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Abstract—The Internet-of-Things (IoT) is increasingly becom-
ing a major challenge for network administrators to manage
connected devices and sensors ranging from smart-lights to
smoke-alarms and security-cameras, at scale. IoT devices use an
extensive variety of firmware, and provide little (or no) access
for management of their operating systems and configurations.
Operators of IoT infrastructure, therefore, need to employ traffic
classification models (trained by historical data) to automatically
detect their assets on the network, and ensure the health of
devices against cyber-attacks by monitoring their network behav-
ior. On the other hand, IoT manufacturers often automatically
perform firmware upgrades from cloud servers to devices that
are operational in the field. This can potentially lead to a change
of device behavior which makes it difficult for network operators
to maintain classification models (incorporating changes without
retraining the entire model).

In this paper, we develop a modular device classification
architecture that allows operators to automatically detect IoT
devices by their network activity and dynamically accommodate
legitimate changes in assets (either addition of new device profile
or upgrade of existing profiles). Our contributions are threefold:
(1) We identify key traffic attributes that can be obtained from
flow-level network telemetry to characterize the behavior of
various IoT device types. We develop an unsupervised one-class
clustering method for each device to detect their normal network
behavior; (2) We tune device-specific clustering models and use
them to classify IoT devices from their network traffic in real-
time. We enhance our classification by developing methods for
automatic conflict resolution and noise filtering; and (3) We
evaluate the efficacy of our scheme by applying it to traffic traces
(benign and attack) from ten real IoT devices, and demonstrate
its ability to detect behavioral changes with an overall accuracy
of more than 94%.

Index Terms—IoT devices, traffic modeling, clustering.

I. INTRODUCTION

The Internet-of-Things (IoT) continues to expand its reach
into homes, offices, enterprise campuses, and even cities, as
more devices are rapidly connected to networks for collecting
and sharing data. Management of these connected devices has
increasingly become challenging, particularly from a security
standpoint, for large networks such as those found in large
enterprises and university campuses, for example. Such net-
works may include thousands of IoT devices which largely
remain unidentified [2], and hence pose significant security
risks to the network. Most IoT devices are relatively simple,
and cannot defend themselves against cyber-attacks. There
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are many examples of unmonitored IoT devices which have
already caused data breaches or been hijacked to carry out
large-scale attacks on the Internet [3].

A promising approach to vulnerabilities of IoT devices is
to embed solutions at the network-level, whereby network
traffic to/from IoT devices is monitored to ensure they operate
normally and detect abnormal behaviors (attacks) [4]. IoT
devices are typically purpose-built with limited functionalities
– they communicate with a specific set of endpoints (i.e.,
servers) using a small number of TCP/UDP flows [5], [6].
Therefore, a growing number of traffic classification proposals
are emerging based on supervised machine-learning techniques
(e.g., multi-class decision-trees or neural-networks) that use
packet-level [7], flow-level [8], or a combination of packet-
level and flow-level [9] traffic attributes to determine network
traffic patterns (i.e., behavior) of IoT devices on the network,
and to use those network traffic patterns as fingerprints to auto-
matically identify the type of IoT devices (typically including
their function, manufacturer, and even model number) on the
network

Unlike traditional non-IoT devices, the behavior of IoT
devices does not change much with user interactions. However,
IoT manufacturers update the firmware of their devices in
the field via automatic/semi-automatic processes [10] to en-
hance the functionality of the devices. These firmware updates
pushed by vendors can change the device behaviors to some
extent. In addition to legitimate changes (due to firmware
upgrades), cyber-attacks would also alter the activity patterns
of connected devices, and hence are expected to affect the
output or confidence of machine learning-based classifiers.

In our prior work [9] we showed that generating a multi-
class classifier becomes practically challenging at scale when
a new device type is added to the network or the behavior
of even one of the previously classified device types legit-
imately changes due to a firmware upgrade by the device
manufacturer – it is needed to regenerate the entire model of
all classes. Moreover, to reduce the impact of over-fitting the
trained multi-class model to specific classes, it is necessary to
carefully balance the training dataset by representing classes
equally, which is a nontrivial task. IoT devices with richer
features and diverse functionalities require more instances to
capture their normal behavior than other types of IoT devices.

In order to address these difficulties, in this paper, we re-
place the multi-class (IoT device type) classifier with an “infer-
ence engine” having a set of one-class clustering models (one
model per IoT device), each of which can be independently
trained and updated when required. Our first contribution



identifies IoT traffic attributes that are computed from real-
time flow-level telemetry. We show how clusters of attributes
can characterize network behavior of each device type. Our
second contribution develops a classification scheme using
a set of device-specific clustering models augmented by an
automatic conflict-resolution method and dynamic consistency
scores to realize real-time network monitoring. For our third
contribution, we apply our classification solution to real traffic
traces (mix of benign and attacks) from ten IoT devices
and demonstrate its accuracy of more than 94% in detecting
behavioral changes.

II. RELATED WORK

Traffic Classification and Monitoring: Automatic traffic
classification and monitoring using machine learning tech-
niques have been the subject of networking research over
the past decades [11]. In the context of IoT, these techniques
are used to: (a) distinguish IoTs from a mixture of IoT and
non-IoT devices [9], [12], (b) classify IoT device types [13],
[14], and (c) detect abnormal behavior of IoTs [15], [16]. The
machine learning techniques and algorithms used in prior work
are either supervised or unsupervised.

Supervised Classification Techniques: Supervised classi-
fication algorithms (e.g., Support Vector Machines (SVM),
naive Bayes, decision trees, neural network) are commonly
used for classification purposes. In the literature these algo-
rithms are used in two different modes: (a) multi-class classi-
fication – classify the data across three or more classes (e.g.,
IoT device type classification/ operating states identification),
and (b) binary classification – make decision across only two
classes (e.g., IoT versus non-IoT).

One of our earlier works [9] developed IoT device type
classification using the Random-Forest ensemble tree classifier
(multi-class) to achieve the accuracy over 99%. Such attrac-
tive performance is achieved because multi-class models are
discriminative (they learn the decision boundaries between dif-
ferent classes). However, the multi-class classification comes
with a practical issue of scalability – a large number of
classes (device types) make it difficult to update the model
(regenerating the entire model).

Binary classifiers are trained by data of two distinct classes.
In the context of classifying general network traffic, this ap-
proach is used for various purposes like distinguishing known
attacks from benign traffic [17], or recognizing IoT traffic
versus non-IoT traffic. Authors of [15] train a binary classifier
to identify the DDoS attack traffic (generated by Mirai botnets)
and benign traffic of the IoT devices. Although this method
performs well in detecting “known” attacks (trained signature),
its efficacy is not guaranteed for new/unknown attacks. Work
in [12] builds a specific binary classification model for each
of device types – “one IoT device type” and “rest of device
types”. It is well understood that supervised machine learning
models can suffer from unbalance dataset. This makes is
difficult for “one vs. rest” binary classifiers to scale when the
number of device types increases (in large networks) resulting
in growth of “rest” labeled data, and hence unbalanced dataset.

Unsupervised Classification Techniques: Unsupervised
machine learning techniques are generative – are able to
learn the distribution of training data, and detect any changes
(anomalies) during testing phase. Work in [18] employs
an unsupervised clustering approach to distinguish botnets
command-and-communication (C&C) from benign traffic for
a general-purpose devices (traditional IT environment). The
study in [19] shows that unsupervised algorithms can suffer
from the curse of high dimensional data. Therefore authors
propose to reduce the dimension using Principal Component
Analysis (PCA) which converts the correlated attributes into
a reduced set of attributes. In the IoT domain, authors of
[20] use deep neural network-based auto-encoders to detect
the anomalies. However, this approach is computationally
expensive. In [3] authors develop a learning-based method
using one-class classifiers for real-time detection of volumetric
attacks on IoT devices by measuring the activity of MUD-
compliant network flows of individual devices on the network
– authors employ a specialized model per each flow of
every IoT devices. Unsupervised learning methods are not
discriminative and hence not easy for classification problems.
Our preliminary work in [1] resolves this issue by developing
a probability-based conflict resolver.

Network-based Intrusion Detection Systems (NIDS):
Network-level security and monitoring solutions for traditional
IT networks have been extensively studied [21]–[23] over
the past few decades by the research community. NIDS use
three techniques to detect malicious network behaviors: (a)
signature-based methods, (b) specification-based methods, and
(c) anomaly-based methods [24].

Signature-based Methods: This category of techniques is
commonly used in some NIDS products such as Bro [25],
Snort [26], and commercial hardware appliances. They check
observed traffic (of general-purpose computers) against a set of
already known attacks signatures collected from the sandbox
environment and honeypots. This approach has poor resilience
to morphed or zero-day (never seen before) attacks that can
render known signatures useless. Also, due to heterogeneity
of IoTs and the growing diversity of attacks on these special-
purpose devices, generating attacks signature becomes practi-
cally infeasible – unlike in general-purpose computers where
operating systems are fairly limited to a handful of options
like Windows, Linux, macOS, or Android.

Specification-based Methods: This approach monitors the
activity of connected devices given certain rules, explicitly
specifying allowed or not-allowed network activities [22],
[27]. In [28], authors apply a specification-based approach
to a wireless sensor network where specifications are defined
and enforced by the network operator. However, generating
specifications for every device can become a tedious task,
and may require human experts [29]. The IETF has recently
standardized a scheme called Manufacturer Usage Description
(MUD) for IoT vendors to formally describe the intended
network behavior of their devices [30]. Work in [31] develops
a NIDS by enforcing MUD profile of devices to the network
and detect attacks by inspecting traffic that does not conform



TABLE I: Flow rules (per-device) needed for network traffic
telemetry.
Flow description srcETH dstETH srcIP dstIP srcPort srcPort proto

DNS↑ <devMAC> * * * * 53 17
DNS↓ * <devMAC> * * 53 * 17
NTP↑ <devMAC> * * * * 123 17
NTP↓ * <devMAC> * * 123 * 17
SSDP↑ <devMAC> * * * * 1900 17
remote↑ <devMAC> <gwMAC> * * * * *
remote↓ <gwMAC> <devMAC> * * * * *
local↓ * <devMAC> * * * * *

to MUD rules. Specification-based IDSes are effective in
reducing attack surfaces, but sophisticated attacks can still be
launched.

Anomaly-based Methods: This approach learns legitimate
(normal) behavior of network traffic and detects deviations
from the expected boundaries – these methods are potentially
able to flag zero-day attacks [32], [33]. Although there is an
extensive body of literature [34]–[36] on this topic, the success
of this has been fairly limited [37] in IT environments (network
of general-purposed devices). This is mainly because [38]
legitimate traffic shows high variability in IT networks. For
IoT networks, instead, this approach seems more promising as
network activity of IoT devices (unlike servers and computers)
can be captured by a limited set of identifiable patterns, and
hence it become easier to characterize the entire behavioral
profile of the devices [16] from their network traffic.

III. CLUSTERING FLOW-LEVEL ATTRIBUTES OF
IOT NETWORK TRAFFIC

In this section, we first outline our IoT dataset, network
telemetry, and traffic attributes. We, next, show how clusters
of attributes will characterize network behavior of individual
IoT devices.
A. Flow-Level Telemetry and Traffic Attributes

Dataset: There are limited datasets publicly available that
consist of IoT benign and attack traffic traces, and hence in
this paper we use packet traces (two sets) collected from our
lab environment to demonstrate the basis and performance IoT
traffic modeling. In our previous research works [3], [9], we
analyzed both of these datasets namely, DATA1 (benign traffic)
and DATA2 (mix of benign and attack traffic).

The first dataset (i.e., DATA1) was collected from a testbed
consisting of more than thirty IoT devices for a duration
of 6 months (i.e., 01-Oct-2016 to 31-Mar-2017). This data
was collected for our previous work [9] which presented a
detailed analysis of this dataset. We select 12 IoT devices
namely Amazon Echo, Belkin motion sensor, Belkin switch.
Dropcam, HP printer, LiFX bulb, Netatmo weather station, Ne-
tatmo camera, Samsung camera, Smart Things, Triby speaker,
and Withings sleep sensor those showed significant activities
during the early period of the dataset (i.e., 1-Oct-2016 to 15-
Nov-2016). We evaluate (in §IV) on DATA1 the efficacy of
our inference engine in classifying profiles of IoT devices as
well as detecting their behavioral changes.

Our second dataset (i.e., DATA2) contains more than 8
weeks’ worth of PCAP traces collected from 10 IoT devices

TABLE II: Summary of partial DATA1 (benign traffic): Device
instances and clustering parameters.

Instance count
Unsupervised classifier

parameters

Device
Training

(1-month)
Testing

(2-week)
# Principal
components

#
clusters

Amazon Echo 40843 18694 19 256

Belkin motion 35153 18780 17 256

Belkin switch 40991 18771 18 256

Dropcam 41089 18787 9 128

HP printer 40713 18693 13 128

LiFX bulb 36952 18707 14 256

Netatmo cam 40788 18706 15 512

Netatmo weather 24896 17473 9 128

Samsung cam 40841 18696 16 256

Smart Things 41073 18799 13 256

Triby speaker 31898 18694 15 256

Withings sleep sensor 32033 10877 12 128

(in a different environment) over two months in 2018. The
DATA2 was collected and analyzed for another work in [3]
done by our research group. DATA2 includes normal traffic
(covering boot, active, and idle operating states) and also
attack traffic (direct and reflective) on these IoT devices. We
use DATA2 (in §V-C) to evaluate the performance of our
scheme in real-time detection of cyber-attacks which cause
behavioral changes in IoT network traffic.

Flow-Level Telemetry and Attributes: We showed in our
prior work [9] that individual IoT devices exhibit identifiable
patterns in their traffic flows such as activity cycles and volume
patterns, and profiles of signaling protocols such as DNS,
NTP, SSDP. To monitor IoT behavior on the network in real-
time, we identify a set of flows (specific to each device) that
collectively capture its entire traffic. These flow rules can be
programmed into an SDN-enabled switch [39], [40] through
which the traffic of IoT devices passes – rules of different
devices are distinguished by a match field corresponding to
device identifier (i.e., MAC or IP address). Counters (bytes
and packets) of these flow rules are periodically (configurable,
say, every minute) retrieved from the network SDN switch, and
will form traffic attributes of individual devices.

Table I shows eight flow rules that we use to measure net-
work traffic of each IoT device with the following order: (1,2)
DNS outgoing queries and incoming responses on UDP 53,
(3,4) NTP outgoing queries and incoming responses on UDP
123, (5) SSDP outgoing queries on UDP 1900, (6,7) other
“remote” traffic (e.g., Internet) outgoing from and incoming
to the device that passes through the gateway, and (8) all
“local” traffic (i.e., LAN) incoming to the device. Note that
we do not monitor SSDP traffic incoming to IoT devices to
avoid capturing (and mixing) the discovery activities of other
devices on the local network. Also, we do not monitor local
traffic coming to IoT device as this traffic is assumed to be
originated from another IoT device locally – this way, activity
of local flows is counted only for one device (receiver). We



Fig. 1: Clusters of data instances in two-dimensional space for representative IoT devices: (a) Amazon Echo, (b) Belkin switch,
and (c) LiFX bulb.

have used MAC address as the identifier of a device – one
may use IP address (i.e., without NAT), physical port number,
or VLAN for a one-to-one mapping of a physical device to
its traffic trace.

We use two key attributes [41] namely average packet size
and average rate for each of the eight flows mentioned above.
We also note that traffic attributes can better characterize
individual devices if they are computed at multiple time-scales
[42] particularly in the characterization of long-range depen-
dent traffic. Per-flow packet and byte counts are generated
every minute (as they would be retrieved from the network
switch in a live network environment), and flow attributes are
generated for time-granularities of 1-, 2-, 4-, and 8-minutes,
providing eight attributes (i.e., average packet size and rate)
for each flow, and a total of 8×8=64 attributes per IoT device.

Extracting Attributes: In order to synthesize flow entries
and thereby extract attributes from the traffic traces, we use our
native packet-level parsing tool [41]. It takes raw PCAP files as
input, develops a table of flows (like in an SDN switch) and
exports byte/packet counters of each flow at a configurable
resolution (e.g., 60 sec). Lastly, we generate a stream of
instances (a vector of attributes periodically generated every
minute) corresponding to each of individual devices.

We begin with DATA1, and use a month’s worth of its data
(i.e., 01-Oct-2016 to 31-Oct-2016) for training and the follow-
ing 2 weeks for testing our models – the second column in
Table II summarizes the number of training /testing instances

per each device type contained in this part of DATA1. Later in
§IV, we will use the rest of DATA1 (spanning a longer period
of traffic traces) to show how our models detect changes in
IoT behaviors.

B. Attributes Clustering
Our primary objective is to train a number of one-class

models (one per IoT device) where each model recognizes
traffic patterns of only one particular device type (i.e., one
class) and rejects data from all other classes – i.e., a one-
class classifier generates “positive” outputs for known/normal
instances, and a “negative” output otherwise. This use of
one-class models means that each model can be re-trained
independently of the other models of the set (in cases of
legitimate changes). Also, It has been shown that device-
specialized models can better detect anomalous traffic patterns
(outliers) [3]. There are a number of algorithms for one-
class classification. One of the most common and efficient
methods is K-means [43] which finds groups of instances (i.e.,
“clusters”) for a given class that are similar to one another.
Each cluster is identified by its centroid, and an instance is
associated with a cluster if the instance is closer to the centroid
of that cluster than any other cluster centroids.

To provide insights into the traffic characteristics of IoT
devices, we show in Fig. 1 the resulting clusters of instances
for three representative devices from our dataset namely, the
Amazon Echo, Belkin switch, and LiFX bulb. Note that our
instances are multi-dimensional (i.e., each instance includ-

(a) C3 of LiFX. (b) B3 of Belkin switch. (c) A1 of Amazon Echo.

Fig. 2: Distance probability of clusters: (a) C3 of LiFX bulb, (b) B3 of Belkin switch, (c) A1 of Amazon Echo.



ing 64 attributes), and thus can not be easily visualized.
Therefore, for illustration purposes only, we employ Principal
Component Analysis (PCA) to project the data instances
onto two-dimensions – data instances are shown as dots and
cluster centroids are shown as crosses. Note that only 10% of
instances (in each cluster) are shown for better visualization –
as an example, four dots in cluster A1 of the Amazon Echo,
shown in Fig. 1(a), represent approximately 40 instances.

Dotted circles depict the boundary of clusters. These bound-
aries are used to determine whether a test instance belongs
to the clusters of a class or not. As per a rule of thumb for
finding outliers [44], a boundary for each cluster is chosen in a
way to exclude data points whose distance from the centroid
is relatively large, specially values more than 1.5 times the
interquartile range from the third quartile). In other words we
define the boundary for each cluster to include the first 97.5%
[45] of data points closest to the cluster center and to exclude
farther instances (avoiding impurities in our training dataset).

It is important to note that an actual cluster forms a contour
(enclosing associated data points) which could be a complex
shape. In practice, we have found that each model for a
corresponding IoT device consists of some tens of clusters,
and consequently to make the IoT device type classification
process computationally cost-effective and more efficient, the
shapes of the cluster contours are approximated. Noting also
that the K-Means algorithm attempts to partition the training
dataset into spherical clusters when it is tuned optimally (i.e.,
equal distance from centroids in all dimensions), the cluster
boundaries are approximated as being spherical for the purpose
of determining whether a test instance belongs to the clusters
of a class.

As shown in Fig. 1, instances of the Amazon Echo, Belkin
switch, and LiFX bulb IoT devices are grouped into 16, 4,
and 8 clusters, respectively. We observe in Fig. 1(a) that
instance clusters of the Amazon Echo are fairly spread across
the two component space. For the Belkin switch device, the
clusters in Fig. 1(b) are mainly spread across the principal-
component-1 while their principal-component-2 values are
narrowly confined between −20 and 20. Lastly, the LiFX
bulb instances in Fig. 1(c) are spread along the principal-
component-2, but are narrowly confined between −20 and 20
in the principal-component-1. Note that each cluster of a class
has a probability (referred to as “cluster likelihood”) of cov-
ering training instances from the corresponding device type,
depending upon device traffic patterns seen in the training
dataset. As annotated in Fig. 1, highly probable clusters for the
Amazon Echo are A2 (25.1%) and A3 (22.2%), for the Belkin
switch are B1 (77.4%) and B2 (19.7%), and for the LiFX bulb
are C1 (38.8%) and C2 (20.0%). These clusters highlight the
dominant traffic characteristics of their corresponding device.

We also note that the distribution of instances within each
cluster also varies across clusters. Fig. 2 shows a zoomed
views of one cluster for each of the three representative IoT
devices, with instances shown by green dots. Each cluster is
divided into 10 concentric annular bands of the same area,
starting from the centroid to the cluster boundary. Each band

Algorithm 1: Training a model.
input : Training instances of a given device type.
output: A trained model, consisting of:

Scaler for each attribute,
Principal components,
Cluster centers,
Cluster boundaries and probabilities,
Associate probability distribution.

1 Record Z-Score scalers for each attribute;
2 Normalize training instances using Z-Score scalers;
3 Obtain and record optimal principal components of all

attributes;
4 Reduce dimensions of training instances;
5 Compute optimal number of clusters using Elbow

method;
6 Obtain and record cluster centers;
7 Record boundaries covering nearest 97.5% instances

for each cluster;
8 Record probability of each cluster;
9 Record probability of distance band inside individual

clusters;
10 Record a CDF of associate probability for training

instances.

in Fig. 2 is shown with a shading that indicates the fraction
of training instances it covers, as indicated by the linear scale
at the right-hand side of each Figure (e.g., dark blue indicates
a higher probability).

It can be seen in Fig. 2(a) that 95% of LiFX instances inside
cluster C3 fall within the four central bands of this cluster.
Regarding the Belkin switch in Fig. 2(b), 81% of instances of
cluster B3 fall within the middle bands (from the 4th to the
8th bands). Lastly, looking at a less probable cluster A1 of the
Amazon Echo in Fig. 2(c), 85% of instances are covered by
the last five bands farthest from the centroid. It is importation
to note that the 2D space is used here for illustration purposes
only. In our classification scheme, we employ a hyper-sphere
in 64-dimensional space for clustering instances of IoT traffic
attributes.

IV. UNSUPERVISED CLASSIFICATION OF IOT DEVICES

In this section, we describe the architecture of our inference
engine which consists of a set of one-class models for individ-
ual device types. Next, we develop methods to resolve conflicts
between multiple models for device classification. Finally, we
develop a scoring technique to measure the consistency of
the models in classifying IoT devices, identify two monitor-
ing phases namely initial and stable, and detect behavioral
changes.

A. Clustering Models: Generation, Tuning, and Testing

We summarize in Algorithm 1 and Algorithm 2, all the
steps required for generating and testing our device-specific
models. The rest of this subsection describes the details of



each step. Prior to generating clustering models, we pre-
process the raw data as follows. First, we normalize each
attribute independently to avoid outweighing large-value at-
tributes (e.g., average bytes rate of incoming remote traffic at
8-min timescale) over smaller attributes (e.g., average packet
size of outgoing NTP traffic at 1-min timescale) [46] as the
magnitudes of different attributes varies significantly (i.e., over
several orders of magnitude). We employ Z-score method (i.e.,
computing the mean µ and standard deviation σ from the
training dataset, normalizing by calculating the deviation from
the mean divided by the standard deviation) to scale individual
attributes. Second, we project data instances onto a lower
dimensional space by using PCA [47] to generate linearly
uncorrelated principal components. This is because the direct
use of 64-dimensional attribute instances for classification can
be computationally expensive for real-time prediction, and
can also degrade the clustering performance (possibly causing
bias towards less significant attributes). The use of orthogonal
principal components enables the K-means clustering to gen-
erate clusters more clearly by removing redundant and noisy
attributes from the training dataset. We choose the number of
PCA components to retain the optimum “cumulative variance”
[48] for our dimension reduction engine.

Following dimension reduction, we apply K-means clus-
tering, with K values varying as powers-of-2 (i.e., 2i where
i = 1, ..., 10). Setting K to small values would not generate
an accurate model of network behavior for IoT devices, and
large values increase the computational cost in both training
and testing phases. Also, a very large K results in smaller-size
clusters, and hence a rigid classifier which cannot correctly
detect normal (legitimate) instances with small deviations from
the training data – i.e., over-fitting. We determine the optimal
number of clusters using the elbow method [49].

Fig. 3 shows the average square distance of instances from
the cluster centers (i.e., Inertia per instance) as a function of
the number of clusters for each of two representative device
types. The optimal number of clusters (marked by ‘×’ on each
curve) is deemed to be when the first derivative of inertia per
instance exceeds a very small negative value −0.01 (the curve

Algorithm 2: Testing an instance
input : A test instance,

Trained models
output: Cluster boundary in (+ve) with a confidence,

or out (-ve) with N/A confidence.

1 Normalize test instance using scalers;
2 Reduce dimensions of normalized instance;
3 Find nearest cluster center for test instance;
4 if instance is inside a cluster boundary then
5 Compute confidence level;
6 return +ve and confidence level.
7 else
8 return -ve and N/A.
9 end

Fig. 3: Elbow method for selecting optimal number of clusters.

is becoming a reasonably saturation state). It can be seen that
the model for the Amazon Echo device needs 256 clusters for
a close-to-optimal performance (first derivation of inertia per
instance is −0.0097 > −0.01), whereas the Dropcam device
needs only 128 clusters (first derivation of inertia per instance
is −0.0015 > −0.01). We show in the rightmost column of
Table II, the optimal model parameters for individual device
types, determined as described above.

Having generated the clustering models, we process each
instance of IoT traffic attributes (after scaling and dimension
reduction) as shown by the sequence of steps in Fig. 4. The
test instance is provided to all of the device-specific models
(one-class classifiers) to determine the nearest centroid of
each model, using the Euclidean distance between the test
instance and each cluster centroid. Given a nearest centroid,
the instance is checked against the corresponding cluster to
determine whether it falls inside or outside of that cluster
boundary, and if inside, a confidence level is calculated. Note
that finding the distance between the test instance and the
cluster centers of individual models is not computationally
expensive, and hence can be done in real-time.

To better illustrate this process, let us consider the two-
dimensional space of clusters described earlier in Fig. 1.
Assume that a test instance has its principal component-1
and component-2 equal to 0 and 20, respectively. The nearest
cluster centroids to this test instance are cluster A1 of the
Amazon Echo, cluster B2 of the Belkin switch, and cluster C4
of the LiFX bulb. Since the test instance falls outside of the A1
boundary, the Amazon Echo model provides a negative output
while the other two models both give positive outputs. . In such
cases where multiple models provide positive outputs for the
same instance, a conflict resolution process (what follows next)
is used to select the “winner” model.

B. Conflict Resolution

Although each model learns the normal behavior of one
device type, different devices can display somewhat similar
traffic behavior (e.g., DNS, NTP or SSDP) for a short period
of time [8], which can result in multiple positive outputs gen-
erated by the clustering models for an instance. In such cases,
“confidence” values are generated for the models that gave



Fig. 4: Use of each clustering model for a test instance.

positive outputs, and the model with the highest confidence
value is selected as the winner.

Confidence-level: Each “confidence” value (also referred
to herein as “associate probability”) represents a probability
value for an instance to be associated with a cluster of that
model. Given an instance Ins receiving a positive output
from a model Mi and falling within a distance band Dl of
the nearest cluster Cj (of the model Mi), the corresponding
associate probability is estimated by:

P test[Ins|Mi(Cj(Dl))]
= P train[Cj |Mi]

× P train[Dl|Cj ]
(1)

where P train[Cj |Mi]
is the likelihood of the nearest cluster Cj

within the model Mi and P train[Dl|Cj ]
is the probability of distance

band Dl inside the cluster Ci – both of these probability values
being obtained from the training dataset. We note that P train[Cj |Mi]

is always non-zero (by optimal tuning [50]), but it is possible
to have P train(Dl|Cj)

equals to zero when none of the training
instances fall inside a band Dl (i.e., unexplored distance bands
in the training data). To avoid a zero confidence for test
instances, we slightly modify the band probability using the
Laplacean prior [51], priming each band instances count with
a count of one, as given by:

P train[Dl|Cj)]
=

1 +NDl

L+NCj

(2)

where NDl
is the number of training instances inside the band

Dl; NCj
is the total number of instances in the cluster Cj ; and

L is the total count of distance bands in the cluster – we use
ten bands in every cluster (i.e., L = 10).

The associate probability, to some extent, indicates the
model confidence. However, it becomes challenging to select
the winner among multiple models giving positive outputs
since the number of clusters and also the distribution of
distance bands vary across models, and hence the associate
probability is scaled differently. For example, models with
large numbers of clusters may have relatively smaller values
of P train(Cj |Mi)

, or a cluster with highly sparse bands would result
smaller values of P train(Dl|Cj)

.
To obtain a metric of confidence for comparison across

different models, we first obtain the distribution of associate
probabilities in the training dataset. We, then, use this dis-
tribution to scale the associate probability of test instances.
To better illustrate this scaling process, we show in Fig. 5

Fig. 5: Distribution of clustering probability for training in-
stances of three device types.

the cumulative distribution function (CDF) of the associate
probability for training instances of three representative IoT
models namely, the Amazon Echo, Netatmo cam, and Smart
Things models. Considering the Amazon Echo (shown by
dotted blue lines), we note that an associate probability of
0.5% is a high value for this model since more than 99% of
its training instances have a probability value lower than 0.5%.
However, this percentage drops to 90% and only 52% for the
Smart Things (dashed green lines) and Netatmo (solid orange)
models, respectively. Therefore, during the testing phase, we
use the associate probability resulted from a model (giving
a positive output to a test instance) to determine the model
confidence-level by computing the fraction of its training data
with associate probability values that fall below that of the
test instance (with respect to the model’s empirical CDF of
associate probability).

C. Consistency Score

Ideally, for monitoring individual IoT devices consistent
outputs should be generated by the inference engine over time.
However, a given device that is consistently and correctly
classified by a model over a period of time (say, a week), may
nevertheless occasionally be rejected (i.e., negative output) by
its intended model. To bootstrap the monitoring process for
a newly connected (and possibly unknown) device, at least
one of the corresponding device models should consistently
generate positive outputs in order to accept the device and
label it by the corresponding class (at which time the device
is said to be in a “stable state”). Once a device becomes
known (“accepted”) and is in its stable state, receiving negative
outputs frequently from its corresponding model indicates
a change (legitimate or illegitimate) in the device behavior,
which requires further investigations. To enable this detection,
we generate a “consistency score” (between 0 and 1) repre-
senting the consistency of device classification. Fig 6 shows
the architecture of the inference engine, with classification
followed by consistency scoring.

For instances of a given IoT device, the consistency score is
computed and stored for each model, and updated following
classification of each instance – the consistency score of a
model rises by its positive outputs and falls by its negative
outputs over time. To better understand the dynamics of this
score, let us consider an example. We take three days of
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Fig. 6: Architecture of our inference engine.

instances from a Smart Things device, and replay them in
real-time to four trained models respectively for the Smart
Things, Netatmo, Amazon Echo, and Withing Sleep sensor IoT
devices. We show in Fig. 7 the consistency scores of these four
models over time. As expected, the score of the Smart Things
model (shown by solid lines) is dominant, while the scores for
the other three models are negligible ((and hence not apparent
in the Figure). The Smart Things model score slowly rises
and reaches to a high level of 0.8 after about 30 hours. We
also observe that sometimes the score of the intended model,
as in this example, falls slightly and then rises again because
some instances display patterns closer to other models. The
inset in Fig. 7 is a magnified view of the gray band region
(corresponding to Nov 4, 11pm - Nov 5, 2am) which shows
the scores of the other models. It is observed that once any
other model gives a positive output, its score quickly spikes,
but soon after drops back to zero (shown by dotted lines for
the Netatmo cam device) as the intended model Smart Things
wins again.

We update the consistency score with two rates: rising on
positive outputs at rate λr and falling on negative outputs at
rate λf – these rates can be configured by network operators.
To update the consistency score, we use a sigmoid function
which is commonly used in processes like trust management
[52] as it exhibits soft start and end, and is bounded within
0 and 1. Specifically, a raw score is represented by sequence
{St} beginning at time t = 0, is dynamically updated by:

St =
St−1 × eλ

1 + St−1 × (eλ − 1)
(3)

where, St−1 is the previous value of the estimated score, and
λ is set dynamically depending on the latest output of the

Fig. 7: Dynamics of consistency score for Smart Things
instances in real-time.

Fig. 8: Real-time update rate of consistency score – for a given
model, it falls fast (from highest to lowest value in 3 hours)
on continuous negative outputs, and rises slowly (from lowest
to highest value in 24 hours) on continuous positive outputs.

model (i.e., λr > 0 for a positive output, and λf < 0 for a
negative output). Network operators may choose the values of
the two parameters λr and λf based on their preferred policy
in terms of how quickly (or slowly) they want the consistency
score to rise and fall. For example, a higher value for λr may
significantly increase the consistency in a short time interval,
while the low value may take a longer time to reach the desired
consistency score. Depending upon the time expected T to
reach to a “target score” S∗ (between 0 and 1) from the mid-
level score 0.50, we derive the value λ by:

λ =
log( S∗

1−S∗ )

T
(4)

In this paper, we choose a conservative approach whereby
the consistency score rises at slower rate than it falls. The
same values are used for all models, and are configured in
such a way that it will take 12 hours to reach a very high
score of 0.99 from a score of 0.50 (λr = 0.0064) in case of
successive positive outputs from the model, whereas it needs
only 1.5 hours to reach to a very small score of 0.01 from a
score of 0.50 (λf = −0.0511) in case of successive negative
outputs. Fig. 8 shows two sample curves of consistency score
using these λ values, each monotonically rising and falling
on successive positive and negative outputs, respectively. Both
curves saturate (reaching the ultimate values of 0 and 1) in
infinite time, and change very slowly beyond certain levels,
i.e., above 0.99 for the rising curve, and below 0.01 for the
falling curve. In other words, entering into these regimes can
stifle the agility of our real-time monitoring (especially for
detecting attacks in real-time).

For example, it will take at least 45 minutes to fall from
0.999 to 0.99 (half the time needed to fall from 0.99 to 0.50).
Similarly, it takes 6 hours to rise from 0.001 to 0.01. Therefore,
we cap the scores at 0.99 and 0.01 as the saturation (minimum
and maximum) levels, and also initialize each score by S0 =
0.01.

D. Monitoring Phases

For monitoring the behavior of each IoT device we consider
two phases: (1) the initial phase, and (2) the stable phase. The



(a) Raw outputs of clustering models. (b) Refined outputs after conflict resolution.

Fig. 9: Confusion matrix of device classification: (a) raw outputs of clustering, (b) refined outputs after conflict resolution.

initial phase begins when a device connects to the network for
the first time (discovery), and can therefore be considered to be
“unlabeled”. During this phase, our inference engine (shown
in Fig. 6) aims to determine the device type (classification)
by asking all of the existing models. To achieve this aim,
every instance of the device traffic is fed to all models in real-
time, and their outputs are obtained. If multiple models give a
positive output, then our conflict resolution process (§IV-B) is
applied to select one of those models as a winner. During the
initial phase, the consistency score of all winner models for a
device is tracked until the consistency score of one of these
winner models reaches an acceptable level (i.e., , a threshold
value chosen by the network operator, say 0.90) at which time
the device type is deemed to be verified. At this point the
device is labeled as the corresponding known class (i.e., device
type), its intended model is determined, and its state changes
from the initial phase to the stable phase. In the stable phase,
the inference engine uses only the intended model to monitor
the real-time behavior of the (labeled) device. However, as
described below, the consistency score of the intended model
is used to detect changes in behavior of that device.

V. PERFORMANCE EVALUATION

We now evaluate the efficacy of our inference engine. First,
we evaluate the performance of one-class models and conflict
resolution in selecting an intended model for a given device

during its initial phase of monitoring. Once the device type
is classified (with a sufficiently high level of consistency), we
next demonstrate behavioral changes using temporal consis-
tency score of the intended model during its stable phase of
monitoring. Finally, we show the efficacy of our inference
engine in detecting practical abnormal scenarios that can
be encountered in a real network such as service outages,
firmware updates and volumetric attacks. We also compare
our one-class classification with a multi-class classification
method.

A. Device Classification

We begin by evaluating the performance of device classi-
fication using a subset of test instances from DATA1 corre-
sponding to only two weeks spanning from 1-Nov-2016 to
14-Nov-2016). We show in Fig. 9 the resulting confusion
matrix of device type classification respectively before and
after resolving conflicts as described above. Every clustering
model (listed in rows) is presented by test instances of IoT
devices (listed in columns). For a given cell of the matrix, the
value of that cell indicates the percentage of instances (from
the device in corresponding column) that receive a positive
output from the model in the corresponding row.

Starting from the raw outputs in Fig. 9(a), it can be seen
that all models correctly detect the majority of instances from
their own class as shown by the diagonal elements of the

(a) Belkin switch. (b) Triby speaker.

Fig. 10: Time-trace of consistency score for normal behavior in: (a) Belkin switch, (b) Triby speaker.



(a) Original model (Dropcam). (b) Re-trained model (Dropcam).

Fig. 11: Time-trace of consistency score due to firmware upgrade in Dropcam traffic: (a) original model, (b) re-trained model.

confusion matrix – except for the Triby speaker with 88.9%,
the others display more than 93.5% of correct detection (i.e.,
true positives). However, we observe that models incorrectly
detect device instances from other classes (i.e., false positives)
as shown by the non-diagonal elements of the confusion
matrix. For example, the models for the Amazon Echo and
Belkin motion devices incorrectly give a positive output to
99.8% and 98.9% of instances of the HP printer. Considering
the raw outputs of the various models, 70% of test instances
were detected by more than one model (in addition to their
expected model), and 2% of test instances were not detected
by any of the models. We, next, select the winner model for
each test instance using the model confidence-levels (§IV-B).

Fig. 9(b) shows the same confusion map, but after con-
flict resolution process. Comparison with Fig. 9(a) clearly
demonstrates a significant enhancement in performance of IoT
device type classification by selecting the model with the
highest confidence. Note that the average false positive rate
has reduced to less than 0.4% while the average true positive
rate is 93.9%.

It is also observed that the conflict resolver slightly reduced
the rate of true positives for almost all models. The Smart
Things device is impacted more compared to other models by
experiencing a drop from 96.9% to 88.9% in its true positive
rate, largely because the Netatmo camera model which gives
positive output with high confidence for 8.3% of Smart Things
instances. Focusing on the model for the Netatmo camera,
we found that its clusters overlap with a number of clusters
of several other IoT devices, including the Belkin switch,
LiFX, Smart things, and Triby speaker devices, and hence
resulting in false positives. This is mainly due to aperiodic
behavior of the Netatmo camera which is event-triggered –
the camera transmits video to its cloud server whenever it
recognizes a human face or detects a motion. As a result, it
displays a wider range of activity patterns over longer time
scales, overlapping with the traffic patterns of other devices.
For example, the average byte rate of incoming NTP traffic
of Netatmo camera over an 8-min timescale can take a value
anywhere from 0 to 700 bytes-per-min. Such a wide range
overlaps with the value range of the same attribute for the
LiFX bulb (varying between 8 − 12 bytes-per-min) and the
Smart Things device (varying between 15−25 bytes-per-min).
Note that overlaps in IoT traffic patterns are expected and
cannot be avoided, especially when we aim to classify a large
number of different device types. Overlaps can be resulted due

to various reasons such as event-triggered activities, or the use
of common services or servers (especially in devices from the
same manufacturer). We address this issue by monitoring the
consistency of classification models over time, filtering out
occasional overlapping incidents.

B. Detecting Behavioral Change

In the previous subsection, we showed the efficacy of our
system in classifying individual device instances using an
array of models. Once an IoT device has been classified as a
particular type of IoT device, its activity is monitored in real-
time. The models can be used to highlight behavioral changes
by tracking dynamics of their consistency scores (§IV-C). To
demonstrate this, we use a longer portion of DATA1, spanning
dates from 01-Nov-2016 to 31-Mar-2017.

Fig 10(a) shows the consistency score generated by our
inference engine for traffic instances of the Belkin switch
device over a period between Nov 1, 2016 and Jan 28, 2017.
The score ramps up to 99% within the first 48 hours before
the device goes offline for a day, as shown by dashed gray
lines, and then comes back online on Nov 4. After that, device
instances are consistently detected by the intended model, and
hence the consistency score remains high with only minor
changes over this extended period.

Fig 10(b) illustrates a scenario where a consistency score
drops for a relatively short period of time (due to a temporary
change of behavior in traffic of a Triby speaker device), and
then rises afterwards. Manual inspection of packet traces cor-
responding to these temporary drops of the score revealed that
a remote SIP server (sip.invoxia.com), with which Triby
speaker keeps a continuous TCP connection, was responding
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2016-11-01  18:11:23 192.168.1.120 cfapmxc001-xsa DNS 58502 53 Standard query 0x02d1 A sip.invoxia.co

2016-11-01  18:11:23 cfapmxc001-xsa 192.168.1.120 DNS 53 58502 Standard query response 0x02d1 A sip.invoxia.com

2016-11-01  18:11:23 192.168.1.120 sip.invoxia.co SIP 52180 5228 Request: REGISTER sip:sip.invoxia.com

2016-11-01  18:11:23 sip.invoxia.co 192.168.1.120 SIP 5228 52180 Status: 200 OK  (1 binding) | 

2016-11-01  18:11:26 192.168.1.120 sip.invoxia.co TCP 52180 5228 52180  >  5228 [ACK] Seq=182817 Ack=168520 Win=65360 Len=0 

2016-11-01  18:12:20 sip.invoxia.co 192.168.1.120 TCP 5228 52180 5228  >  52180 [FIN, ACK] Seq=168520 Ack=182817 Win=63063 Len=0 

2016-11-01  18:12:20 192.168.1.120 sip.invoxia.co TCP 52180 5228 52180  >  5228 [FIN, ACK] Seq=182817 Ack=168521 Win=65360 Len=0 

2016-11-01  18:12:20 sip.invoxia.co 192.168.1.120 TCP 5228 52180 5228  >  52180 [ACK] Seq=168521 Ack=182818 Win=63063 Len=0 TSval=3211580419 TSecr=37617811

2016-11-01  18:12:30 192.168.1.120 sip.invoxia.co TCP 49814 5228 49814  >  5228 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 

2016-11-01  18:12:30 sip.invoxia.co 192.168.1.120 TCP 5228 49814 5228  >  49814 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

2016-11-01  18:12:31 192.168.1.120 sip.invoxia.co TCP 49814 5228 [TCP Retransmission] 49814  >  5228 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 

2016-11-01  18:12:31 sip.invoxia.co 192.168.1.120 TCP 5228 49814 5228  >  49814 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

2016-11-01  18:15:04 192.168.1.120 blue.invoxia.i TCP 35115 8090 [TCP Keep-Alive] 35115  >  8090 [ACK] Seq=1 Ack=1 Win=30016 Len=0 TSval=37634203 TSecr=3211446554

2016-11-01  18:15:04 blue.invoxia.i 192.168.1.120 TCP 8090 35115 [TCP Keep-Alive ACK] 8090  >  35115 [ACK] Seq=1 Ack=2 Win=14480 Len=0 

2016-11-01  18:15:05 192.168.1.120 blue.invoxia.i TCP 35115 8090 [TCP Keep-Alive] 35115  >  8090 [ACK] Seq=1 Ack=1 Win=30016 Len=0 

2016-11-01  18:15:05 blue.invoxia.i 192.168.1.120 TCP 8090 35115 [TCP Keep-Alive ACK] 8090  >  35115 [ACK] Seq=1 Ack=2 Win=14480 Len=0 

2016-11-01  18:16:04 192.168.1.120 sip.invoxia.co TCP 36682 5228 36682  >  5228 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 

2016-11-01  18:16:04 sip.invoxia.co 192.168.1.120 TCP 5228 36682 5228  >  36682 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

2016-11-01  18:16:05 192.168.1.120 sip.invoxia.co TCP 36682 5228 [TCP Retransmission] 36682  >  5228 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=37640299 TSecr=0

2016-11-01  18:16:05 sip.invoxia.co 192.168.1.120 TCP 5228 36682 5228  >  36682 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

2016-11-01  18:19:35 192.168.1.120 cfapmxc001-xsa DNS 58502 53 Standard query 0x02d2 A sip.invoxia.co

2016-11-01  18:19:35 cfapmxc001-xsa 192.168.1.120 DNS 53 58502 Standard query response 0x02d2 A sip.invoxia.co

2016-11-01  18:19:35 192.168.1.120 sip.invoxia.co TCP 54643 5228 54643  >  5228 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 

2016-11-01  18:19:35 sip.invoxia.co 192.168.1.120 TCP 5228 54643 5228  >  54643 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

2016-11-01  18:19:36 192.168.1.120 sip.invoxia.co TCP 54643 5228 [TCP Retransmission] 54643  >  5228 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 

2016-11-01  18:19:36 sip.invoxia.co 192.168.1.120 TCP 5228 54643 5228  >  54643 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

Fig. 12: Wireshark capture of Triby speaker packets showing
outage of SIP server.



with ACK/RST packets during those periods, as highlighted by
red rows in the wireshark screenshot of Fig. 12, indicating that
the expected SIP service was not operational. Other services
for the Triby speaker were functioning normally.

The behavior of a device can also change permanently due
to a firmware upgrade. Fig. 11(a) illustrates this scenario for
a Dropcam device. We can see that the consistency score of
Dropcam model remains high throughout Nov 2016 until Dec
5, 2016 when the device goes off-line, as shown by dotted
gray lines. A couple of slight drops are observed on Nov 15
and Nov 22, but are restored fairly quickly (infrequent mis-
classification is not surprising due to minor overlaps between
clusters of various models). However, once the Dropcam
device comes back online on Dec 25, the score drops steeply
to its lowest possible value of 0.01 and stays at that level
during the whole of January. The score sometimes jumps up
to 0.20 or even 0.30, but it quickly drops back to its minimum
value. The corresponding packet traces of the Dropcam device
were manually inspected, and its behavior was found to have
permanently changed. Dropcam network activity is dominated
by a single TLS connection which the device establishes with
its cloud server (nexus-us1.dropcam.com) [9], typically
sending packets of size 156 bytes and receiving packets
of size 66 bytes. Manual inspections revealed that the rate
of packets for this flow changed in both directions (while
packet sizes remained unchanged), resulting in a decrease of
upstream bitrate from 1896 bps to 1120 bps and a decrease
of downstream bitrate from 584 bps to 424 bps. Firmware
upgrades of the Dropcam device are performed automatically
when it reboots. Once the firmware upgrade of the device
was confirmed, the Dropcam model was retrained using an
additional 2-weeks of data (between Dec 25, 2016 and Jan 07,
2017) following the firmware upgrade. Adding new instances
to the training dataset resulted in an increase in the number
of PCA components (from 9 to 11) for the Dropcam device,
while the number of clusters remained the same. Fig. 11(b)
shows how the consistency score returns back to its perfect
level after augmenting the Dropcam model with attributes of
the upgraded firmware – the score is shown by dashed a gray

TABLE III: Summary of DATA2: device instances and cluster-
ing parameters – benign traces for training, and mix of benign
and attack traces for testing.

Instance count
Unsupervised classifier

parameters

Device
Training
(4-week)

Testing
(4-week)

# Principal
components

#
clusters

Amazon Echo 27102 27510 20 256
Belkin motion 38229 37216 13 256
Belkin switch 21038 12689 17 256
Chromecast 17396 24316 17 512
Hue bulb 17329 25830 19 512
LiFX bulb 25903 26181 15 256
Netatmo cam 13529 10639 16 256
Samsung cam 38227 36747 15 256
TPlink switch 38211 35205 14 128
iHome 37866 35761 16 128

line during the two week re-training period.

C. Detecting Attacks

We now evaluate the performance of our inference engine
against attack traffic traces. For this evaluation, we use our
second dataset DATA2. It consists of well-annotated attack and
benign traffic corresponding to 10 real IoT devices namely the
Amazon Echo, TPlink switch, Belkin motion sensor, Belkin
switch, LiFX bulb, Netatmo camera, Hue bulbs, iHome switch,
Samsung Smart camera, and Google Chromecast. These at-
tacks on IoT devices are in various types including directly
targeted attacks such as ARP spoofing, TCP SYN flooding,
Fraggle (UDP flooding), and Ping of Death, and also reflection
attacks such as SNMP, SSDP, TCP SYN, and Smurf, each
type at three different rates (i.e., low: 1 packet-per-second,
medium: 10 pps, and high: 100 pps). Additionally, attacks are
diversified in terms of the location of attacker being remote or
local to victim/reflector IoT devices. In total, DATA2 contains
200 attack sessions, each lasts for about 10 minutes.

Note that DATA2 was collected from a different IoT envi-
ronment, and therefore we need to re-generate our clustering
models using data of IoT behaviors specific to that environ-
ment. From DATA2 traces, we choose 4 weeks worth of data
(i.e., May 28-31, Jun 8-19, Oct 9-19) containing pure benign
traffic for training, and the remaining 4 weeks (Jun 1-8, Jun 19-
20, Oct 19-Nov 10) containing mix of benign and attack traffic
for testing. Table III shows the number instances (training
and testing) for each device type as well as parameters of
the corresponding clustering models.

Let us now evaluate the efficacy of individual models against
a traffic mix of attack and benign instances. We measure four
metrics: fraction of attack instances getting negative output
(TN: true negatives), fraction of benign instances getting neg-
ative output (FN: false negatives), fraction of benign instances
getting positive output (TP: true positives), and fraction of
attack instances getting positive output (FP: false positives).
On average, our models yield acceptable performance metrics
– TN, FN, TP, and FP equals to 92.0%, 6.1%, 93.9%, and
8.0%, respectively.

Focusing on attacks, Table IV and V show detection rate
of our models for direct and reflection attacks. Each attack
type-location scenario shown in columns (e.g., ARP Spoofing
R→D: remote attacker launching direct spoofing attack to
device) is repeated three times at rates 1, 10, and 100 pps.

Starting from Table IV corresponding to direct attacks, it can
be seen that the average detection rate for ARP Spoofing, Ping
of Death, TCP SYN flooding, and Fraggle is 84.3%, 89.4%,
91.3%, and 86.2%, respectively. However, we observe that the
Belkin motion model displays a poor performance in detecting
attacks launched from from local attackers (highlighted cells).
For example, the detection rates of Ping of Death, TCP
SYN flooding, and Fraggle are 43.3%, 13.3%, and 3.0%
respectively. This is mainly because Belkin motion typically
communicates with its mobile App locally by UPnP messages
reporting current state of the sensor, and hence local attacks



TABLE IV: Detection rate (%) of direct attacks: per model (in rows) and per attack-type (in columns).
Attack ARP Spoofing Ping of Death TCP SYN Fraggle
Attacker L→D L→D L→D R→D L→D R→D
Rate 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100
Amazon Echo 100 75 88 100 100 100 100 100 100
Belkin motion 80 70 80 70 50 10 10 30 0 75 100 95 0 0 10
Belkin switch 100 90 100 100 100 100 100 100 100 100 100 100
Chromecast 80 80 90 100 100 100 50 70 90
Hue bulb 70 90 90 90 90 100 100 100 100 100 100 100
LiFX bulb 88 100 100 100 100 100 100 100 100 100 100 100
Netatmo cam 25 88 75 100 100 100 80 100 100
Samsung cam 100 90 90 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
TPlink switch 60 70 60 100 100 100 100 100 100 100 100 100
iHome 100 100 100

are not seen so abnormal by the corresponding model – soon
we will further investigate and address this issue.

Moving to Table IV to check the performance of models
against reflection attacks, we see the rate of detection for
Smurf, SNMP, SSDP and TCP SYN reflection attacks on aver-
age is 99.1%, 58.8%, 88.5%, and 92.0%, respectively. Again,
we observe that some of broadcast attacks (i.e., SSDP reflec-
tion attack on Chromecast) and local attacks (i.e., TCPsyn on
Belkin motion and SNMP on Samsung cam) are missed. This
is primarily because we only monitor local traffic targeted to
IoT devices (§III-A), and hence broadcast traffic and reflected
outgoing local traffic get missed. It is important to note that
models of Belkin motion and Hue bulb are detecting local
SSDP reflection attacks (L→D→L) only because these two
devices have limited processing power, and hence under local
SSDP attacks their normal operation (activity pattern of other
flows) gets impacted leading to abnormal behavior.

Enhancing Detection Rate: As discussed earlier in this sec-
tion, models in general perform well for a mix of benign and
attack traffic except in certain situations. Among all models,
we found that the Belkin motion model does not perform well
especially for attack instances, and results a relatively high FP
32.1%. To further investigate such performance, we look at its
confidence-level. Fig. 13 shows the CDF of the Belkin model
confidence for incorrectly classified attack instances (FP) as
well as correctly classified benign instances (TP). We note
that the model gives a very low confidence-level (less than
2.5%) for a majority (61%) of the FP instances while such low
confidence is seen for a tiny fraction (3%) of the TP instances.
Again the acceptable confidence-level will be chosen by the
network operator depending on their desired sensitivity. In our
case, choosing confidence threshold 2.5%, the performance
metrics is significantly enhanced for Belkin model – FP is
improved down to 12.5% while TP is slightly degraded (from
95.5% to 92.6%).

Such enhancement is observed across all models after fil-
tering model outputs with confidence less than 2.5%, and thus

Fig. 13: CDF: distribution of confidence-level for Belkin
motion instances.

overall TN, FN, TP, and FP reaches to 94.7%, 9.03%, 92.0%,
and 5.3%, respectively across all models. We show in Table VI
the performance of individual models after this enhancement.
We can see that every model now displays acceptable value
in performance metrics (high rate of true alarms and low rate
of false alarms).

Performance Comparison of One-Class vs. Multi-Class:
We, lastly compare the performance of our one-class classifier
scheme versus previously studied multi-class classifiers (in-
cluding ours [9]). For our comparison, we use Random Forest
algorithm (based on decision trees) to generate and tune a
multi-class model using the training instances (same as for
our one-class models) from DATA2.

Before comparing the two schemes, we need our devices
to operate in their stable phase of monitoring. Note that, the
first two days of testing data contains pure benign traffic from
all of the ten devices. This amount of data is sufficient for
all of intended one-class models to be selected (consistency
score of winner models exceeds our chosen threshold 0.90).
In other words, every device passes its initial phase and enters
into the stable phase. In the stable phase, the inference engine
is expected to give negative output whenever attack traffic
instances are present and generate positive output for pure
benign traffic.

TABLE V: Detection rate (%) of reflection attacks: per model (in rows) and per attack-type (in columns).
Attack Smurf SNMP SSDP TcpSynReflection
Attacker & Victim L→D→L L→D→L L→D→R R→D→R L→D→L L→D→R R→D→R L→D→L R→D→R
Rate 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100
Amazon Echo
Belkin motion 100 90 80 100 100 100 100 100 100 30 30 0 85 95 100
Belkin switch 100 100 100 100 95 100
Chromecast 0 30 0 100 100 100 100 100 100 100 100 100 40 90 100
Hue bulb 90 100 100 100 90 100 100 100 100 100 100 100 100 100 100 100 100 100
LiFX bulb 100 100 100
Netatmo cam 100 100 100 100 100 100
Samsung cam 100 100 100 0 0 0 30 100 100 100 100 100 100 100 100 100 100 100
TPlink switch 100 100 100 100 100 100 100 100 100
iHome



TABLE VI: Performance of one-class classifiers for mix of
attack and benign traffic.

Detected as
attack benign

TN (%) FN (%) TP (%) FP (%)

Amazon Echo 98.8 6.0 94.0 1.2
TPlink switch 95.9 5.8 94.2 4.1
Belkin motion 87.5 7.4 92.6 12.5
Belkin switch 99.2 8.1 91.9 0.8
LiFX bulb 99.3 7.3 92.7 0.7
Netatmo cam 94.6 6.0 94.0 5.4
Hue bulb 97.3 15.7 84.3 2.7
iHome 100.0 7.1 92.9 0.0
Samsung cam 92.4 6.7 93.3 7.6
Chromecast 81.9 10.2 89.8 18.1

Fig. 14 illustrates the consistency of the two schemes for
a sample of traffic from Samsung smart cam during a week
period with 380 instances of attack traffic – each instance
worth a minute of traffic. In Fig. 14(a) we plot the real-
time consistency score for Samsung smart cam during attack
periods – attack instances are marked by red ‘×’. It can be
seen that the model correctly detects attack traffic instances by
giving them negative outputs, causing drop in the consistency
score. We note that sometimes the consistency score keeps
falling down even when attack finishes. This is because the
impact of some attacks persist in attributes of a few following
instances (up to 8 minutes). We can see that during intense
attack periods (Jun 2 and Jun 3), the consistency score of the
one-class model of Samsung camera drops to its lowest level,
well highlighting a significant change of behavior in device
traffic.

On the other hand, it is seen in Fig. 14(b) that the multi-
class model is insensitive to attacks. For multi-class model,
we consider outputs as positive whenever they indicate the
expected label with a high confidence from the model (i.e.,
above a threshold of 80% which is obtained from our previous
work [9]) and as negative otherwise (< 80% confidence). The
consistency score of the model remains high during the whole
week, and does not noticeably get affected by attack instances,
as shown in Fig. 14(b). Even though the Random Forest model
gives negative output to some attack instances (34.6%), but
each negative output is immediately followed by a sequence
of positive outputs keeping the real-time consistency score
at a very high value – incorrectly suggesting that the device

(a) one-class clustering model. (b) multi-class decision-tree model.

Fig. 14: Performance comparison for traffic of Samsung cam
during attack: (a) one-class model, (b) multi-class model.

behaves normally.
We observe that the one-class clustering model has by far

more ability to highlight (detect) anomalies in device behavior
compared to the multi-class decision-tree model – detection
rate of 92.6% compared to 34.6%. We also note that multi-
class model correctly classifies 98.0% of benign instances (TP)
while this metric is slightly lower (94.7%) for one-class model.

Note that these two approaches are fundamentally different
in their way of modeling: one-class models are generative
(learn distribution of each class) while multi-class models
are discriminative (learn decision boundary between various
classes). As a result, one-class models become sensitive to
changes in any attribute while multi-class models become
sensitive to changes in only discriminative attributes.

VI. CONCLUSION

Real-time traffic monitoring is of paramount importance for
network operators who manage a diverse range of IoT devices.
In this paper, we have developed a modular classification
scheme to infer type of IoT devices from their network be-
havior using a set of clustering models. We trained individual
classification models to classify IoT devices and detect the
cyber-attacks from network traffic. We augmented our machine
learning-based models by developing a conflict resolver and
dynamically updating the consistency state of device models.
Finally, we evaluated the efficacy of our system by applying
it to traffic traces from twelve IoT devices, and demonstrated
its ability to detect behavioral changes and cyber-attack with
an overall accuracy of more than 94%.
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