration, power and
communications requirements, accuracy, cost, and privacy, as
summarized in Table I.

Our comparison across these measures is qualitative rather
than quantitative. Even aspects such as accuracy, that can
be quantified, depend on factors like room size and layout,
mounting position, number of doors, and width of doorways,
which can vary widely across deployment environments. We
therefore resort to qualitative measures (low, medium, and
high) in this table, derived from our experience across the
rooms we instrumented, and we back these up with several
data points presented later in the paper.

Installation: The thermal camera, HPD camera, and PIR
sensor needed professional installation by certified tradesmen,
since each needed special mounting brackets and extra wiring
for mounting on (or near) the ceiling. We could install the
beam counter sensor easily by ourselves using two-sided
adhesive strips on the door frame at around waist-height.
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TABLE I
SENSORS COMPARISON

Installation Calibration Power Communications Accuracy Cost Privacy

Beam counter easy easy battery wireless high medium high
Thermal sensor hard medium AC wireless low high high
HPD Camera medium hard PoE Ethernet medium medium medium
PIR Sensor hard easy AC wireless binary medium high
WiFi Data existing existing existing existing existing existing low

Calibration and Positioning: Sensor positioning is another
key factor in our comparison. The thermal camera needs to
be positioned at a certain height range (i.e. 2.2m - 4.4m)
recommended by the manufacturer and close to the entrance
allowing the best coverage to count everyone that passes
underneath. This requirement makes it hard or impossible to
use the thermal camera in very large lecture halls with high
ceilings. Beam counters require to be mounted at around waist-
height (too low causes each leg to get counted separately, and
too high causes the swinging arms to get counted!). Once
an appropriate height is chosen for the beam counters, doors
of all classrooms need to be outfitted in the same way. The
HPD camera needs prior configuration for zone of interest
that can vary across rooms depending on the room size and
the place at which the camera is mounted. The PIR sensor is
positioned at the center of the room (on the ceiling) to have
a symmetrical coverage over an area that can also vary across
rooms depending on their seating arrangement.

Power and Communications: Provisioning power was
challenging for the thermal camera and PIR sensor, since the
campus has pre-built and fixed wiring only in certain locations
in each classroom. Therefore our Facilities Management was
required to supply new exterior wiring for these three sensors.
The beam counters are battery powered (with stated battery
life in excess of a year), and the HPD camera required a
special PoE switch that provides Ethernet for both power and
communications. The corresponding gateways for the beam
counter, thermal camera, and PIR sensor were hidden inside
a closet with available power and Ethernet.

Accuracy: We performed several spot measurements in our
lab to extract ground truth on occupancy. We found that the
beam counter is the most accurate among the four techniques.
We note that the beam counter has very good accuracy when
the the door is narrow, like in our lab. However, for a wider
doorway its accuracy is worse, since it does not always
capture individuals walking in/out side-by-side (this became
more evident in our field-trial, described in the next section).
We found the accuracy of the thermal camera to be very
sensitive to mounting position and distance from the entrance.
Moreover, since the door of our lab opens inwards, it was not
very conducive for the overhead thermal camera (mounting
it on the outside of the room was not an option as it was a
busy corridor). The HPD camera tended to have a non-zero
absolute count error, which made its relative error high when
the number of people in a room is small (e.g. less than 10)
and low when the number of people is high (e.g. more than
40). We could not test its accuracy scaling to larger counts as
our lab can only accommodate around 40 people. Lastly, the
people count derived from the WiFi access points was wildly
inaccurate, because our lab is adjacent to a busy corridor and
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Fig. 1. System architecture of classroom occupancy monitoring.

study space that is busy with students during regular hours,
and we could not distinguish who was inside versus outside
the room.

Cost: The beam sensors and PIR sensors are priced in
the range of a few hundreds of dollars, while the cameras
are in excess of a thousand. The beam counter and thermal
camera both need a gateway to send their readings to the
back-end server, and each gateway is priced in at nearly a
thousand dollars. Bear in mind that each gateway can connect
up to 20 sensors (though our deployment described in the next
section maps at most 4-5 sensors to a gateway in large lecture
theaters). The beam counters therefore end up as a more cost-
effective solution than the cameras for large-scale deployment
across campus.

Privacy: Among the four sensing techniques, WiFi clearly
endangers students privacy as their IDs are visible (due to
PEAP authentication their devices perform to connect with
the campus WiFi network). The HPD camera does on-board
processing and does not store or transmit any images of people
(though it is possible to log in to it to view the current image),
and can hence be deemed to preserve privacy. The beam
counter and the thermal camera are truly privacy-preserving,
since they can only sense the number of people passing
through the doorways without sensing any private attributes
of the individuals.

Summary: The trade-offs discussed above are summarized
in Table I. WiFi is not an option as it compromises privacy and
is inaccurate. The cameras are eliminated as being expensive,
difficult to install/position, and poor in accuracy (though
we are considering them for open spaces that do not have
doorways). The PIR sensor has only binary output (i.e., 0 for
unoccupied and 1 for occupied), and is used for re-calibration
rather than counting. We therefore decided on a larger-scale
deployment of the beam counter, based on its relatively lower
cost, easy deployment, high accuracy, and good protection of
privacy. Our deployment in classrooms is described next.
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TABLE II
MEASURED ERROR FROM GROUND-TRUTH OF OCCUPANCY.

Error

Room #seats #doors Room-based Course-based

BUS105 35 1 27.7 % 13.0 %
BUS115 53 1 34.2 % 17.3 %
CLB7 497 4 89.5% 4.6 %
CLB8 231 3 26.3 % 16.1 %
MAT A 472 6 25.5 % 8.0 %
MAT B 246 3 6.3 % 9.1 %
MAT C 110 2 14.6 % 24.4%
MAT D 110 2 16.9 % 9.2 %
PhTh 369 4 NA NA

C. System Architecture and Data Collection

Figure 1 shows a high-level system architecture of the
classroom occupancy monitoring system using beam counters.
First the beam counters communicate their count data to sensor
gateways that are installed in each room via a proprietary
wireless protocol. The gateway is directly connected to an
Ethernet port which has been provisioned to allow connection
to our university private VLAN, where the data is being
stored in a proprietary database. We then wrote a message
broker script to unify the data format into a commonly agreed
structure, where the sensor data is converted into a JSON string
as well as being tagged with timestamp and sensor UUID,
before getting posted to our master database via a REST
API. This provides the feasibility for the platform to collect
data from various sensors which generate heterogeneous data
format.

Similarly, the retrieval of data for analysis or as an input to
applications can be easily performed through a GET RESTful
API. This raw beam counter data only contains timestamped
count in and count out from each sensor installed at the
doorway, hence data preprocessing is required to infer room
occupancy and finally class attendance number.

IV. DATA PROCESSING AND VISUALIZATION

We worked with campus staff to identify appropriate class-
rooms for a field trial, and picked 9 rooms of varying size, as
shown in the first column in Table II. Some of the doorways
to the lecture-halls posed a challenge as they were very wide,
increasing the likelihood that multiple students walking out
side-by-side get counted as one. The data collected over
the first few days was manually verified (volunteers were
used to do head-counts) so as to obtain ground-truth and
calibrate the errors. In what follows we describe our methods
for data cleansing, linking with class-timetabling information,
processing, and visualization using a web-UI.

A. Occupancy and Attendance Calculation

We compare two methods of data processing to deduce the
occupancy from the number of entries and exits at each door:

Method 1: Room-based: Our first (naive) method for deriv-
ing occupancy is to set it to the cumulative number of entries
minus the cumulative number of exits across all doorways of a
classroom. However, errors arise when students walk in/out in
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Fig. 2. Error of room-based method is higher than course-based and increases
with the size of classroom; ‘BUS 115’: small room and ‘MAT A’: large theater.

groups; though we reset counts to zero at midnight each day,
errors accumulating during the day can become significant.

Method 2: Course-based: To reduce the errors accumulating
during the day, we enhance our method by computing course
attendance independent of each other by linking our sensor
data with course timetable databases obtained from our Uni-
versity. We assume that students may enter the room up to
10 minutes prior to start of the scheduled lecture time, and
may leave up to 10 minutes after the scheduled lecture time.
Attributing each entry and exit to a specific lecture therefore
allows us to compute attendance per-course, and errors are
not carried over from one lecture to the next even if they are
adjacent in time to each other.

Accuracy of Counting: To evaluate the accuracy of our
counting methods, we obtained ground-truth information by
having volunteers physically count attendance during the lec-
tures. We collected a total of 50 samples covering 31 lectures
over 4 days. The ground-truth samples were collected from 8
out of 9 classrooms in which the sensors have been deployed.
Table II shows the average error of the computed occupancy
using the two methods described above applied to the various
rooms. As expected, course-based occupancy computation
yields lower errors (average: 12.71%) compared to room-
based occupancy computation (average error: 30.60%). This is
because the room-based method gradually built-up errors over
the course of a day, whereas the course-based method had a
stable error irrespective of time-of-day (since the errors do not
accumulate). However, it should be noted that the course-based
method requires access to timetabling information, which may
not be generalizable to other environments.

Typological Analysis of Error in Calculating Occupancy:
We now analyze the impact of room characteristic (i.e., size
and number of doorways) on the accuracy of estimating
occupancy. Fig. 2 shows the occupancy computed by room-
based and course-based methods, for two representative rooms
(one small classroom ‘BUS 115’ with 53 seats and one large
lecture theater ‘MAT A’ with 472 seats) on 9-August-2018.
Our first observation is that the room-based method, shown by
dashed red lines, results in higher residuals (i.e., accumulated
error in calculated occupancy) than the course-based method,
shown by solid green lines, at the end of the day. Additionally,
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Fig. 3. The mean absolute percentage error (MAPE) versus room size,
highlighting three clusters.

it is seen that the gap between room-based and course-based
is dilated in larger classrooms – for example a significant gap
of more than 100 people is observed in ‘MAT A’ (on the right
plot), compared to a relatively smaller gap in ‘BUS 115’ (on
the left plot).

For our analysis, we use deployed sensors data (without
ground-truth) collected in entire Semester 2, 2018 to inves-
tigate the impact of the two key factors (i.e., rooms size
and number of doorways). We employ the mean absolute
percentage error (MAPE) metric computed by the average
of absolute difference between room-based and course-based
divided by course-based occupancy (i.e., ratio of the gap
between green and red lines in Fig. 2 to green lines). We
illustrate in Fig. 3 the value of MAPE as a function of room
characteristics. Note that x-axis is the room capacity and each
circle on the plot shows the number of doorways for the
corresponding classroom – size of each circle is proportional
to doors count. We observe that the MAPE is positively
correlated with both the room capacity and the number of
doorways, highlighted by three clusters namely small rooms
with less than 100 seats and one door (green circles), medium-
size rooms with 100 to 300 seats and 2 to 3 doors (blue
circles), and large theaters with more than 300 seats and
more than 4 doors (orange circles). We note that for larger
classrooms, the chance of students walking in/out side-by-
side is relatively higher (such instances are usually counted
as a single individual by the beam counters) which results in
a larger MAPE value.

Occupancy and Attendance data: Our weekly occupancy
dataset, computed using the Method-2 above, is openly avail-
able for download [22]. Each row in a CSV file represents the
real-time measurement from beam sensors comprising time-
stamp, week of semester, room information including room
name, number of doorways, and number of seats, course infor-
mation including course-id (we have intentionally obfuscated
the actual names of courses), course start-time, and course
end-time, sensor measurements including count-in, count-out,
and computed number of attendance (i.e. occupancy). Note
that count-in and count-out are available for the entire day
(even during times with no lectures scheduled), whereas oc-

cupancy is available only when a course is scheduled.
Additionally, we release class attendance dataset [23] which

will be used for prediction in §V. We derive class attendance
by taking the maximum value of occupancy count in the room
during the period when the class is operational.

B. Data Visualization

Tool: To provide an intuitive user interface (UI) for real-
time occupancy monitoring, we developed a web application
using R Shiny – our tool is available at [24]. The tool
allows the user to view the attendance pattern of a course
(by choosing from the course dashboard tab), as well as
the utilization rate (number of attendees divided by the total
number seats available for each classroom) for different time-
slots.

Insights: Our UI provides some interesting insights into
attendance patterns. Fig. 4 shows our UI output for an oc-
cupancy pattern of a selected room (CLB8) on a selected
day, comparing the number of attendees (red line) and the
associated enrollments (blue line) for 7 courses scheduled
between 9am-9pm. From the plot, attendance is seen to vary
widely across courses, in the range of 10% to over 90%
of the enrollments. Interestingly, we observe that the lecture
scheduled between 1pm-2pm has an enrollment of 211 but
close to zero attendance; this indicates the cancellation of
lecture which has led to a wastage of room spaces on the
day. The visibility of room occupancy monitoring allows us
to quantify space utilization that is otherwise largely unknown
to facility managers.

Our visualization tool also provides visibility into atten-
dance pattern of all courses scheduled in the classrooms
where sensors were installed. Figure 5 shows an example of
attendance patterns for 3 selected courses (we have obfuscated
course names) across the whole semester from week 1 to week
12. We can observe some interesting trends such as a general
decline in attendance over week, represented in blue line; class
cancellation on week 7, represented in green line; and mid
session class examination during week 6 (red line), which has
been verified by looking up the course web page.

Furthermore, the tool allows us to generate a room utiliza-
tion heat-map on a chosen day, as shown in Figure 6. Bright
yellow cells represent time slots where rooms are being mostly
occupied with utilization rate approaching 1, whereas color
scale towards dark blue represents time slots when rooms
are under utilized. On the web interface, hovering over a
cell shows further details on the usage of classroom and the
scheduled course. For instance, we can see from the plot
that course df0c74e1e5 has an enrollment number of 193
but only 10 students attending the lecture, leading to a poor
utilization of 4.1%. The interface allows campus managers to
track classroom utilization, with a view towards more optimal
allocation, as described in §VI.

V. PREDICTION OF CLASSROOM ATTENDANCE

In previous section, we observed that the falling atten-
dance pattern results in underutilization of classrooms. In
order to improve the overall utilization, universities may want
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to dynamically re-allocate classrooms in advance based on
attendance – if attendance is much lower than the number of
enrollments of a class then a smaller room may potentially be
allocated to it, thus saving cost. We note that while our system
is typically useful to obtain real-time data, room scheduling
is based on the predicted attendance from historical data
and should be decided several weeks prior to actual classes.
This entails a fairly accurate prediction of attendance for
all classes operated on campus. It is important to note that
underestimated prediction may lead to class overflow (i.e.,
significant discomfort for students), and overestimation would
lead to wasted capacity and thus not achieving optimal cost
reductions.

In this section, we compare three learning-based algorithms
in predicting class attendance, each using two different func-
tions of regression. We train models using historical labeled
dataset from semester 2, 2017 and test the models with
attendance dataset from semester 2, 2018. Note that it is
infeasible to perform spot measurement at scale to collect
ground-truth data needed for training of our prediction models.
We, therefore, use course-based attendance count (which is
deduced from data measured by sensors) to generate su-
pervised learning models. The error in sensor measurement
and thereafter in prediction, will be considered in §VI when
the predicted attendance is used for dynamic allocation of
classrooms.

Fig. 6. Heat-map of classrooms occupancy on a chosen day.

A. Attributes Impacting Attendance

There are several factors that can influence class attendance
in universities, especially student motivations, quality of teach-
ing, and characteristics of class lectures [25]. However it is
infeasible to measure students motivation without conducting
extensive surveys of a large population of students. Further,
quality of teaching largely depends on the course lecturer,
which can vary from semester to semester. We instead consider
attributes related to individual course (e.g., engineering faculty,
undergraduate, tutorial) and temporal aspects (e.g., week 3,
Monday) which can be readily obtained.

In order to generalize our prediction model, we do not
use specific course attributes such as course code or course
instructor as inputs to our model. This allows us to perform
prediction for courses for which no training data is available.
Note that since our data collection started from semester 2
in 2017, there are insufficient data samples that span across
multiple “semester” and “year” combinations. Thus, we do not
include these attributes for our prediction model in this paper
– even though they may have impacts on class attendance.

In summary, the following attributes are used in our predic-
tion models:

• class type: type of the class, e.g., lecture, lab, and tutorial.
• faculty: faculty the course belongs to, e.g., engineering,

medicine, and science.
• school: school the course belongs to (e.g., Material Sci-

ence).
• enrollment: number of students enrolled in the course.
• course duration: duration of the course (in hours).
• degree: degree of study (e.g., undergraduate, postgradu-

ate).
• course status: enrollment status of the course (e.g., open,

full).
• joint: a binary indicating if the course is combined with

other courses.
• week: week of semester (e.g., week 3).
• day: day of week (e.g., Monday).
• time-of-day: categorical value of time the class be-

gins (e.g., morning: 9am-12pm, afternoon: 12pm-3pm,
evening: 3pm-6pm, and night: 6pm-9pm).

For the output of our prediction model, we use normalized
attendance which is the ratio of maximum classroom occu-
pancy (from course-based method in §IV-A) to the enrollment
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TABLE III
SUMMARY OF DATASETS FOR TRAINING AND TESTING.

Dataset Description Sample Size

DS1 Sem2, 2017 - train set 1497
DS2 Sem2, 2017 - test set 639
DS3 Sem2, 2018 - test set 940

count. Hence the output varies between 0 (no student attended,
or class cancellation) and 1 (all enrolled students attended).

Prior to generating and testing a model, we cleansed our
data instances. This process involved removing classes that
have no attendance (or canceled class), removing classes with
excessive overflow (i.e., normalized attendance more than 1.5)
due to probably over-counting, and capping the normalized
attendance to 1. Our attendance dataset with corresponding
attributes for both training (i.e., semester 2, 2017) and testing
(i.e., semester 2, 2018) is openly available for download [23].
Each row in a CSV file represents a class comprising all
attributes described above along with the actual attendance
number obtained from the occupancy sensors data (i.e., the
attendance field is not normalized in our released dataset).

B. Prediction Modeling

We choose supervised machine learning algorithms to per-
form attendance prediction given our labeled dataset from
2017. We considered three common regression learning al-
gorithms including multiple linear regression, random forest,
and support vector regression. For each of these algorithms we
apply two regression functions namely ordinary least square
and quantile regression. The models are trained using caret
package [26] in R [27].

1) Algorithms: We first explain the algorithms used to build
our prediction models:

Multiple Regression: Multiple linear regression (MLR)
is one of the simplest prediction algorithms. It is the most
common form of linear regression where the value of a
variable is predicted based on the value of two or more
attributes. The algorithm finds the best fit for the training data
by minimizing the sum of the squares of residues to obtain
the resulting model.

Random Forest: Random forests (RF) is an ensemble
learning method that can be used for both classification and
regression problems. During training, multiple decisions trees
are created from the training set, where a random selection of
features is used to split each node of a tree. The final prediction
result is obtained from majority voting, where mean is used
for regression trees [28].

Support Vector Regression: Support vector regression
(SVR) applies the same principles as support vector machine
(SVM) to the data but for a regression problem. The algorithm
involves transforming the training data into a higher dimen-
sional feature space, where linear regression is performed with
a tolerance margin provided by the boundary lines [29]. In
our model, radial basis kernel is used to map data to higher
dimensions.

2) Regression Loss Function: Machine learning algorithms
attempt to minimize a loss function on the training data as part

TABLE IV
SUMMARY OF COURSES PER FACULTY.

Faculty Count

Faculty of Science 698
UNSW Business School 662
Faculty of Engineering 436
Faculty of Arts & Social Science 203
Faculty of Medicine 97
Faculty of Built Environment 22
Faculty of Engineering & Science 18

of their modeling process. Commonly used loss functions for
regression models, i.e., mean square error (MSE) and mean
absolute error (MAE), are symmetric. They treat error of
under-prediction and over-prediction equally. This may not be
desirable for class attendance estimation as under-prediction
(i.e., class allocated to a room with capacity lower than actual
attendance) is more harmful than over-prediction since it leads
to students’ discomfort.

To address unequal treatment of errors (i.e., differentiating
under-prediction and over-prediction), we employ quantile loss
function [30] for generating prediction models. Quantile loss
function is defined by:

L(y, ŷ) =

n∑
i=1

(yi − ŷi)(τ − 1yi−ŷi<0) (1)

where y is the actual attendance and ŷ is the predicted
attendance, 1 is an indicator function that equals to 1 in
case of over-prediction and 0 otherwise, quantile τ is a
tuning parameter that takes a value from 0 to 1 allowing
us to ascribe varying emphasis on over/under-prediction (i.e.,
τ < 0.5 causes over-prediction to impose higher cost than
under-prediction while τ > 0.5 increases the cost of under-
prediction). Our choice of quantile τ will be explained next.

C. Performance Evaluation of Prediction Models

We build our prediction models using the three learning
algorithms mentioned earlier and consider both ordinary re-
gression and quantile regression as loss functions for each,
thus a total of 6 models are evaluated. We use 10-fold cross
validation to select the best tuning parameters that yield the
lowest error for each model. This subsection explains the
dataset we used for model training and testing. We also
compare the prediction results of the six models using a range
of metrics.

1) Dataset: We partitioned the attendance data from entire
semester 2 of 2017 into a train set and test set at a ratio of 70%
(i.e., DS1) and 30% (i.e., DS2) respectively. Additionally, we
obtained attendance data for the first 6 weeks from semester 2
of 2018 (i.e., DS3) and used it as another test set to evaluate
the performance of the models in predicting future attendance.
A summary of our datasets along with their sample sizes is
shown in Table III. We note that only data from semester 2
(and not semester 1) was used for the prediction, eliminating
any biases that could arise from the effect of semester on our
attendance prediction. Additionally, a summary of courses per
various faculties is shown in Table IV. It is also important
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TABLE V
PERFORMANCE OF PREDICTION MODELS.

2017 train set DS1 (cross-validation) 2017 test set DS2 (testing) 2018 test set DS3 (testing)

Models RMSE MAE WMAE RMSE MAE WMAE RMSE MAE WMAE

Multiple Linear Regression (MLR) 0.163 0.123 0.060 0.149 0.118 0.060 0.193 0.145 0.063
Random Forest (RF) 0.120 0.086 0.043 0.121 0.089 0.044 0.157 0.122 0.051
Support Vector Regression (SVR) 0.135 0.094 0.041 0.125 0.086 0.042 0.193 0.148 0.062
Quantile Linear Regression 0.188 0.142 0.048 0.179 0.135 0.045 0.240 0.183 0.059
Quantile Regression Forests 0.147 0.102 0.033 0.154 0.108 0.034 0.217 0.167 0.047
Quantile Regression using SVM 0.141 0.095 0.035 0.147 0.100 0.036 0.216 0.170 0.061
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Fig. 7. Impact of quantile parameter on prediction error.

to note that not all courses are run every semester and the
number of enrollment for courses that run every semester may
vary vastly (for example the course “Computer Networks and
Applications” in our university may have around 300 students
in semester 1, but over 600 students in semester 2).

2) Evaluation metrics: Both mean absolute error (MAE)
and root mean squared error (RMSE) measure the average
magnitude of the errors in a set of predictions. RMSE is most
useful when large errors are particularly undesirable since
errors are squared, giving a relatively higher weight to larger
errors, before being averaged. Additionally, we employ the
average weighted absolute error (WMAE) [31] to evaluate the
performance of prediction when under-prediction is considered
more costly than over-prediction. Our custom WMAE is
defined as the mean of the quantile loss function and is written
as:

1

n

n∑
i=1

(yi − ŷi)(τ − 1yi−ŷi<0) (2)

3) Impact of Quantile Parameter: As noted in §V-B,
we consider a quantile loss function to differentiate under-
prediction and over-prediction. We now build quantile regres-
sion models by varying the value of quantile parameter τ in
order to quantify its impact on performance metrics. Fig. 7
shows error values of RMSE and WMAE versus the quantile
parameter for a random-forest-based model as an example.
Note that for WMAE, the τ value is fixed to 0.60, 0.75, and
1.00 as shown by dashed green, dotted red, and dashed dotted
blue lines respectively. As expected, it is seen that RMSE
values, shown by solid black lines, produce a symmetrical
curve with a central dividing line at the second quantile (i.e.,
τ = 0.50), as this metric treats under-prediction and over-
prediction equally. On the other hand, we observe asymmetric

curves for WMAE that have the minimum error values at its
corresponding τ (e.g., WMAE with τ = 0.75, shown by dotted
red lines, gets minimum at 0.75 quantile).

As mentioned earlier, the quantile parameter τ with a value
greater than 0.50 will penalize under-prediction more than
over-prediction. We note that for τ = 1, only under-estimation
is penalized in the prediction process with no penalty for
over-estimation. This may provide a very safe margin for
campus managers during dynamic classroom allocation. But,
this choice yields a high RMSE of over 0.4 which makes it
unattractive. On the other hand, τ = 0.5 gives the minimum
RMSE but it weights over-prediction and under-prediction
equally which does not match our requirement. Hence, we
choose a quantile value of 0.75, which still results in a
reasonable value of RMSE (i.e., below 0.2) while giving more
weight to under-prediction. This value is used as the quantile
parameter for both loss function and WMAE performance
metric.

Attendance Prediction within Semester: We first apply
our prediction models to a testing set containing attendance
data of classes from the same semester/year (i.e., semester
2, 2017). For this, we use DS1 to train the model and DS2
for testing. The performance results of our six models are
shown in Table V. In terms of RMSE, we can see that RF
and SVR algorithms achieve the best predictive performance
in both cross-validation and testing, with values within a
range of 0.120 and 0.135. Linear models (both MLR and
quantile MLR), on the other hand, yield the highest errors
of over 0.16 RMSE on the validation set. This suggests that
attendance and course attributes are not linearly correlated
and such non-linear relationship is better modeled by RF and
SVR. By imposing higher cost to under-prediction, we can
see that quantile regression methods give better performance
in terms of WMAE when compared to their default regression
counterparts. RF achieves the best performance with WMAE
of 0.033 during cross validation and 0.034 during testing.

To visualize the performance of the six models, we show in
Fig. 8 scatter plots of the predicted normalized attendance (x-
axis) versus the actual attendance (y-axis) with a blue fitted
line of y = x (i.e., predictions are expected to match the
actual output) – points on the left side of this line repre-
sent under-prediction, and right side points represent over-
prediction. We also note that the predicted attendance can
sometimes go beyond 1. From the plot we can obviously see
that points are more dispersed for linear regression models
(red dots) compared to SVR (green dots) and RF (blue dots),
which matches the results of RMSE metrics discussed earlier.
Furthermore, we observe that quantile regressions (shown by
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Fig. 8. Predicted vs. actual attendance for test set in 2017 (i.e., DS2).

bottom plots in Fig. 8) result in more over-predictions than
under-predictions, which is an expected output.

We note that the prediction result is fairly consistent in
cross-validation and testing, indicating that a good prediction
can be obtained if part of the data from one semester/year
are used to predict the attendance for the remainder of the
same semester. A more practical implementation that involves
using historical data to predict future year/semester attendance
is discussed next.

Attendance Prediction for Future Semester: We now
predict the attendance for semester 2, 2018 (i.e., DS3) while
the model was trained by the data from the same semester
but in 2017 (i.e., DS1). Results of all the models are shown
by the last column in Table V. In terms of RMSE, it is seen
that RF achieves the best performance with a value of 0.157
– slightly higher than the result from testing DS2. Looking at
WMAE, quantile RF give the most accurate result with the
error of 0.047 (highlighted in green).

From the predictions vs. actual attendance plot in Fig. 9,
as expected, we observe wider dispersions from the fitted line
compared to the scatter plots in Fig. 8 for the within-semester
attendance prediction. RF and quantile RF (blue dots) show the
lowest deviation from the fitted lines compared to predictions
from linear regression models (red dots) and SVR models
(green dots).

The lower performance in prediction of future-semester
attendance is caused by several factors when changing
year/semester – for example, variations in enrollments from
year to year due to popularity of courses, changes made to the
programs (e.g., a certain course may no longer be considered a
core course while another course may become a core), changes
in lecturing staff, changes in students lifestyle (motivation
for attending classes), and increases in availability (or better
quality) of online lecture recordings. Despite all these factors,
we believe that the future-semester prediction results obtained
from quantile RF (with WMAE of 0.047 and RMSE of 0.217)
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Fig. 9. Predicted vs. actual attendance for test set in 2018 (i.e., DS3).

is acceptable given the non-trivial variations mentioned above.

VI. OPTIMAL ALLOCATION OF CLASSROOMS

Our empirical results from Section IV highlight the sig-
nificant variations in occupancy on a weekly basis which
leads to under-utilization of classrooms. This presents an
opportunity for campus managers to employ a dynamic al-
location scheme to save cost. In this section, we develop
an optimization formulation to determine the potential cost
savings. Our formulation uses prospective attendance counts
computed from our prediction model (discussed in §V). A
practical implementation could develop a dynamic schedule
for a course using our optimization algorithm, while leaving
some margin for error arising from the prediction algorithm.

We first formulate a problem with an objective function
and related constraints. We then apply the optimization to
our dataset and quantify the cost savings versus students
discomfort (due to room overflows) when adopting dynamic
classroom allocation in comparison to the traditional fixed
enrollment-based allocation.

A. Problem Formulation

First, let there be L courses, each with its own start time,
duration, and the attendance number. Each course is allocated
to one of R classrooms available on campus, and each room
has a cost associated with it (proportional to its capacity). The
cost of room j is denoted by Cj where 1 ≤ j ≤ R. We
consider our optimization problem over a one-day window
with a total of S slots – each slot accounts for an hour period.

We define our variables to be xi,s that indicates the room
to which the course i is allocated during timeslot s, where
1 ≤ i ≤ L and 1 ≤ s ≤ S:

xi,s ∈ {0, 1, 2, ....., R} (3)
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Note that xi,s = 0 indicates that course i is not allocated
to any room during s. From variables xi,s, we derive another
variable denoted by yi,j which is a binary value indicating
whether or not course i is allocated to room j during any
given slot:

yi,j =

{
1 if course i allocated to room j
0 otherwise

(4)

Furthermore, room-slot allocation variables, zj,s indicate the
number of courses that are allocated to room j at timeslot s:

zj,s ∈ {0, 1, 2, ....., L} (5)

Therefore, the total cost of allocation for a given day is
specified as:

J =

R∑
j=1

{
Cj

S∑
s=1

zj,s

}
(6)

where Cj is the capacity of room j.
Our aim is to minimize the total cost J in Eq. (6). Note

that allocation of a course to a room incurs a full cost of that
room, and an unallocated room incurs no cost. Thus, the total
cost of the allocation is the sum of capacities of rooms that
are used across all timeslots of the day.

We have four sets of constraints in our optimization problem
listed as follows.

• Course Constraint: Each course can only be allocated
to one room during a timeslot. These L constraints are
captured by:

R∑
j=1

yi,j = 1 ∀ i (7)

• Room Constraint: A room cannot be occupied by more
than one course at a time. Hence, Eq. (5) can be expressed
as:

zj,s ∈ {0, 1} (8)

• Capacity Constraint: Course i with attendance number
of oi needs to be assigned to room j that has sufficient
capacity Cj accommodating students attended. These
constraints are captured by:

oi ≤
R∑

j=1

Cjyi,j ∀ i (9)

• Schedule Constraint: Each course has a fixed schedule
(e.g., course 1 is scheduled from slot 3 to slot 5, equiv-
alent to 11 am to 1pm), thus room allocation can not
change over these consecutive slots (i.e., slots 3 to 5 for
this example).
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B. Optimization Algorithm

To solve the optimization problem, we employed constraint
programming (CP) algorithm using Google Optimization Tools
for Python [32] as a solver. CP is widely used for solving
combinatorial problem, where search space with possible
values of variables (domains) are defined and constraints are
declaratively stated in order to limit all possible assignments
to a set of feasible solutions. There are two phases involved
in CP: (a) a propagation phase where infeasible regions are
methodically removed from the search space, (b) a search
phase where the browsing of the search space is performed
using a complete search algorithm such as backtracking, or an
incomplete search such as local search algorithm [33]. CP can
be used to solve for all feasible solutions, or an near optimal
solution. Due to time complexity, we choose the latter option.

For our optimization problem, we used the real data ob-
tained from semester 2, 2018 (i.e., DS3) consisted of 748
courses (as mentioned in §V-C1) operating in the 9 classrooms.
We assume that there are some spare rooms available for
optimal allocation – we use only one spare room of 100 seats
capacity. There are 12 timeslots for each operation day, starting
from 9 am (corresponding to timeslot 1) to 9 pm (correspond-
ing to timeslot 12). The optimization was performed for a
complete set of courses accounted for a period of 6 weeks.
We considered several scenarios, both enrollment-based and
attendance-based. For the latter scenario, we use different
attendance count including actual attendance (measured by our
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sensors), predicted attendance, and also predicted attendance
with additional margin (i.e., 5%, 10%, 15%, 20%, 25%,
and 30%). For each round of our optimization, we obtain
the total cost of allocation. Note that for some cases when
predicted attendance is used, the classroom may overflow
due to under-prediction and cause students discomfort. We,
therefore, measure the number of “overflow classes” in each
round of allocation.

C. Optimization Results:

We run our optimization algorithm and obtain the cost
of allocation for each day. We then compute the weekly
cost of allocation by adding daily costs across the week.
We plot the weekly total cost in Fig. 10 – total costs are
normalized with respect to the enrollment-based scenario as a
baseline (solid red line). Unsurprisingly, the enrollment-based
approach results a constant cost (i.e., upper bound) as it tries
to meet the fixed constraints every week. On the other hand,
total cost obtained from various scenarios of attendance-based
allocation (dashed lines) falls gradually due to falling pattern
of attendance for majority of the courses. We note that even
though allocation based on actual attendance yields the best
result with lowest cost, it is not feasible in practice. It is
seen that the prediction-based allocation yields a cost slightly
higher than when actual attendance is considered, but still it
is beneficial to the campus by saving on average of 12% per
week of operation (as shown by dotted green lines with no
margin). Obviously, adding margin to the predicted attendance
count would reduce the cost saving, for example 20% margin
gives a saving of about 5% per week.

In addition, we capture the number of overflow classes
(i.e., the room capacity is lower than the actual attendance
of the class) as a proxy for the students experience (or
discomfort) from dynamic allocation of classrooms. Fig. 11
shows the fraction of overflow classes (out of all allocated
classes) across weeks for various scenarios. As we expect,
allocations based on enrollment and actual attendance count
yield no overflow since rooms capacities are well provisioned
in advance. Allocation based on predicted attendance, on the
other hand, causes overflow between 1.25% to 2.70% of
classes per week when no margin is considered (as shown
by dotted green lines). The measure of overflow is reduced

to less than 1% by applying a margin of 20% (as shown by
dashed blue lines).

Lastly, we focus on the impact of margin on our evaluation
metrics. We plot in Fig. 12 the total normalized cost (top) and
the total overflow fraction of classes (bottom) for a duration of
6 weeks by varying the prediction margin from 0% to 30%. We
can see that the normalized cost monotonically increases from
84% (with no margin) to 96% (with 30% margin). Conversely,
the overflow falls from 2% (accounted for 19 impacted classes)
to 0% where no class is impacted. This suggests that campus
can benefit from at least 4% cost saving over 6 weeks of
operation by employing a dynamic allocation of classrooms
with no impact on student experience.

VII. CONCLUSION

In this paper we have outlined our efforts to address
classroom under-utilization in a real University campus aris-
ing from the gap between enrollment and attendance. We
instrumented classrooms with IoT sensors to measure real-time
usage, used AI to predict attendance, and performed optimal
allocation of rooms to courses minimizing space wastage. We
undertook a lab evaluation of various commercial IoT sensors
and compared them in terms of cost, ease of operation, and
accuracy. We then deployed our sensors in 9 real classrooms
of varying sizes across campus and collected data over two
semesters covering 250+ courses, which we release to the
public. Our data and visualization reveal interesting insights
into course attendance patterns and class utilization measures.
Based on this real data, we developed AI based methods to
predict classroom attendance which fed into our optimization
algorithm for dynamic allocation of classes to classrooms
based on predicted attendance rather than enrollments, and
showed gains of 10% in room costs with a very low risk of
room overflows.
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