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Abstract—Transportation is undergoing significant change due
to advances in automotive technologies such as electric and
autonomous cars and transportation paradigms such as car and
ridesharing. Coupled with the rapid prevalence of IoT devices,
this provides an opportunity for many organizations with large
on-premise parking spaces, to better utilize this space, reduce
energy footprint, and monetize data generated by IoT systems.
This paper outlines our efforts to instrument our University’s
multi-storey parking lot with IoT sensors to monitor real-time
usage, and develop a novel dynamic space allocation framework
that allows campus manager to re-dimension the car park to
accommodate both car sharing and existing private car users.

Our first contribution describes experiences and challenges
in measuring car park usage on the university campus and
removing noise in the collected data. Our second contribution
analyzes data collected during 15 months and draws insights
into usage patterns. Our third contribution employs machine
learning algorithms to forecast future car park demand in terms
of arrival and departure rates, with a mean absolute error of
4.58 cars per hour for a 5-day prediction horizon. Lastly, our
fourth contribution develops an optimal method for partitioning
car park space that aids campus managers in generating revenue
from shared cars with minimal impact on private car users.

Index Terms—IoT, machine learning, optimization, parking lot,

smart campus, license plate recognition, forecasting
I. INTRODUCTION

NIVERSITIES worldwide are experiencing a surge in

student enrollments [2], accompanied by an expansion in
staff numbers, which together have contributed to an increase
in demand for on-campus parking. Despite the increasing trend
of private car usage to commute to campus [3], as many as
10-45% of available parking spaces are empty since they are
distributed across a large campus area [4]. This problem has
also been observed at our campus in UNSW Sydney, where
one of the multi-storey parking lots fill up by 10 am while the
other often has availability.

Parking spaces can be thought of as perishable goods with
sunk cost and an empty space at any time resembles an
unsold item that can not be resold later [5]. Hence, effective
management is required to ensure their efficient use. The
rapid advances in information technology in conjunction with
data monetization have improved the efficiency of parking
management systems with the push towards adopting dynamic
and data-driven policies. A good example is the adoption
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of a dynamic pricing scheme for public parking spaces by
Municipal Transport Agency in San Francisco [6], where
parking rates are adjusted based on demand data, in order
to maintain their target utilization. Capturing fine-grained
dynamics of parking usage over a long-term period is likely to
offer far-reaching benefits. In particular, high-resolution data
can be used to inform strategic decisions such as expansion
of parking capacity, developing new parking facility, or par-
titioning spaces to accommodate new paradigms of car use
[7].

The medium-term future is likely to evolve around shared
transport, leading to autonomous vehicles in the longer-term.
This will not only enhance commuter experience, but also cut
down the use of fuel, alleviate the number of cars on the
road, and improve traffic congestion. Car sharing (offered by
companies such as GoGet, ZipCar, Car2Go, etc.) is projected
to grow at a rate of over 20% between 2018 and 2024 [8] and is
becoming a more mainstream mode of transport. Accordingly,
universities such as UNSW can leverage such trends to go
green by encouraging car sharing schemes in order to reduce
on-campus parking congestion and savings in infrastructure
spending for new parking facilities to keep up with the growth
of the campus population.

Many universities are moving towards this trend by part-
nering with car sharing companies to offer shared transport
services to their campus community [9]. Current schemes
are predominantly based on static allocation where a fixed
number of parking bays are reserved for car sharing vehicles,
and only support round-trip transport services where vehicles
are required to be returned to their dedicated based station.
In recent years, there has been a rapid adoption of one-way
car sharing model that provides a more flexible service to
users by allowing them to leave shared vehicles at locations
different from their pick-up point [10]. This recent trend will
likely capture new shared transport users, hence motivating
universities to adopt a more efficient dimensioning method
for their parking infrastructure. Accordingly, existing static
allocation of parking spaces can potentially be replaced with a
dynamic scheme where spaces allocation changes dynamically
based on predicted usage demand.

This paper describes our experience in instrumenting an on-
campus car park for real-time monitoring of space utilization,
and develops a novel framework for monetizing the collected
data by dynamically allocating parking spaces to car-sharing
and private car users. We first comprehensively analyze the
car park usage data that spans over a period of 15 months,
covering both teaching and non-teaching periods, and highlight
interesting insights into car arrival and departure patterns. We
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then apply machine learning models to forecast future car
park usage demand and compare predictive performance of
various learning algorithms across multiple forecast horizons,
ranging from a day up to 10 weeks. Next, we develop a
continuous-time non-homogeneous Markov model based on
the predicted usage to simulate dynamic partitioning scheme
for allocating parking spaces to private and shared cars. Fi-
nally, we formulate an optimization problem to assist campus
managers in selecting an optimal allocation (i.e., fraction of
spaces allocated to car sharing vehicles) that aims at enhancing
parking space utilization while avoiding situations where users
are turned away due to lack of parking spots.

The rest of this paper is organized as follows: §II de-
scribes relevant prior work. §III outlines our experiences in
implementing an IoT car park monitoring system for real-
time data collection while §IV presents interesting insights
obtained therein. §V compares machine learning algorithms
in forecasting multi-step ahead arrival and departure rate of
cars. We show how the predictions are used to approximate
the number of rejected users (given their respective allocation)
using Markov modeling and an optimization formulation that
can aid car park dimensioning decisions in §VI. The paper is
finally concluded in §VIIL.

II. RELATED WORK

In this section, we present related work on car park moni-
toring technologies and methodologies for predicting parking
demand.

A. Parking Management

According to Litman [7] parking problem is typically per-
ceived as inadequate parking supply that has led planners to
provide more supplies in order fulfill the growth of demand.
Consequently, abundant parking facilities have resulted in ur-
ban sprawl, causing parking demand and supply to get further
inflated. New parking management paradigms, on the other
hand, aim to use parking facilities more efficiently, instead of
expanding the physical infrastructure. This not only reduces
development costs but also supports more strategic objectives
such as reduction of motor vehicle use by encouraging the
adoption of alternative modes of transport, thereby reducing
traffic congestion. Parking management strategies can range
from parking regulations (i.e., controlling who, when and how
long vehicles can park) to parking pricing (e.g., performance-
based pricing [11]) to mobility management which aims to
change travel behavior in terms of travel frequency, mode,
destination, or time. This paper focuses on promoting car-
sharing programs which is an example of mobility manage-
ment, providing commuters with richer transport options.

B. Sensing Technologies

Among various parking space monitoring technologies
available in today’s market, many smart parking deployments
have adopted IoT sensors to detect the presence of vehicle at
each parking bay. Some of the sensors that have been deployed
include ultrasonic, light, temperature, acoustic, and magnetic

sensor [12], which must be deployed in each parking slot.
The approach to monitor each spot individually is expensive,
especially for a large parking lot with hundreds of parking
bays, hence such solutions are typically employed only in
commercial parking areas such as shopping centers and air-
ports. A more cost-effective solution is to use existing CCTV
(closed-circuit television) camera to acquire images or videos
of a car-park’s view and apply image processing to obtain car
occupancy data [13]. However, continuously recording images
(or videos) of users’ vehicles may raise privacy concerns,
especially when images are collected without users consent.
Radio frequency identification (RFID) technology can also be
employed to identifying vehicles for parking management. The
system involves installing an RFID reader at an entrance and
exit of the car park in order to detect RFID tags of arriving
and departing cars. The drawback of this method is that car
park users need to have the tag attached to their vehicles.
Casual visitors who have not installed the tags would be
excluded. A simpler solution, which requires a smaller scale
implementation, is to install a sensing device to capture arrivals
and departures at every car park gate. For instance, license
plate recognition (LPR) camera can be used to automatically
record license plate number of each incoming and outgoing
cars, providing a more cost-effective solution to measuring
usage of the parking spaces.

C. Parking Prediction and Modeling

There is research in literature on predicting real-time park-
ing availability, particularly for reducing congestion and elim-
inating inefficient cruising. One of the popular approaches
is to use a stochastic model, where driver’s arrival and de-
parture behaviors are assumed to follow certain distributions.
Many studies adopting this approach use information collected
from vehicular ad-hoc network in order to predict car park
occupancy, and explore different queuing models such as
M /M /m/m queue [15], [16] and M/G/c/c queuing model
[17]. The models allow blocking probability to be calculated
and disseminated to users via vehicular communications, thus
preventing more users from approaching the parking lot if it
is fully occupied. Others model parking process as a birth-
death stochastic process for revenue prediction [18], where
the former corresponds to car arrivals and latter to departures.
The aforementioned studies obtained numerical results through
simulation, often through using fixed arrival and departure rate.
This limits the efficacy of the method as real parking demand
displays seasonal behavior, where parking demand is notably
impacted by factors such as time-of-day and day-of-week.

With the emergence of IoT devices to collect real-time and
historical parking information, many works have adopted data-
driven approach for their occupancy estimation. An extensive
range of methods that have been explored including classical
time-series models like ARIMA [19]; non-parametric models
such as regression trees and support vector regression [20];
and spatiotemporal models [21] when data of multiple parking
locations are available. Furthermore, new techniques involving
deep learning have been gaining popularity in the last decade,
in additional to classical multi-layer perceptron (MLPs) for
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Fig. 1. LPR camera outputs for author’s car entering into the campus car park.

predicting future parking occupancy [22], several variants
of recurrent neural networks (RNNs) have been proposed
including LSTM [23] and RNN using evolutionary algorithms
[24]. All aforementioned studies predict parking occupancies
in the near future as to provide real-time or up to 1-hour in
advance parking information to the users. Despite the fact
that accurate short-term parking prediction can undoubtedly
enhance informed parking decisions for users, longer term
estimation is required for future space management such as
space allocation problem that our work aims to address.

III. DATA COLLECTION AND CLEANSING

In this section, we first outline our experience with license
plate recognition (LPR) technology to measure car park usage.
Since license plate information is private and confidential, we
obtained appropriate ethics clearances for this study (UNSW
Human Research Ethics Advisory Panel approval number
HC171044) prior to conducting the experiment. We then
briefly explain our system architecture for collecting, storing,
and analyzing data collected by the LPR cameras. Lastly, we
discuss measurement challenges, quantify errors and present
our method for data cleansing.

A. License-Plate-Recognition Camera

We investigated several commercial sensors for our car park
monitoring solution with two goals. First, we want to have a
complete ownership of the data without risking it leaving our
campus infrastructure. Second, we aim to access our own data
without relying upon a vendor, hence freeing us from ongoing
service costs. This would allow us to integrate the collected
data into a central repository of our overarching Smart Campus
project in order to facilitate better analytics across many data
feeds we have on campus [25].

We selected Nedap’s automatic number plate recognition
(ANPR) camera [26] as our parking monitoring solution.
To read license plates of vehicles, the camera uses LPR
technology which involves two main stages of operation: (a)
locating license plate in the captured image by isolating a
rectangle area (of the license plate number), using physical
characteristics such as the shape, symmetry, width to height
ratio and alphanumeric characters; and (b) separating and
recognizing characters inside the isolated image [27].

The camera unit consists of several components including a
high definition camera, infrared (IR) illumination, and ANPR,

EVENT_DESC DATE TIME PLATE_NOT_READ
Ocr Read 7/10/18 11-12-58-306 READ
PLATE_STRING | PLATE_COUNTRY | PLATE_REGION OCRSCORE
AB83JN AUS NS 86
OCRSCORE_CHAR SPEED DIRECTION
086 085 080 087 089 087 14794 APPROACH

allowing the camera to read complex number plate at various
lighting conditions (due to weather or different hours of the
day). The recognition engine relies on an on-board library
that supports license plates readings from specific countries,
each of which uses its own characters, colors, and designs.
The camera also provides a management console (a web-page
accessible via its IP address) that allows users to configure
various parameters such as shutter time, strobo time (activation
time of IR illuminator), and gain. We configured the camera
to use the default “Autoiris” mode, which is recommended
by the manufacturer guidelines, in order to allow the camera
to automatically adjust the parameters based on the current
lighting condition.

The ANPR system is capable of real time optical character
recognition (OCR) processing, which runs when a license
plate number is presented within the camera’s frame. For each
detection, the algorithm outputs two types of data; a JPEG
image (with adjustable quality value between 0 and 100, where
100 is the highest resolution 1080p) of the vehicle, and a data
record containing parameters such as timestamp, license plate
string, OCR score, speed, country, state/region, type of vehicle,
and up to 50 more fields. Fig. 1 shows an example of a real
license plate (for the private vehicle of an author of this paper)
recognized by the camera. On the left is the JPEG captured
image showing the isolated license plate, and on the right is a
list of selected key data fields generated by the OCR algorithm.
The definition of the fields are as follows:

e EVENT DESC: The value “OCR Read” means that the
algorithm was able to recognize individual characters in
the isolated license plate.

o DATE and TIME: Timestamp of the record.

o PLATE NOT READ: This field indicates whether the li-
cense plate was successfully isolated or not — the value
could be either “READ” or “NOTREAD”.

e PLATE STRING: The output string of the recognized
license plate. Australian cars and motorcycles have 6
and 5 alphanumeric characters on their license plate
respectively.

e PLATE COUNTRY and PLATE REGION: Country and state
of the license plate — AUS for Australia, and NS for New
South Wales.

e OCRSCORE: Overall confidence value (between 0 and 100)
given by the camera on how accurately the entire license
plate number is recognized.
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Fig. 2. A real picture showing entrance and exit of our campus car park and
a pair of LPR cameras installed side-by-side close to the ceiling of the car
park ground floor.

o OCRSCORE CHAR: OCR score for individual characters of
the string — in this example, character “J” has the highest
score 89 and character “8” has the lowest score 80.

o SPEED: Speed of the vehicle in 100x actual speed (km/h)
— we found that this data field is unreliable since reported
values ranged from 1000 to 10,000,000.

e DIRECTION: Direction of the vehicle relative to the
camera, i.e., “APPROACH” for entry camera and “GO-
AWAY” for exit camera.

During our field trial, we only captured and stored text
output of the camera and not the JPEG image in order
to maintain users’ privacy and save space for data storage.
In order to tune various parameters of cameras and collect
ground-truth records (for measuring accuracy), we temporarily
recorded a number of image captures. The camera supports
both local storage on an Secure Digital (SD) card and an
external File Transfer Protocol (FTP) for data collection.
The later option was selected for continuous data collection,
where the camera creates and automatically updates a text
file in Comma Separated Values (CSV) format containing
information about every detected vehicle by the ANPR.

For the deployment, we chose an on-campus 5-storey car
park that serves 895 parking spaces for students, staff, visitors,
and contract workers. The first four levels of the facility are
reserved for permit holders and the top level for hourly-based
paid parking. The car park has a one-lane entrance and exit
on the ground floor, which we installed two LPR cameras to
capture the arriving and departing cars as shown in Fig. 2. For
installation, the devices require 24 volts direct current (VDC)
power supply and communicates via an Ethernet port.

Hence, we (with help from our campus Estate Management)
supplied new power points and provisioned Ethernet ports
for the cameras. We note that the flow rate of cars at our
deployed car park is fairly moderate, with an average of 3
cars per minute during peak hours on busy days, and hence the
workload on the OCR system is not a concern, especially when
the response time of cameras (for generating output records)
is in the order of tens of milliseconds.
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Fig. 3. System architecture of collecting, analyzing, and visualizing data from
LPR cameras.

TABLE I
MEASUREMENT ACCURACY OF LPR CAMERA FROM GROUND-TRUTH OF
CARS AND THEIR LICENSE-PLATES.

Accuracy
Camera  Capture rate  Read rate
Entry 94% 85%
Exit 88% 42%

B. Measurement System Architecture

Fig. 3 shows the architecture of our car park monitoring
system, comprising of three main layers: (a) “sensing layer”
is where the LPR cameras record license plates information of
arriving and departing cars; (b) “data layer” is the core of our
system, hosting an FTP server, a software engine for cleansing
and anonymizing data, message broker, and multiple databases
for backup and load balancing. Once the data is cleaned,
it is passed onto the message broker for unifying records
into a JSON format. Each record is first tagged with time-
stamp and sensor UUID, and then is posted via a RESTful
API to our master database; (c) “analytics layer” includes
health check monitoring (whether cameras are active and
functioning, or not), data analysis, and visualization modules
— this layer retrieves raw data from the master database (DB)
and writes computed occupancy (real-time) and stay duration
(per vehicle) into another DB that is used as a backend for
visualization.

The cameras are connected via a high-speed wired Ethernet
cable to the campus network, sending real-time data records
to backend servers on-premise. Given the reliable connection
between sensing layer (cameras) and analytics layer (servers)
we do not consider a stochastic process for the communication
within our system.

C. Measurement Accuracy

There are various factors that can impact the accuracy of
the LPR cameras including placement (e.g., height and angle
of installation), lighting conditions, speed of vehicles, angle of
the license plate, and physical condition of the license plate.
We quantify the accuracy using two metrics: (a) “capture rate”
which is a fraction of cars correctly detected, and (b) “read
rate” which is a fraction of license plate numbers that are
recognized correctly by the OCR algorithm running inside
the camera. According to the ANPR’s manufacturer [28], it
is expected to have capture rate and read rate of 98% and
95%, respectively.
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Fig. 4. CCDF of Levenshtein distance between captured and ground-truth
plate numbers.

To measure the capture rate, we performed several spot
measurements over 5 days (Monday to Friday), each for a
period of 5 hours (11am to 4pm) in order to collect ground-
truth data of car park usage. We used a GoPro camera to record
video logs and captured a total of 1400 vehicles entering
and exiting the car park. For measuring read rate, we first
enabled the JPEG recording on both cameras for a week and
manually inspected 700 images for each of the LPR cameras
(randomly selected) in order to obtain the ground-truth license
plate labels.

Table I summarizes the accuracy of both entry and exit
cameras. It is seen that the exit camera underperforms by both
accuracy metrics, especially with a very low read rate of 42%.
This means that more than half of the departing vehicles are
not correctly recognized. The poor read rate of the exit camera
was mainly due to its non-ideal placement which causes the
detection to happen at a slight angle, and thus negatively af-
fecting the performance of the OCR algorithm. Re-positioning
the camera was a nontrivial task due to difficulty (and cost)
of provisioning Ethernet port and power outlet for the new
position. With the majority of read rate errors resulted from
misinterpretation of only one of the six characters, this can be
used to our advantage in the cleansing process.

D. Measurement Errors

The errors observed from the outputs of cameras can be
categorized into three types: (a) multiple recognitions of
the same license plate, (b) incorrect recognition of license
plate location, and (c) incorrect recognition of license plate
characters.

Multiple recognitions: This error type occurs when the
camera takes multiple images of a single vehicle (possibly
because of its speed or moving pattern), and thus triggers
the OCR algorithm multiple times. This generates multiple
data records for the vehicle in the CSV file, resulting in over-
counting of vehicles. These multiple records do not necessarily
have the exact same license plate string — it may output slightly
different strings due to the angle of the moving car and its
distance to the camera in a sequence frames captured.

Incorrect locating: This type of error occurs when the OCR
algorithm incorrectly locates a license plate in the captured
image and attempts to recognize characters. The output license
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Fig. 5. CCDF of OCR score for entry and exit cameras.

TABLE I
DISTRIBUTION OF ERROR TYPES FOR EACH CAMERA
(GROUND-TRUTH DATASET).

Error types
Camera  Multiple recognitions  Incorrect locating  Incorrect recognition
Entry 59.3% 4.2% 36.4%
Exit 13.5% 34.9% 51.6%

plate strings from this error are almost always “OCR NOT
READ” as the read plate does not match any of known formats
of license plates available in its embedded library. There
are rare cases where a non-license plate object gets partially
recognized that their output appears as incomplete strings with
low OCR scores of below 60.

Incorrect recognition: This type of error occurs when
the camera successfully locates a license plate, but fails to
recognize the characters correctly. To quantify the severity
of the read errors, we employ Levenshtein distance [29] to
measure the difference between two string words, i.e., the
minimum amount of single character addition, substitution or
deletion required to make two strings identical. For example,
the Levenshtein distance between the string “ABC123” and
“AC123” is 1, two strings will be identical by inserting
a character “B” into the string “AC123”. We compute the
Levenshtein distance between ground-truth and recognized
strings, the complementary cumulative distribution function
(CCDF) plot of the distance is shown in Fig. 4. It is seen that
up to 28% of records from the entry camera and 52% from
the exit camera have at least 1 character misrecognized (i.e.,
distance of more than O character). We also observe that the
majority of these errors are caused by 1 misread character,
accounting for 15% for entry and 30% for exit of the total
observed records. Note that incorrect recognition also results
in lower OCR scores for the output record. Fig. 5 shows the
distribution the OCR score of our deployed cameras. It can be
seen that for the exit camera, 83% of the data records come
with an OCR score more than 65. For the entry camera, on the
other hand, records seem more reliable where 85% of them
have the score greater than 75.

We summarize the distribution of each error type for both
cameras in Table II. As can be observed, the errors from entry
records are largely stemmed from multiple-recognitions which
accounted for 59.3% of the total errors. This is attributed to
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the recurrence of a peculiar problem where the camera’s view
unexpectedly blacked out, resulting in no data being recorded
(i.e., black-out events). To understand this relationship, we plot
in Fig. 6 the time-trace of daily error rate due to redundant
records, overlaid by black-out events which required camera
reboot. It is interesting to observe that the rate of redundant
records steeply rises a few days prior to black-out events
(evidenced by red cross markers in the middle of August to
middle of December). The errors in data records of the exit
camera, on the other hand, are mostly (51.6%) from incorrect
recognition. We believe this is primarily due to the non-ideal
placement of the camera that causes it to capture license
plates at an angle which is non-ideal, hence resulting in poor
performance of the OCR algorithm. Furthermore, we can see
that 34.9% of the errors are due to incorrectly locating of
license plates, while the same measure is only accounted for
4.2% of the total errors from the entry camera. By manually
inspecting the collected images, we found that moving grass
(close to the exit point of the car park, as visible in Fig. 2) gets
occasionally detected as a moving object by the exit camera.
This issue does not affect our entry camera, and thus it displays
a much lower rate of incorrectly locating errors.

E. Data Cleansing and Preprocessing

We cleanse raw data collected from the two cameras with
the following objectives: (a) removing multiple records to
obtain the correct count of arrivals/departures, (b) removing
records of non-vehicle objects incorrectly captured by cam-
eras, and (c) matching license plates captured by both cameras
to deduce the distribution of stay-duration in our campus car
park.

Fig. 7 shows our cleansing process with various stages
involved. We first remove duplicate records caused by multiple
recognitions. A license plate is considered as “redundant”
if it re-appears within the next five records after its first
appearance with the Levenshtein distance between the plates
of two or less. The distance threshold of two is selected
based on our ground-truth analysis (Fig. 4) — applying this
filter eliminates only 8% and 10% of entry and exit records,
respectively. We found that increasing the threshold to three
will only improve the coverage by less than 10%, which is
not substantial especially when the chance of plates getting

Remove
csv duplicates
Entry raw data

yes OCR Read yes—>
csv
Cleaned

entry data

OCR score
>75%
no
OCR score
> 65%
no

Fig. 7. Data cleaning process.
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TABLE III
PERCENTAGE OF RECORDS REMOVED FROM THE ENTIRE DATASET AT
EACH STAGE OF CLEANSING.

Error types
Camera  Multiples (redundant) low OCR score =~ OCR-Not-Read
Entry 9.7% 12.9% 2.5%
Exit 7.9% 8.5% 8.2%

mismatched increases (two different plates get incorrectly
matched and treated as the same plate). For license plates
identified as redundant, the one with the highest OCR score
is kept and others are discarded.

We then remove records with low OCR scores. Most of
these records relate to the erroneous captures (redundant
records) of one vehicle. As discussed earlier in Fig. 5, we
use filtering threshold of 75 and 65 for OCR scores for the
entry and exit cameras respectively. Lastly, we remove all
records with OCR NOT READ value — those with incorrectly
located license plate in the captured image. The pair of cleaned
data will be used for arrival/departure counts. A summary of
records removal due to each error type is shown in Table III.

As mentioned earlier, the goal of the last stage of our
cleansing process is to match vehicles from the entry and
the exit datasets. The output of this stage will be used
to compute stay duration of users. Similar to the multiple
recognitions removal process, we use a Levenshtein distance
of two or less for the matching. For one-to-many matched
events, which rarely occur, we select the pair that yields the
lowest Levenshtein distance and the highest OCR score. By
running the matching process on daily data from July to the
end of December, we were able to match 86% of the records
on average. The remaining unmatched records correspond to:
(a) overnight parking, (b) vehicles that are captured by one
camera (mostly entry camera), but not the other.

We found from our spot measurements that only a small
number of vehicles stayed overnight (i.e., 23 cars per day on
average for a sample size of 11 nights), and thus they would
not have significant impact on the car park usage patterns. We
therefore analyze our dataset on a per-day basis (i.e., midnight-
midnight).

IV. ANALYSIS AND INSIGHTS INTO USAGE PATTERN

In this section, we analyze our cleansed data (obtained from
§III) which spanned 15 months of teaching and non-teaching
periods in 2018 and 2019, to highlight the usage pattern
of the campus car park across various temporal dimensions
including time-of-day, day-of-week, week-of-semester, and
semester break/exam periods.
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A. Arrival and Departure Pattern

We begin with Fig. 8 that depicts the average daily number
of cars entering to (red bar) and exiting from (blue bar) the car
park for each day-of-week during teaching periods. The black
points represent actual measurement values and the error bars
represent 95% confidence interval of data-points. On average,
it is seen that there are about 950 to 1000 cars using the car
park on weekdays, except for Friday, where the number drops
to about 830 due to fewer number of classes running. During
weekends, the number of cars occupying the car park are sig-
nificantly lower, with an average of below 400. Furthermore,
we observe narrower error bars on weekdays compared to
weekends, suggesting predictable usage patterns for weekdays.
In contrast, the car park usage varies significantly on weekends
ranging from 200 to 600. Interestingly, it goes beyond 1000
cars for one particular Saturday (i.e., 1 September 2018).
After checking the University event calendar, we found that
this corresponds to the University Open Day which typically
attracts a large number of high-school students and their
families. The University provides free parking for all Open
Day Visitors.

Fig. 9 illustrates an average hourly count of arriving cars
(red bars) and departing cars (blue bars) by time-of-day, for
each day of the week (separate graphs per day). It is seen that
during weekdays, the arrival rate starts rising steeply from
6am, peaks at 8am-10am, and falls slowly afterwards. The
departure process displays a similar bell-shape pattern but
shifted in time by about 8 hours, i.e., rising in the afternoon,

Arrival Departure

12am  6am 11am 4pm 8pm
Time

! i i P
12am 6am 11am 4pm 8pm

Fig. 10. Distribution of arrival and departure time during teaching period,
across each weekday

peaking at Spm-6pm, and falling afterwards. During peak
demand times, about 200 cars enter and exit the parking lot
per hour. This number is slightly lower for Friday (i.e., 194
and 165 cars per hour). We also observe an irregular pattern
for weekends where car park usage heavily depends on events
hosted on campus. Our findings of weekday arrival/departure
pattern corroborate with other studies [30].

Fig. 10 depicts the distribution of arrival and departure rate
for the five weekdays (in a stacked representation with Friday
on top and Monday at the bottom). To better illustrate the
pattern, we color-coded five time intervals: orange for prior-
sunrise (12am-6pm), blue for morning-peak (6am-11lam), pur-
ple for afternoon-offpeak (1lam-4pm), red for evening-peak
(4pm-8pm), and green for night-time (8pm-12am). Note that
the difference in absolute numbers is not seen for Friday due
to normalization. Unsurprisingly the distribution plot shows
that both arrival and departure patterns are consistent across
the majority of time-slots on weekdays, with the strongest
similarity observed during peak hours. As before, we observe
some different trends for Friday with the red part of the arrival
curve (4-8pm) showing a less pronounced peak compared to
other weekdays. This suggests fewer arrivals to campus on
Friday evening, which can be attributed to the fact that there
are very few evening lectures running on Friday. A closer
examination of the exit curve for Friday reveals that the area
in purple is larger than the corresponding regions of other
weekdays. The green part of the curve is also considerably
flatter than the other days. This suggests higher percentage of
cars leaving during early afternoon time and lower percentage
of cars exiting the car park after 8 pm on Fridays compared
to Mondays-Thursdays.

Additionally, we looked at the arrival and departure patterns
during different periods of the academic calendar including
orientation week (O-Week) which is largely geared for new
entrants to get acquainted with the university, regular teaching
weeks, a week long mid-semester break, a study-break week
right before final exams, exam periods and a lull period before
the end of year holiday shutdown during which undergraduate
students are away and campus attendance for everyone else
progressively reduces. The general patterns are similar to
Fig. 9 for all periods. One main difference observed was the
morning arrival peak occurred one hour earlier (i.e., 8am-9am)
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Fig. 11. Density distribution of stay-duration (hour) for each day-of-week.
during the O-Week and other non-teaching periods. The former
can be attributed to the fact that a portion of students and
administration staff arrive early during the O-week for setting
up various activities. The latter can be ascribed to the fact
that students are less likely to be on campus during the non-
teaching period and thus the morning peak time is largely
determined by the arrival pattern of staff who typically arrive
earlier (between 8-9 am) than students. Furthermore, it can be
observed that car park usage drops (i.e., around 50 cars) during
mid-semester break and other non-teaching periods, suggesting
that the majority of car park users are staff members. This is
not surprising due to high price of parking permits in our
university.

B. Stay Duration Pattern

Our dataset allows us to obtain insight into stay-duration of
car park users given that the license plate numbers are captured
at entry and exit points. We choose to analyze the distribution
of these patterns across various user groups, instead of on an
individual basis. For this analysis we use the cleansed dataset
after the matching process mentioned in §III-E.

Fig. 11 shows the distribution of stay duration (in hours) for
each day-of-week. It is clearly seen that the distribution is peak
at around 8 hours for Mondays to Fridays — this is consistent
with the standard working hours in Australia, which is 7.6
hours a day [31]. We also observe that users tend to use the
car park for about 2-4 hours during weekends - these users
are likely to attend events hosted on or near-by the campus or
Postgraduate students attending Saturday lectures.

We further look at the stay duration pattern for each week
of term in Fig. 12. A consistent pattern of bi-modal (double-
peaked) distribution is observed for each week. The peak stay
duration, as expected, centers at 8 hours, a typical full-time
work day. The second peak centered between 2 to 3 hours,
highlighting usage patterns for weekends as well as usage from
students and visitors.

C. Parking Behavior Users

We now cluster car park users using k-means algorithm
[32] to identify parking behavior of certain user groups on
weekdays during teaching period. For each car we extract
three features including arrival time, departure time, and stay
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Fig. 12. Density distribution of stay-duration (hour) for each week of term.

duration. Three number of clusters (optimal value is k = 3)
were selected based on the elbow method. Fig. 13 shows the
result of our clustering. We show in Fig. 13(a) the scatter plot
of stay-duration versus entry time for individual vehicles in our
dataset — clusters are color-coded. It is seen that “Cluster-1”
(shown by red region) corresponds to users who enter the car
park early and stay more than 8 hours (center of cluster-1 is
located at 9am entry time and 8.8 hours of stay duration) — this
cluster represents full-time staff. “Cluster-2” users enter the
car park at about the same time as Cluster-1 and stay shorter
(i.e., less than 5 hours) — morning visitors and typical students.
Lastly, “Cluster-3” users are those who enter late and stay for
a short period (with center at 3pm entry time and 3.5 hours of
stay) — this cluster is likely to denote afternoon visitors and
postgraduate coursework students who attend evening classes.

In Fig. 13(b), we show the distribution of arrival and de-
parture time for each cluster. We observe that the distributions
for Clusters-2 and -3 are relatively wider than of Cluster-1.
Again, it is seen that full-time staff in Cluster-1 typically enter
at about 9am and exit at about Spm. Similar to the scatter
plot, Cluster-2 users arrive early and leave early too. Lastly,
as expected Cluster-3 users enter in the afternoon and exit in
the evening. We also observe a significant overlap in the exit
and entry distributions for these users, which suggests that they
tend to stay on campus for a short period (about 3 hours).

Lastly, to quantify the impact of choosing a larger number
of clusters (i.e., more than the optimal value 3), we experiment
with £ = 4. In doing so, we observe that two of the original
clusters, i.e., Cluster-2 and Cluster-3 in Fig. 13, remain intact
with the same arrival and departure characteristics. However,
the original Cluster-1 gets divided into two sub-clusters, both
representing the behavior of full-time staff. The first sub-
cluster-1 displays a pattern fairly similar to Cluster-1; arrival
time centered at 9am and departure time at 6pm. The other
one, sub-cluster-2, which accounts for half of the size of the
first one, presents a slightly different characteristic, with arrival
and departure times shifted by an hour (centered at 10am and
7pm, respectively).

V. FORECASTING PARKING DEMAND

We apply three machine learning models to forecast long-
term parking usage, specifically, arrival and departure rate of
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Fig. 13. Clustering of car park users using arrival time, departure time, and
stay duration.

cars per hour, and evaluate their performance across various
forecast horizons.

A. Demand Time-Series Forecasting

Having an accurate forecast of user demand is essential in
planning for future space allocation of the car park. In par-
ticular, long-term forecasting is useful for campus managers
to implement car park partitioning schemes, where spaces are
dynamically allocated to private and shared-car users, in order
to improve the utilization of parking facility. In this work, we
adopt multi-step ahead time-series forecasting for predicting
arrival and departure rates of cars. We perform the prediction
for a range of time horizons, from one day to ten weeks, in
order to determine an appropriate time horizon which provides
sufficient demand forecast and yields an acceptable prediction
accuracy.

The car park demand displays seasonal characteristics af-
fected by several temporal factors like hour-of-day and day-
of-week (as discussed in §IV). Additionally, including past
observations (lagged dependent variables) as part of features in
a prediction model is a standard practice in time-series analysis
which is known to produce robust estimation [33]. Below we
summarize features that we used in our forecasting models:

e Time-of-day (Fourier representation)

o Day-of-week (Fourier representation)

o Teaching/Non-teaching period

o Lagged variables (daily seasonal lags of last 10 days,

e.g., to forecast arrival rate between 9am-10am, historical
arrival rates of the same time slot from the last 10 days
were used as features)

We use Fourier representation as features to capture sea-
sonality (e.g., time-of-day and day-of-week) in our time-series
data. Given a seasonal period of p hour, the Fourier terms with
K sine and cosine pairs is defined as:

K
[sin (27Tkt> , COS <27Tkt>} (1)
p p k=1

Fourier terms for time-of-day and day-of-week seasonality
are obtained by setting p = 24 and p = 120 (5 working days)
respectively. We show an example of the first sine terms for
both daily and weekly seasonality, comparing with the typical
representations of seasonal variables in Fig. 14. It can be
seen that Fourier terms (given the smooth nature of sinusoidal
waves) allow us to better model the relationship between the

15Feb 17Feb 19Feb

Time

13Feb

11Feb

- Classical — Fourier

Fig. 14. Comparison of classical representation and Fourier terms represen-
tation of seasonality.

starting and ending of a day or week (e.g., continuity of the
rates profile from 12am on a day to lam on next day). We
tested up to eight Fourier terms in our models and found that
inclusion of two terms is sufficient for the prediction.

B. Strategies for Long-Term Forecasting

We predict future arrival and departure rates using machine
learning models [34]. In what follows we describe our strategy
to predict long-term usage demands and the learning algo-
rithms we employ.

1) Multi-Step Ahead Prediction Strategies: In general,
long-term forecasting is performed to predict the future behav-
ior of an observed time series over a long horizon. Common
strategies include: (a) recursive approach [35], where the one-
step ahead prediction is fed back as an input to predict
the next steps recursively (the predictor progressively takes
estimated values as inputs, instead of actual observations); (b)
direct approach [36], where multiple forecasting models are
built, each corresponding to a forecasting horizon (steps); (c)
hybrid strategy, which combines the previous two strategies
[37] (models specific to each forecast horizon with recursive
inclusion of the prediction from all previous horizons); and
(d) Multiple-Output strategy, where a single model predicts
multiple steps of forecasting in one go (the predicted value is
not a scalar quantity but a vector of future values of the time
series). This strategy, however is more complex and requires
a longer time to train.

For our purposes, we adopted a direct approach as it does
not suffer from the propagated errors like in recursive strategy
and does not involve training complexity like in hybrid/multi-
output strategy. However, our choice of approach requires
multiple models for multiple forecast horizons.

2) Forecasting Algorithms: We employ three widely-used
algorithms to build our forecasting models:

Random Forest (RF) Regression is an ensemble learning
method where a collection of decision trees are combined
to make the final prediction in order to give better accuracy
while reducing the likelihood of overfitting. Each decision tree
is generated by a random sampling of training observations.
Also, random subsets of features are used for splitting nodes.

Support Vector Regression (SVR) applies the same prin-
ciples as Support Vector Machine (SVM) by using the concept
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Fig. 15. Summary of four train/test subsets.

of maximal margin hyperplane. In SVR, a decision boundary
with distance € from the hyperplane can be tuned and the
objective of the algorithm is to maximize the number of points
(support vectors) within the boundary line. Additionally, hyper
parameter C' is used to tune the tolerance of data points that
fall outside the decision boundary. For a non-linear SVR, a
kernel trick is employed to transform the training data into
a higher dimensional feature space prior to performing linear
regression. In our model, radial basis kernel is used for this
mapping.

Multiple Linear Regression (MLR) is one of the simplest
prediction algorithms that involves multiple input variables
(features) for the prediction. There are several techniques that
can be used to train linear regression from the data. The
most common one is ordinary least squares (OSL), where the
objective of the algorithm is to minimize sum of squared errors
when fitting the data.

C. Performance Evaluation of Forecasting Models

1) Evaluation Methods and Dataset: We use historical data
from 2019 (from 25 Feb to 29 Nov) for training and testing our
models. We employ nested cross validation procedure where
the dataset is divided into multiple training and testing subsets,
each training set is further divided into sub-cross-validation
sets for tuning hyper parameters. Use of multiple train-test
subsets allows for an unbiased and robust assessment of the
performance of the models in predicting unseen data. Note
that we preserve the temporal order of observations during
the train-test splitting and cross validation in order to prevent
data leakage so that future data is not used to train the model
that predicts past data. Hence, we emulate and demonstrate a
real-world forecasting scenario.

Fig. 15 shows a summary of how we divide our dataset into
4 subsets, each consisting of varying size data (from 16 weeks
to 28 weeks worth of instances) used to train the model along
with fixed-size data corresponding to test periods of 12 weeks
starting right after their respective training period.

We also use a simplistic baseline model in our comparisons
to confirm that the more sophisticated approach that we
have adopted is worth the effort. Our baseline model uses
a mean average rate of each specific hour-slot (e.g., 9am-
10am) computed over historical data as a prediction of future
values for the corresponding hour-slot. In other words, past
observations are used to compute a daily profile of hourly
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Fig. 16. Performance of forecasting models per individual subsets during
cross-validation phase.

arrival and departure rates which will be used for any day in
the future.

2) Evaluation Results: For each train-test subset, we first
perform cross-validation on the training set using time slicing
in order to tune the hyper parameters of our machine learning
models. We then train the final model of each algorithm using
the parameters that minimize the error and apply the model to
predict the test set. Note that we will use Mean Absolute Error
(MAE) as our performance metric as we intend to penalize
every error equally (i.e., mispredicting 10 cars per hour is
twice as costly as mispredicting 5 cars per hour).

Table IV shows the numerical results in both cross-
validation and testing phases. We observe that the MAE of
prediction generally reduces from top (Subsetl) to bottom
(Subset4). For instance, RF model gives MAE of 5.29 on Sub-
setl and 4.56 on Subset4 for predicting the departure rate with
5-day horizon (highlighted in green). This improvement can
be ascribed to the increase in size of training data, i.e., 1920
and 3360 instances for Subsetl and Subset4, respectively. It
also suggests that with more data, overfitting can be minimized
and our models generalize better.

To visualize cross-validation results, we plot Fig. 16 to
illustrate the MAE for the three ML algorithms under consid-
eration. For short term forecasting, we can see that all three
algorithms exhibit similar performance, with SVR yielding
slightly better results for 1-day ahead prediction (average MAE
of 5.17 and 5.31 for arrival and departure rate respectively)
and RF model performing marginally better over 5 days arrival
rate (average MAE of 5.61). For longer term prediction (10+
days), where predictive performance is observed to deteriorate,
RF (blue lines with cross markers) is seen to outperform the
other two algorithms for predicting arrivals while SVR (green
lines with circle markers) yields the best results in predicting
departures. On the other hand, LM yields the worst predictive
power, suggesting that the parking rate data can be better
explained using tree-based (i.e., RF) or non-linear (i.e., SVR)
models as opposed to a linear one.

Next, we evaluate the performance of our models on the test
set (unseen data). Fig. 17 shows the average MAE across all
four subsets. In general, we can see that the forecast errors rise
as the time horizon increases. For instance, the average MAE
of departure prediction is as low as 4.67 for LM model when
predicting at 1 day forecast horizon, but increases to 6.32 when
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Fig. 17. Performance of forecasting models (averaged over the four subsets)
during testing phase.

predicting at 50 day horizon. This highlights the fact that our
models learn the pattern better when more recent observations
are available. In predicting the arrival rates (left plot), RF
is the clear winner with an MAE lower than 5.0 across all
the horizons. To predict the departures, however, both RF
and SVR models perform fairly similarly. Corroborating the
validation results, LM yields the highest MAE for both arrival
and departure among the three algorithms and even worse than
the baseline for time horizons greater than 20 days.

From the results in Fig. 17, we can see that RF and SVR
models perform better in forecasting parking demand on our
university campus, with an average prediction error of less than
5 cars per-hour for a medium-term horizon (5-day), and less
than 5.5 cars per-hour for a longer-term horizon (10-week).

Note that the rate of car arrival and departure varies signifi-
cantly (between 0 and more than 200 cars per hour) throughout
the day. Therefore, we analyze the dynamics of MAE (for
the RF model) during non-peak hours versus peak hours for
a medium-term prediction horizon. During non-peak hours,
with an average rate of 18 cars (entering/exiting) per hour,
the model yields MAE of 3.60 for both arrival and departure
rates. We observe that more than half of the predictions come
with an absolute error of less than 2. Also, it is found that
about 20% of predictions give an error of more than 5 — these
high errors predominantly correlate with a sudden change in
parking usage due to irregular events/functions organized on
campus during evening hours (between 4pm and 11pm), and
hence can not be captured by our model. During peak hours
(8am-10am for arrival and 4pm-7pm for departure), when an
average of 180 and 130 cars per hour enter and exit the car
park, the model yields MAE of 13, translating to about 10%
of the total traffic. Note that large errors during peak hours
are predominantly observed during non-teaching period when
academics have flexible working arrangements, and hence a
higher uncertainty in the parking usage is introduced.

We note that building RF and SVR models incurs an
overhead of tuning their hyper-parameters, while MLR gives
a closed-form solution with no hyper-parameters.

VI. OPTIMIZATION OF CARPARK PARTITIONING

As car sharing continues to grow in popularity, especially
with new emergence of service models like one-way car

H(t) u(t) M(t) p(t)

Fig. 18. Usage dynamics of carpark with capacity C' — cars arriving at rate
A(t), and departing at rate p(¢).

sharing, university estate managers may want to set aside some
of car park spaces to accommodate shared vehicles. Such a
forward looking strategy is likely to increase the utilization
of campus parking facility, and hence generate new revenue.
However, it is important to maintain the satisfaction of both
private and shared vehicle users by minimizing situations
where they are turned away due to lack of parking spots
(rejected users).

Since parking usage is highly seasonal depending on hour-
of-day and day-of-week (§IV), we envision a novel partition-
ing scheme that dynamically allocates a certain fraction of total
spaces to car sharing vehicles, as opposed to the existing static
allocations. This dynamic allocation can be adjusted using
predicted demands (§V), so that rejected users are minimized
while a better utilization of the entire facility is achieved. In
order to highlight the value of dynamic partitioning (driven by
ML-based forecast), we compare its efficacy with a baseline
static approach.

This section describes our methodology to decide an optimal
space partitioning. We first develop a Markov model that
estimates the number of rejected cars for a given partitioning
scheme (fraction of cars allocated to car sharing companies).
We then formulate an optimization problem to formally choose
an optimal scheme based on minimizing the total cost of rejec-
tions for both types of users, i.e., existing private-vehicle (PV)
users and prospective shared-vehicle (SV) users. Finally, we
evaluate the efficacy of our Markov modeling and optimization
framework via simulation of real usage behaviors recorded
through our IoT parking system discussed in §III.

A. Carpark usage as a Markov Process

A car park can be abstracted as a queuing system, with an
incoming and outgoing cars considered as arrival and service
events respectively, and the number of parking spaces as the
queue capacity. We therefore model the dynamics of car park
usage as a M/M/1/C queue whose operation is visualized in
Fig. 18 by a continuous-time Markov chain. Each state of this
chain represents the number of occupied spaces in the car
park which has a total capacity C'. An arriving car to the park
at state C' (full) is rejected. An hourly arrival and departure
profile on an example weekday (11 Feb 2019) is illustrated in
Fig. 19, where arrival rate peaks at 240 cars during 8am-9am
and departure rate peaks at 200 cars during S5pm-6pm.

In continuous-time Markov process, transition rate matrix
(@ can be used to calculate the transition probabilities at any
time ¢ > 0. The Q-matrix, with dimension (C'+1) x (C'+1),
consists of elements g; ; denoting the transition rate from state
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TABLE IV
MEAN ABSOLUTE ERROR (MAE) OF PREDICTION MODELS.
Arrival Departure
Cross-Validation Phase Testing Phase Cross-Validation Phase Testing Phase
model I-day  5-day 10-day 20-day 50-day 1-day 5-day 10-day 20-day 50-day 1-day S-day 10-day 20-day 50-day 1-day S-day 10-day 20-day  50-day
Subset 1
Baseline  6.11 6.11 6.11 6.11 6.11 5.65 5.65 5.65 5.65 5.65 6.60 6.60 6.60 6.60 6.60 6.14 6.14 6.14 6.14 6.14
LM 5.66 6.16 6.53 6.12 7.60 4.51 4.84 5.30 5.79 6.45 6.07 6.58 7.05 6.80 7.95 4.80 5.32 583 6.07 6.80
RF 5.50 6.04 6.32 6.11 6.67 4.62 4.85 4.98 5.08 522 5.74 6.04 6.52 6.25 6.86 4.83 529 5.45 5.53 5.53
SVR 5.51 6.09 6.15 592 6.99 4.43 4.98 5.05 5.42 574 5.60 6.04 6.05 5.85 6.42 4.73 5.15 534 5.50 5.81
Subset 2
Baseline  5.85 5.85 5.85 5.85 5.85 5.70 570 5.70 5.70 570 6.42 6.42 6.42 6.42 6.42 6.08 6.08 6.08 6.08 6.08
LM 5.21 5.69 6.10 6.38 6.64 4.59 5.11 5.46 5.50 6.22 5.69 6.27 6.81 7.19 7.06 4.73 5.21 5.60 5.78 6.47
RF 523 5.64 5.89 597 5.65 4.47 4.7 4.75 4.89 5.15 5.59 597 6.38 6.53 6.01 4.58 5.04 5.19 5.00 5.34
SVR 5.17 5.57 5.94 6.00 6.36 4.74 4.98 521 4.98 5.83 532 5.76 6.28 6.13 5.95 4.66 4.93 5.03 5.08 5.50
Subset 3
Baseline  5.70 5.70 5.70 5.70 5.70 5.59 5.59 5.59 5.59 5.59 6.23 6.23 6.23 6.23 6.23 5.99 5.99 5.99 5.99 5.99
LM 523 5.59 5.83 5.95 6.68 4.54 5.01 5.31 5.57 542 5.64 6.10 6.40 6.52 728 4.56 5.04 5.40 5.82 5.85
RF 5.08 533 5.45 551 5.41 4.45 4.69 4.76 4.87 4.83 5.37 5.73 595 592 591 4.53 4.94 5.07 491 5.03
SVR 5.07 5.48 5.64 5.58 6.18 4.41 4.76 5.00 4.75 4.89 5.26 5.70 5.90 5.86 5.87 4.59 4.92 4.92 5.00 5.02
Subset 4
Baseline  5.96 5.96 5.96 5.96 5.96 4.65 4.65 4.65 4.65 4.65 6.39 6.39 6.39 6.39 6.39 524 5.24 524 5.24 5.24
LM 5.04 5.46 593 6.09 6.55 4.21 4.53 4.81 5.10 5.26 535 593 6.35 6.47 7.15 4.57 4.75 5.04 5.48 6.14
RF 5.03 5.42 5.67 5.67 5.64 4.09 4.06 4.15 4.18 423 521 5.72 6.09 5.96 5.84 4.32 4.56 4.62 4.60 4.99
SVR 4.94 5.36 5.63 5.58 6.04 4.39 4.63 4.89 4.51 4.97 5.05 5.56 5.75 5.78 571 4.53 4.78 4.80 4.89 5.06
250 being at state n can be obtained by 7 (t) = m(0)P(t) where
7(0) is the initial state vector.
= 200 . . . . .
3 Since a daily profile of transition rates is a step function
< . . . .
5 (piece-wise constants) of hourly slots, as shown in Fig. 19,
Q. 150 . . .
o our matrices Q and P become time-varying and hence are
[ .
;100 represented by Q. and Py, with k € Z : 0 < k < 23, each
g corresponding to an hour-slot. Note that, we aim to track the
E o dynamics of state probabilities over time during the forecast
z horizon. We first discretize time into fixed-size epochs, dt,
o . each of 5 minute duration. We update fine-grained real-time
12am  8am  6am  9am  12pm  8pm  6pm  9pm  12am state probabilities after every epoch dt (probability matrix Py
Time : :
remains consistent across all epochs of each hour-slot) by:
— Arrival = Departure

Fig. 19. Hourly rate of arrival and departure on 11 Feb 2019.

i to state j. For Poisson arrival and departure rate of A and p,
the (Q-matrix is represented by:

- A
poo—(A+p) A
- . 2
poo—(A+p) A
I —H
Kolmogorov backward equations are used to characterize
stochastic processes. In particular, they describe how the

transition probability P(t) that a stochastic process is in a
certain state changes over time by differential equations [38]:

P'(t) = P(t)Q 3)
The solution of the differential equations is given by:
_ ot _ — (Qt)"
P(t) =e%" = Z - “)

n=0
In order to compute an estimate of the solution above (infi-
nite sum of matrix powers), we use Krylov subspace projection
method [39] which is capable of coping with sparse matrices of
very large dimension. The probability of the Markov process

7(ty + ndt) = w(ty + (n — 1)8t) Py 5)

where n € Z : 1 < n < 12 for 12 epochs (each 5-min) in an
hour-slot, and ¢, is the timestamp at the beginning of hour-slot
k.

To quantify car park user experience, we consider the
number of rejected users, i.e., those who cannot find a parking
spot since their allocated partition is full at their time of arrival.
In our Markov model, we compute the number of rejections
after each epoch time by:

r(ty +ndt) = mo(ty + (n — 1)6t) x A(k) x 6t (6)

where mo(t + (n — 1)6t) is the probability of the car
park being full at time ¢t + (n — 1)dt within the hour-slot
k and A(k) is the predicted arrival rate over that hour-slot.
We accumulate rejected cars per each epoch across a day, and
feed the daily count of rejected cars into our optimization
formulation, explained next.

B. Optimization Formulation

The goal of our optimization is to select the best partitioning
scheme (i.e., what fraction of capacity to allocate to car sharing
services) that can minimize the cost of rejected users, while
maintaining a certain level of revenue from space leased to
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TABLE V
CONSTANT PARAMETERS OF OUR OPTIMIZATION SCHEME.

Parameter ~ Value Description
M $15.8 Renting price per car space, computed from
/car /day  annual market rate for city of Sydney [40].
wsVv $15.8 Opportunity cost of rejecting a shared-vehicle
[car user is equal to the lease price per space.
wrv $26 /car  Opportunity cost of rejecting a private-vehicle
user is equal to day permit rate for parking on
campus [41].
R $36468.75 Minimum revenue to cover the fixed cost of
/week operating a Space Sharing Scheme, including

planning & administration (0.5 FTE staff at
$100,000 annual rate) + system installation and
maintenance ($1,900/space/annum) + 5% safety
margin.

car sharing companies. We formulate an optimization problem
over a period of D days.

Let there be P capacity partitioning schemes and D number
of days within the scope of our optimization. The number of
rejected shared-vehicle and private-vehicle users for selecting
scheme j on day ¢ are respectively denoted by rfjv and TZV,
where 1 < 57 < P and 1 < ¢ < D. Further, each scheme
is identified by a number of spaces allocated to car sharing
users, this number is denoted by s;.

Our decision variable is denoted by x;;, indicating if scheme
7 is selected on day ¢. This can be represented by the following
equation:

1
Tij = 0

We assign a constant cost for each rejected customer as
WSV for shared vehicles and W'V for private vehicles. Since
our aim is to minimize the total cost of space allocation across
D days, the objective function can be written as:

if scheme j is selected on day 1
if otherwise

(7

D P
min ZZ{xij « (WSVTij—I-WPVrf;V)} ®)

i=1j=1

On a given day, one partitioning scheme will be selected,
and hence the following constraint:

P
S wy=1Vi 9)
j=1

Furthermore, campus managers would expect a minimum
amount of revenue to be generated by leasing out parking
spaces to car sharing companies in order to cover the in-
vestment made for implementing such an allocation scheme.
Given a daily dollar price M for each space leased out and the
minimum revenue R over D days expected by the University,
the revenue constraint is given by:

D P

ZZMIUS]‘ >R

i=1 j=1

(10)
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Fig. 20. Time-trace of hourly rejections across three representative days for
tighter allocation policies (p = 0.2, p = 0.3, and p = 0.4) by which PV
rejections may occur.

We set our optimization period D to 5 working days (1
week) as we can obtain a fairly accurate prediction of demand
at this forecast horizon in §V. We use a set of constant
parameters in our optimization that are summarized in Table V.
The renting price (for car sharing companies) of each parking
space is estimated by converting the annual market price for
car space lease in city of Sydney [40] to a daily rate. The cost
of rejecting a shared vehicle user is considered to be equal to
opportunity cost of losing the rent per car space, and the cost
of rejecting a private user is equal to daily parking fee on our
university campus [41]. Also, the revenue from parking space
lease (R) is expected to at least cover the investment cost
of operating a space sharing scheme. This includes (a) cost of
planning & administration: 0.5 full-time equivalent (FTE) staff
at rate $100,000 per annum, (b) cost of system installation
and maintenance: $1,900 per annum per car space, and (c)
5% safety margin.

C. Evaluation Results

To simulate the dynamics of shared vehicles, we assume
that 20% of the existing users subscribe and use shared-
vehicles (SV) service on a regular basis and 80% of the current
users continue using their private vehicles (PV) to commute
to the University. Furthermore, car sharing have been found to
serve other uses in addition to daily work commute, including
shopping, business, and leisure [42]. Hence, we further assume
additional demand of SV users by considering a constant usage
profile sampled from a binomial distribution with hourly A
rate of B(200,0.5) and hourly s rate of B(200,0.4). This
corresponds to an assumption of 200 new subscribers with
0.5 and 0.4 probability of entering and exiting the car park in
each 1-hour slot.

Since we defined the scope of our allocation scheme as 1-
week (equivalent to 5 working days), the 5-day ahead demand
forecast obtained from the best performing model (RF) from
Section V, are used in our optimization formulation, where
partitioning of spaces is done dynamically. In addition, the
results are compared with static partitioning using the forecast
demand from the baseline prediction model, where arrival and
departure profile is constant for each day.
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Fig. 21. Sum of absolute hourly rejection errors per day (average) as a

function of allocation policy p.

Using the aforementioned assumptions and data, we first
evaluate the accuracy of our Markov model in estimating the
number of rejection per each partitioning scheme. We then
use the computed rejection number to find the optimal space
partitioning scheme by applying the optimization formulation
from §VI-B and compare rejection cost incurred from both
static and dynamic partitioning.

1) Evaluation of Markov Model: We evaluate the perfor-
mance of our Markov model in estimating the total number
of rejected PV users per day by comparing the output from
Markov model to the actual rejected number calculated from
the actual arrival and departure count (obtained from sensor
data).

Fig. 20 compares hourly rejection number computed from
baseline count data (blue line) and forecast count data from
RF model (green line) with the actual rejections (red line).
The results are shown across 3 different capacity partitioning
schemes (row wise) where p indicates the fraction of parking
spaces allocated to PV users, for 3 example days. From
observations, we can see that for p = 0.2, predictions from
baseline and RF model can give a decent estimate of the
rejections number with all the three lines aligning closely.
On the other hand, for p = 0.4, we can clearly see that
rejection profile calculated using the baseline model stays
constant across the 3 example days due to its static arrival
and departure rate profile, while the actual rejection trend has
changed across the days. This illustrates an example where the
superior predictive power from RF model for usage demand
can lead to a better approximation of rejection numbers.

In order to quantity the outcome of the Markov modeling,
we accumulate the absolute hourly error of rejections across
each day, and obtain the daily average error. The average daily
sum of errors (PV user case) for both baseline and RF model
with 95% confidence interval of mean (area bounding the
line) are shown in Fig. 21 for different capacity partitioning
schemes (p). Undoubtedly, the errors decrease as the fraction
of spaces allocated to PV users increases due to the lower
number of rejected users. From the graph, we can see that the
error becomes zero when p reaches 0.55 as there are sufficient
spaces allocated to accommodate the PV users demand. By
comparing the two lines, it is evident that the rejection error
is lower for RF model (blue line) when compared with baseline
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Fig. 22. Weekly (normalized) cost: dynamic (ML forecasting) versus static
(baseline forecasting) partitioning.

model (red line) across all partitioning schemes. The highest
average daily errors for RF model is 48.25 cars while baseline
model 60.95 when p = 0.1.

2) Evaluation of Partitioning Scheme Optimization: We
employed Mixed Integer Linear Programming (MILP) algo-
rithm, which is conducive for a problem that has a linear
objective function subjected to a set of linear constraints, to
solve our optimization problem described in Section VI-B. We
calculated the total cost incurred from the optimum allocation
scheme across each week for the two demand prediction: one
using the predicted demand from the baseline mean model
(static partitioning) and another using the 5-day ahead forecast
from RF model (dynamic partitioning). In addition to the
minimum cost obtained from the optimum allocation, we
calculated the actual cost incurred if the optimum partitioning
scheme was selected.

Fig. 22 compares weekly total costs for the baseline (red)
and ML forecast (blue) approaches - the costs were normalized
with respect to the baseline case. The left plot represents the
expected cost from the optimum partitioning scheme, with
the actual cost incurred shown on the right plot. By looking
at the minimum cost obtained from our optimization (left
plot), it is apparent that the ML forecast approach yields
lower cost compared to the baseline approach. This suggests
that the variation in usage demand, which can be captured
through ML forecasting, can provide flexibility in allocating
the partitioning scheme and hence yield a lower optimum cost.

When examining the actual cost incurred from the selected
partitioning scheme (right plot), we can see that there is a
smaller gap between the ML and baseline approaches, indi-
cating lower actual cost savings than expected. In particular
during Week 9, the cost saving from dynamic partitioning
using ML forecast is expected to be 16.74% but the actual
incurred cost is higher by 3.43%. The reasons for this discrep-
ancy is due to errors from predicting parking demand (arrival
and departure rate) which can be attributed to the inaccuracy in
approximating rejections. For instance, we have one particular
day during week 9 where the ML predicted the rejections to
be significantly greater than reality, leading the optimization to
select an alternate partitioning scheme that is not the optimum
choice in reality and hence magnifying the actual objective
function cost.
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The results of our analysis show that dynamic dimensioning
of car park spaces can provide a better user experience
when compared to the static partitioning approach, with an
average of 6.3% lower weekly customer rejections cost. Our
proposed framework shows a potential benefit of dynamic
allocation for future car park dimensioning which can be
adopted by universities with an aim to optimize the usage of
their parking facilities while keeping up with the evolution of
shared mobility market.

VII. CONCLUSION

Digital transformation in transport industry demands large
organizations like universities to revisit the operation of their
expensive on-campus parking facilities. With the rapid preva-
lence of IoT technologies, universities can benefit from the
immense amount of data generated from smart devices, as-
sisting them with planning and restructuring the usage of their
parking facility. In this paper we have outlined our experiences
in designing and deploying a monitoring system for a real
car park on our university campus. We collected data over
15 months (covering both teaching and non-teaching periods)
and cleaned it for analysis. We then analyzed the usage data
and highlighted insights into car arrival and departure patterns
as well as users parking behavior. Finally, we developed
a novel framework for the university to optimally partition
their parking infrastructure through dynamically allocating a
fraction of parking spaces to car sharing operators. We showed
that the University can reduce the cost of customer rejections
by 6.3% per week when adopting dynamic allocation using
predicted arrival and departure rates.
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