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Abstract—Verification of data generated by wearable sensors is
increasingly becoming of concern to health service providers and
insurance companies. These devices are typically vulnerable to
a wide range of cybersecurity attacks, attempting to manipulate
sensing data. Most of these disastrous attacks would remain unde-
tected since neither healthcare servers nor IoT sensors are aware
of the existence of attackers in the middle of communication.
Thus, there is a need for a verification framework that various
authorities can request a verification service for the local network
data of a target IoT device. In this paper, we leverage blockchain
as a distributed platform to realize an on-demand verification
scheme. This allows authorities to automatically transact with
connected devices for witnessing services. A public request is
made for witness statements on the data of a target IoT that is
transmitted on its local network, and subsequently, devices (in
close vicinity of the target IoT) offer witnessing service.

Our contributions are threefold: (1) We develop a system
architecture based on blockchain and smart contract that enables
authorities to dynamically avail a verification service for data
of a subject device from a distributed set of witnesses which
are willing to provide (in a privacy-preserving manner) their
local wireless measurement in exchange of monetary return;
(2) We then develop a method to optimally select witnesses in
such a way that the verification error is minimized subject to
monetary cost constraints; (3) Lastly, we evaluate the efficacy
of our scheme using real Wi-Fi session traces collected from
a five-storeyed building with more than thirty access points,
representative of a hospital. According to the current pricing
schedule of the Ethereum public blockchain, our scheme enables
healthcare authorities to verify data transmitted from a typical
wearable device with the verification error of the order 0.01%
at cost of less than two dollars for one-hour witnessing service.

Index Terms—IoT, data witnessing, blockchain, optimization

I. INTRODUCTION

MODERN healthcare systems are increasingly coming
online. Wearable devices have profoundly improved

patients experience of interacting with remote healthcare
providers. They facilitate remote healthcare monitoring given
their capability in automatic measurement of medical signs
and periodic transmission of data over the Internet. Received
medical data will be stored on a cloud server where differ-
ent authorities can access data and take appropriate actions.
Healthcare systems benefit from wearable devices to provide
a higher quality of care to citizens, improved decision making,
accurate real-time diagnosis, and timely treatment at consider-
ably lower prices [1], [2]. A study in Australia [3] estimated
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that nearly $20,000 per patient can be saved annually by
adopting tele-medicine healthcare. Many insurance companies
have also developed policies based on the customers medical
information received from wearable IoTs [4].

Automated and online health services driven by new wear-
able technologies, while revolutionizing the traditional health
systems, come at a price of frequent and sophisticated cyber
threats [5], [6], [7]. A range of security and privacy threats
for IoT devices (medical and others) have been identified and
analyzed by prior research works [8], [9], [10]. In the context
of healthcare IoT systems particularity, “integrity of data”
received from wearable sensors is of paramount importance to
medical decisions made by practitioners as well as enhanced
management of insurance claims.

Wearable device users, themselves, sometimes become po-
tential attackers when they try to forge data transmitted from
their health sensor to claim pecuniary benefits [11]. An ad-
versary, even located at far physical distance from a target
wearable device, can maliciously manipulate data packets
transmitted from the sensor to falsify its sensitive information.
Attackers may attempt to manipulate the data transmitted from
a health sensor such as an insulin pump, causing the patient
to receive a lethal dose of medicine [12]. More worryingly,
most of these attacks would remain undetected as neither
the victim device nor the healthcare server is aware of an
adversary in the middle of their communications. The largely
scattered distribution of IoT-dependent patients coupled with
poor security measures embedded in devices make wearables
even more appealing victims to attackers who target health
data authenticity and integrity. This poses massive risks to
health industry which increasingly demand “trust” for a variety
of data records they maintain, especially those generated by
patients.

Any discrepancy in data, between what is transmitted by
the sensor and what is received by the healthcare system,
warrants further investigation to check whether data is forged
or tampered with. Therefore, obtaining the local version of
data (i.e., transmitted by wireless sensors) is crucial for
verification. Given the high density of connected devices in
smart environments [13], seeking help from other devices in
the close proximity of the sensor or “witnessing” seems to be
a viable approach [14].

Researchers have shown [14], [15] that wireless neighboring
nodes (IoT and/or non-IoT devices) that share a wireless
broadcast domain can overhear each others’ data transmission,
and hence have the potential to serve as witness. In [14],
wireless network gateway and all connected devices are ex-
pected to record fingerprint of every data packet (per individual
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device) transmitted on the network. These records (witness
logs) are sent to a central server on the Internet, allowing a
forensic expert to retrospectively compare logs of the gateway
against those of other connected devices for verifying the
integrity of data transmitted by the subject sensor on a given
network. Work in [14] primarily aimed to provide a compact
and secure scheme for logging the overheard data packets in
wireless sensor networks. The authors improved their method
in a follow-up work [15] which provides witnessing location
proof and preserves the privacy of witnesses. While proposing
a novel idea, their scheme suffers from a number of issues:
(a) network gateway serves two roles, namely an essential
supplier of witnessing log and also the central node of the
network that forwards the log of other witness devices, hence
becoming a single point of failure if compromised; (b) it
is impractical for IoT devices (typically resource-/energy-
constrained) to continuously log every packet transmitted by
each of the other connected devices – even wireless network
gateways need to change and/or upgrade; (c) witnesses lack
incentives to statically participate in an opportunistic collection
of records for other sensors.

In this paper, we develop a new witnessing scheme that
allows authorities to publicly request for witnessing of data
transmitted by a target sensor, and incentivized witnesses to
collect and submit their local records in a privacy-preserving
manner. In order to develop a practical scheme for data
witnessing and verification, certain requirements are to be met:

Secure and private logging: Witnesses record data packets
from the target device and securely log them into their state-
ments transmitted to and stored in a tamper-proof database for
an admissible auditing. More importantly, statements should
protect the privacy of witnesses (not revealing the identity and
location of witnesses).

Dynamic witnessing: Witnessing incurs computing costs,
and hence should be performed judiciously and dynamically
as opposed to statically. The Health Service Providers (HSP)
queries over a distributed service platform for witness state-
ments corresponding to a target device whenever needed. The
query is seen by potential witnesses that have subscribed to
this service platform. Those witnesses which are in close
vicinity of the target sensor may choose to contribute to this
process by giving statements at certain resolution – higher
resolutions incur heavier computing costs.

Monetization: Automated telehealth and/or telemonitoring
systems have been proven to provide better quality and hassle-
free medical services at considerably lower costs [16], [17].
However, HSPs are expected to spend the bulk of their budget
on smart connected devices, and cloud/web services [3], [18],
[19]. A fraction of this investment can be allocated to incen-
tivize potential witnesses, covering their power and computing
costs. A variety of options may be used for incentives such as
monetary return (micro-payments per successful transactions),
special tokens, or even discounts for premium services (similar
to the plans offered by insurance companies to encourage
their customers to have healthier lifestyles [20], [21]). HSPs
potentially have the ability to incentivize potential witnesses;
however, they need a systematic method that allows them to
make dynamic decisions in choosing the right witnesses which

meet their requirements while aligning with their budget. The
HSP would select certain witnesses (from a set of available
ones) that yield the highest verification (lowest error) subject
to a budget constraint, and this selection can vary dynamically
depending on the availability of witnesses in the environment
and their ability in generating statements of certain resolutions.

Most of the previous works in the area of witnessing [22],
[23], [14], [15] focused on the first requirement above (i.e.,
secure logging) in a variety of scenarios, while the other
two essentials have been overlooked or poorly addressed. In
this paper we use blockchain technology as a platform that
connects individual witnesses to health authorities, enabling
both parties to communicate, interact, and transact dynam-
ically. Recently, blockchain in conjunction with automatic
executable programs (aka “smart contracts” [24]) has enabled a
medium for trading assets between different parties. Providing
an immutable, shared, and real-time ledger along with enabling
transactions among individual peers motivate us to develop our
witnessing scheme on a blockchain platform.

This paper describes a novel witnessing solution that allows
healthcare authorities to remotely and dynamically verify the
data received from health IoT sensors. Note that our witnessing
scheme does not change the way data is collected by wearable
sensors, transmitted on the network, and stored on the health
cloud. The health data may be collected and stored in a
centralized or distributed fashion. The primary focus of this
paper is on the verification of data, close to the sender, by
way of collecting witness statements in a distributed manner.
Our aim is to verify whether or not the received data has
been tampered in transit from the sender sensor to the health
cloud server. We develop a witnessing smart contract on top
of Ethereum blockchain that enables both parties, namely the
potential witnesses co-locating with a telehealth sensor and
the HSP, to trade their assets/services using programmable
interfaces. Empowered by an immutable, shared, and real-time
ledger, our witnessing scheme allows potential witnesses to
participate in an on-demand witnessing protocol without com-
promising their privacy. In comparison to alternative solutions
like static witnessing, our scheme is more practical by the use
of conventional blockchain technology and considerably cost-
effective due to its dynamic nature (duration and quality of
service are configurable by the HSP, meeting their business
models/budget constraints).

Our first contribution is to develop a system architecture
based on blockchain and smart contract functions which enable
authorities to dynamically avail a verification service for data
of a subject health sensor from a distributed set of witnesses
which are willing to provide (in a privacy-preserving manner)
their local wireless measurement in exchange of monetary
return. Our second contribution develops a method to opti-
mally select witnesses in such a way that the verification error
is minimized subject to monetary cost constraints. Finally,
we evaluate the efficacy of our scheme using real Wi-Fi
session traces collected from a five-storeyed building with
more than thirty access points, representative of a hospital.
According to the current pricing schedule of the Ethereum
public blockchain, our scheme enables healthcare authorities
to verify data transmitted from a typical wearable device with
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the verification error of the order 0.01% at cost of less than
two dollars for one-hour witnessing service.

The rest of the paper is organized as follows: §II describes
prior work on witnessing, data logging, and blockchain use-
cases in data provenance, and §III describes our solution
approach that systematically and dynamically makes use of
smart contracts for distributed witnessing. In §IV we describe
our optimization framework to select witnesses, while in §V
we evaluate the efficacy of our scheme via simulation. The
paper is concluded in §VI.

II. RELATED WORK

This paper lies at the intersection of three strands of
research works including intrusion detection systems (IDS),
secure logging, and application of blockchain/smart-contract
technologies. First, we emphasize that our objective is not to
develop IDS method for IoTs, but alarms of a network IDS
can be used to trigger our process of data verification. Second,
we look at secure logging methods to maintain audit trail and
discuss witnessing protocols that are close to our work. Third,
we highlight the application of blockchain and smart contract
technologies in data provenance, access control management,
and how our scheme differs from existing works.

A. IDS for IoTs

Intrusion detection systems monitor network traffic and
often look for signature of malicious activities in traditional
IT networks. IDS appliances enable network auditors to detect
compromised devices or cyber-attacks [25]. Intrusion detection
in IoT infrastructures slightly differs from IT networks given
their purpose-built with limited set of functionalities and
identifiable network patterns [26], [27].

In [28], we developed a network-based IDS for IoT de-
vices using Manufacturer Usage Description (MUD) profile
and software-defined networking (SDN) paradigm to trans-
late formal behaviors of off-the-shelf sensors to static and
dynamic flow rules that can be enforced to the network
at run-time – traffic that conforms to these rules can be
allowed, while unexpected (anomalous) traffic is inspected for
potential intrusions. Both signature-based and anomaly-based
IDS solutions employ a centralized engine (often embedded
into the network) to detect volumetric attacks (e.g., reflec-
tion/amplification, flooding, ARP spoofing, and port scanning)
or unintended traffic. Witnessing scheme in this paper can
benefit from an IDS by receiving alarms to initiate the process
of data verification. Also, our witnessing engine, independent
of the local network infrastructure, is managed from the cloud
by health authorities.

B. Secure logging

Data logging in traditional systems is designed to record
any event that changes the state of the system and enables
authorities to reconstruct chains of events. In other words,
audit records are used as digital evidence. An auditing archi-
tecture traditionally consists of three primary roles: dedicated
devices that capture audit records, collectors which store these

records, and an auditor who retrieves the collected data and
retrospectively investigates the records to detect any suspicious
activity. Various secure logging methods have been proposed
in both capturing and storing phases to fulfill the requirements
of logging audit records as admissible evidence [22]. In what
follows we briefly discuss some of important works in this
space.

In [29], authors consider a secure logging architecture in
which audit logs are stored on an untrusted machine during
storage phase. They proposed a scheme based on hash chains
and evolving shared cryptographic keys to limit attackers
ability in reading and altering the audit logs. The shared key
in each epoch is derived from the hash of previous data logs.
Therefore, even an attacker manages to break one of the shared
keys, they only can change audit logs for that specific epoch.
Any audit log manipulation is detectable because the shared
keys of next epochs are made using the original version of the
audit log. The major drawback of this method is that verifiers
need to posses the shared key of individual epochs to verify
the authenticity of audit logs. This issue has been addressed
by Logcrypt [30], where the author proposed using public key
encryption which enables the audit log to be signed by one
entity and verified by anyone else without revealing the secrets.

Authors in [31], while pointing out vulnerabilities of the
previous works, propose a secure logging architecture based on
Forward-Secure Sequential Aggregate (FssAgg) authentication
techniques. Their proposed scheme takes a private key, a mes-
sage to be signed, and the aggregated signature computed up to
a certain point in order to compute a new aggregate signature.
They showed that this scheme provides better security while
incurring less computational and communication overhead. All
of these schemes (mentioned above) demand either predefined
powerful audit generators in the vicinity of a target IoT sensor
or high computing power on the sensor itself to digitally sign
its audit logs and transmit them to verification authorities.
Therefore, none of them seem practical in the context of IoT
sensors given their energy and compute limitation.

1) Witnessing: To the best of our knowledge, witnessing
(seeking assistance from neighboring nodes) has been mostly
used for location proof systems. In [32], authors propose
APPLAUS a privacy-preserving location proof system that
enables authorities to verify the location of a node based
on the proofs collected from a set of witnesses in the en-
vironment. All parties, including the verifier and witnesses,
need to register with a certification authority (CA) to obtain
secrets for signing the proofs. A registered node, equipped
with Bluetooth technology, can obtain a location proof from
individual available witnesses in the environment and forward
these proofs to a central proof server from which an authorized
verifier would retrieve location proofs. To protect the identity
of various parties (nodes and witnesses) from each other and
from the location proof server, the CA provides each user
with a set of private/public key pairs. Authors in [33] propose
an improved scheme named STAMP based on a unique pair
of public/private key and commitment techniques instead
of periodically changed pseudonyms. They also remove the
untrusted central proof server to better detect collusion.

Work in [34] proposes WORAL as a witness oriented
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provenance framework for secure location proofs of mobile
devices. In their scenario, each physical region has a desig-
nated location authority, and a set of mobile users, each can
become a volunteer witness for the a user who needs to prove
her location. Witnesses provide notarization of a statement be-
tween the user and location authorities of an environment. The
devices have local memory to store provenance information
which is fully controlled by its user – part of (or the entire)
information can be provided to applications that need location
proofs. These prior works fall under the category of secure
location proofs. In our work, potential witnesses (if any in the
environment) provide health authorities with a compact ver-
sion of local network data transmitted by the target IoT sensor.
We do not employ static and predefined location authorities
which can be very difficult and expensive to scale. Importantly,
existing methods do not consider practical monetary incentives
for witness devices.

Authors of [14] propose a witnessing algorithm for secure
logging and forensics of medical data. This work takes ad-
vantage of overhearing data packets transmitted on wireless
networks. Witnesses (neighboring devices that share a local
wireless network gateway) log a fingerprint (in form of Bloom
filters) of all packets exchanged between the gateway and a
target sensor. Bloom filters are periodically uploaded onto
a central forensic server, and the gateway also sends a list
of available witnesses to the forensic server. Their scheme,
while proposing a novel application of witnessing, comes with
a number of challenges and shortcomings related to privacy
and implementation. First, their scheme discloses the location
of the gateway, witnesses, and the target sensor to a third
party, compromising the privacy of all entities contributing
to the scheme. Second, this protocol presents a single point
of failure since the gateway can be compromised, and hence
sends a falsified/inaccurate list of witnesses to the central
server. Third, their scheme would hardly scale. It needs
different entities such as manufacturers of witnesses devices,
the Internet service provider, and verification authorities to
pre-coordinate with each other. Fourth, the witnesses are not
incentivized to contribute to this scheme.

In [15], authors improve the previous work by introducing
pseudonymous witnessing scheme. They use spatio-temporal
characteristics of wireless links between the gateway and
witnesses to generate proof of location and a third-party
anonymizing server to address the privacy concerns. While
being a practical idea to ensure witnesses are within the phys-
ical proximity of the gateway, the pseudonymous witnessing
poorly addresses privacy concerns as it still needs gateway and
witnesses to share their identities and locations with a third-
party server. Also, their witnessing scheme is still static, and
difficult to scale with no incentives for witnesses to participate.

C. Blockchain

The emerging blockchain technology and smart contracts on
top of it provide a shared, distributed database governed by a
consensus algorithm, not a single authority. Majority of net-
work nodes decide upon accepting new events and chain them
to the rest of historical events. The cryptographic structure of

the data stored on the blockchain and the enormous amount
of power needed to reach an agreement between different
peers makes the blockchain tamper-proof against adversaries.
Decentralized control and immutability of the blockchain
make it a viable approach to develop trusted systems [35].
Smart contracts are pre-defined contractual terms written in the
form of digital scripts which are executed if certain conditions
are met. While traditional blockchains like bitcoin support
only cryptocurrency transactions, more advanced blockchain
like Ethereum support smart contracts, providing individual
users with the opportunity to self-enforce their protocols for
trading/exchanging various assets or services [24].

One of the use-cases of blockchain in the literature is for
access control management. Work in [36] uses blockchain to
provide an access control framework for IoT devices. Their
framework uses the transactions on the shared ledger to grant,
get, revoke, and delegate access for IoT applications. They
focus on the rights of individual users as owner of the data
and use the shared ledger of the blockchain as an immutable,
tamper-proof database which enables the user of the sensor to
give access to different parties.

Blockchain, as a tamper-proof database, has unique capabil-
ities to address various issues related to security and privacy of
the IoT ecosystem. In a recent work [10], authors identified
security and privacy threats for IoT applications at multiple
layers of the protocol stack, and surveyed blockchain-based
solutions developed by prior works for scalable management
of access, trust, secure storage, authentication, and access
control. Our IoT data verification scheme introduces a new
application of blockchain in addressing concerns pertinent
to integrity of data from IoT sensors to health servers that
may get compromised by replay/MiTM attacks, or false data
injection.

One of the revolutionary characteristics of blockchain tech-
nology is its potential to realize decentralized architecture
for traditionally centralized services. In [37], authors develop
a blockchain-based service for assigning software develop-
ment tasks. Costumers publish tasks on the network, and are
assumed to offer remunerations linearly correlated with the
complexity of their tasks. Workers (service providers) are
classified based on their available computing resources. A
“matching smart contract” algorithm assigns tasks to workers
with an equilibrium price, aiming to achieve market stability.
While their system performs a one-to-one matching between
multiple costumers and multiple workers, our verification
scheme in this paper is primarily designed to facilitate one-
to-many engagements, enabling a health authority (the HSP)
to interact with multiple witnesses located in the vicinity of
a target sensor. The HSP in our system architecture aims to
choose the best combination of witnesses from which the
highest verification probability is obtained; however, in [37]
each costumer is connected to only a worker who is able to
successfully complete the task.

In a slightly different context, authors of [38] employ
blockchain to facilitate data sharing between different sensors
of a smart transportation network. Their system enables con-
nected vehicles (with embedded sensors) which are present
in a suburb area to automatically sell their locally measured
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Fig. 1. Threat model: forging IoT data in transit by man-in-the-middle.

data (traffic load and weather condition) to other interested
vehicles located in other parts of the city. While there are
some overlaps between their system and this paper in terms
of providing blockchain-based services for remote users, our
verification scheme differentiates itself by following ways: (a)
“use-case”: our work is a security-oriented approach to detect
a range of attacks on the integrity of sensitive and private data
transmitted from a health sensor; however, their scheme in [38]
facilitates trading of insensitive and public data between differ-
ent sensors; (b) “infrastructure”: while the private blockchain
in [38] relies on a group of fixed pre-installed roadside units
which enable the network connectivity for vehicles and their
sensors. Our witnessing system, instead, can be implemented
on conventional public blockchains without the need for build-
ing specialized infrastructure in the environment or having
special hardware on witness devices; and (c) “buyer-seller
interaction”: their scheme connects multi-buyers to multi-
sellers via an intermediate server. Buyers request data from
this intermediate server that sends an announcement to fixed
roadside units from which the connected sellers get notified
of the request. The intermediate server runs an auction-based
algorithm to connect buyers to best sellers. However, in our
work the only buyer (the HSP) directly engages with potential
sellers (witnesses), and selects the optimum combination of
witnesses to maximize the probability of data verification
probability.

III. SYSTEM ARCHITECTURE AND ALGORITHM

In this section, we develop our system architecture for
an on-demand auditing of wearable data using distributed
witness statements that are enabled by smart contracts. We
first outline the threat model, then develop our witnessing
system architecture, and finally describe the flow of events
in an operational scenario.

A. Threat Model

Body area networks (BAN) consist of wearable sensors
that measure vital signs of body and transmit measurements
toward a personal gateway at which the data is collected
and forwarded to the HSP through the Internet (Fig. 1). In
this paper, we focus on man-in-the-middle attackers that can
manipulate IoT data in transit from wearable sensors to the
personal gateway. The attacker could be either the owner of the
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Fig. 2. System architecture of on-demand witnessing over blockchain

sensor itself, falsifying the medical measurements in order to
claim financial benefits, or other malicious entities who aim to
harm to individual patients or the broader health-care system.
In this environment: the attacker can compromise the gateway
to forge the data measured and transmitted by the sensor;
the attacker can backfill medical data [11]; and witnesses are
independent and trusted entities which are assumed to be “not
compromised”. We would like to emphasize that assessing
the trust level of individual witnesses is beyond the scope of
this paper, and the only source of uncertainty comes from
false positive rates of bloom filter used for generating witness
statements (will be explained in §IV-A). Note that the HSP has
the freedom to choose from a number of potential witnesses
that are present in the environment.

B. System Architecture

Fig. 2 shows the system architecture of our witnessing
scheme. We now explain various entities in this architecture.

Healthcare Service Provider (HSP) is an entity, shown
on top right of Fig. 2, that provides remote health services
to patients based on the medical data received from their
body-worn sensor. The HSP receives, stores, and manages the
access to real-time medical data to provide timely support and
treatment to the patients.

Wearable IoT Sensor is an on-body low-power sensor
to measure physiological signs of the patient. The sensor
transmits the health data to a personal gateway from where
the data gets forwarded to a remote server of the HSP on the
Internet.

Witnesses, by their definition, are wireless nodes with
Internet connectivity (e.g., Witness1 and Witness2 in Fig. 2)
that reside in the physical vicinity of the wearable IoT sensor,
and share the same wireless broadcast domain. Witness devices
(like smart phones, tablets, or even laptops) are expected to
have sufficient computing capability to interact with a public
blockchain, and are able to overhear the data transmitted
wirelessly by the wearable sensor on the network. Since the
wearable data is encrypted, witnesses are not able to extract
any information from the overheard data packets.

Blockchain Network maintains a distributed public ledger,
shared across peering nodes. Transactions between nodes get
recorded in a chronological order, and are linked to previous
ones by cryptographic mechanisms. All transactions within
a specific time period are combined into a block which is
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chained (linked) to previous blocks, extending the ledger. A
new block can only be added to the ledger if it is approved by
an internal “consensus” mechanism, i.e., a majority of network
nodes (aka miners) verify the validity of new blocks. Bitcoin
and the initial version of Ethereum use Proof-of-Work (POW)
for their consensus algorithm; however, Ethereum2 uses Proof-
of-Stake (POS) which is a more energy-efficient method.
Traditional blockchain networks like Bitcoin are typically used
for financial transactions (exchange of digital money) [35],
while modern networks like Ethereum serve for a wider range
of customized and programmable transactions (exchange of
valuable tokens based on smart contracts) [24]. Nodes (the
HSP and witnesses) can join a blockchain network by creating
their account, consisting of a pair of public and private keys
– the private key is used to sign transactions, and the public
(their identity across the network) will be used for verification.

Smart Contracts are special accounts that are created for
specific application (i.e., witnessing services) by a node (i.e.,
the HSP in this paper), and become available to every nodes
on the Ethereum network. Smart contracts come with a unique
identifier, and typically offer a range of functions (§III-C) that
can be called by a node which submits a transaction on the
blockchain. The access to these functions can be controlled
(e.g., available to all nodes or restricted to certain nodes) by
the node which develops and deploys the smart contract on
the blockchain.

Our on-demand verification scheme is realized by executing
certain functions of a witnessing smart contract on top of
blockchain – it is in fact a distributed application (DApp)
running over-the-top of blockchain, and hence independent of
blockchain’s internal processes (consensus included). Fig. 3
shows how a witnessing transaction is made on the Ethereum
network, updating the state of the contract (depending on
the specific function call) and ultimately getting appended to
the ledger. Each transaction consists of four essential fields
including: (a) "from" the identity of sender node, (b) "to"
the identity of the witnessing smart contract, (c) "data"
which contains of a "function" name along with a pair of
"inputs" and "outputs" that vary by function (§III-C), and
(d) "reward" offered by the caller to miners of the blockchain
to approve the witnessing transaction and append it to the
public ledger. We note that the HSP and potential witnesses
on this network are particularly interested in the witnessing
transactions (i.e., addressed to the witnessing smart contract)
of the ledger – other types of transaction may occur on this
blockchain network.
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Fig. 4. Sequence of witnessing interactions between the HSP and potential
witnesses over blockchain.

C. Flow of Events

Wearable sensors transmit their measured data via their
gateway to the HSP server on the Internet (shown by solid
black line in Fig. 2). Note that the data is sent over the
wireless medium on the local network (e.g., inside hospitals or
homes) to the gateway, and hence all communications between
gateway and wearable healthcare devices are overheard by
other parties in the vicinity. Man-in-the-middle attackers (with
different incentives) can intercept packets sent by the wearable
devices and may attempt to tamper the data in transit. There
are multiple adversary models [39], [40] for manipulating
data while being transmitted on the network: key management
process (between the IoT device and HSP server) can be
exploited by the man-in-the middle to access the secret key;
an attacker may also collect previous packets of the IoT device
and re-send them maliciously at later times to mount a replay
attack on the HSP. For a given environment (say, a home), we
have an IoT sensor (Si) with a personal gateway (GW i), and
multiple witnesses (Wij). Fig. 4 illustrates the flow of events
in a witnessing process that consists of a sequence of four
steps explained as follows.

Step1 Request for Witnessing: The HSP initiates the
process by invoking a function (of the smart contract) called
"request", passing two parameters namely the identity of a
target sensor (e.g., "device":<hash(mac)>), and a desired
duration of witnessing "duration":<time> for "inputs"
component of the "data" field, as shown on the top left
of Fig. 5. Note that for privacy reasons a hashed version
of the sensor’s MAC address ("hash(mac)") is publicly
announced on the network. Also, the "request" function can
only be called by the HSP node, and potential witnesses will
continuously look for this specific transaction submitted by the
HSP. Upon arrival of a witnessing request, witness nodes will
check their local network (wireless LAN) whether they are in
the vicinity of the target sensor, or not. Note that the HSP
would require witnesses to complete an eligibility challenge,
proving that they are indeed in the vicinity of the target sensor
location. The eligibility challenge has been widely studied in
the literature [41], [42], [43], [44], [45], and is beyond the
scope of this paper. That being said, wireless SSID association,
public IP subnet, or nonce packets emitted by the target sensor
can be used as a loose proof of location.

Step2 Offer Witnessing Service: Those nodes which find
themselves local to the target sensor, may choose to offer the
witnessing service depending upon their available resources
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like memory, battery, or compute power. Each potential wit-
ness will respond by invoking a function of the smart contract
called "offer", passing a response to the "eligibility"
challenge (e.g., SSID), the "granularity" of their statements
(e.g., number of packets to be included per statement), the
dollar "cost" of their service, and (optional) a "deadline"
by which they aim to make their statement available on the
blockchain. Statements can only get added to the ledger if they
are approved by a majority of the blockchain miners. We note
that miners prioritize those transactions (block of transactions)
which offer higher rewards, and hence the approval of less-
rewarding transactions can get delayed.

The granularity of witness statements depends on the re-
sources such as memory, battery, and compute power that
are available on the potential witness device for generating,
transmitting, and more importantly submitting statements to
the blockchain – the higher the granularity, the more resources
needed, and thus resulting in higher price (cost) of witness-
ing. The deadline of statement depends on the load of the
blockchain network and the dollar incentive (reward) that the
sender (witness) is willing to incur. We note that a congested
network may delay the availability of statements on the ledger,
unless a higher reward is paid. The witnessing price depends
on the deadline metric plus an additional remuneration that
individual witnesses may want to receive from the HSP for
the service to be provided. This means that availing a high
granular statement in a short time from a demanding witness,
can be quite expensive for the HSP.

Step3 Witness Selection: Once the witnessing offers are
submitted by the eligible witnesses, the HSP needs to select
those which give the best quality statements subject to a
limited (dollar) budget available. Note that the HSP aims
to achieve a verification probability close to 1 for the data
transmitted by its target sensor – this objective is met when
a large number of witnesses submit fine-grained statements.
Considering the objective and constraint, the HSP selects a
set of (zero, one or more) witnesses and announces them on
the blockchain, committing to a dollar cost in exchange of the
witnessing services to be provided by those selected witness
nodes. This announcement will be made on the blockchain
network by invoking "select" function of the witnessing
smart contract. Again, the access to this function is restricted
to the HSP as the authority in charge of witness selection.

Step4 Submit Witness Statement: Once a witness node is
notified of its selection via the "select" transaction submit-
ted by the HSP, it starts overhearing the packets transmitted
by the target sensor and generates witness statements. Each of
these statements is sent onto the Ethereum network by calling
"submit" function of the smart contract. Once this specific
typs of transaction is approved by the network miners, the
smart contract will automatically pay off Ethers equal to the
requested amount of "price" (in step3 ) to the witnesses from
the HSP’s account.

IV. WITNESS STATEMENTS AND
OPTIMAL WITNESS SELECTION

Once the HSP ensures that potential witnesses are in the
vicinity of its target sensor, its objective becomes to select a

{“function”:”request”, 

“inputs”:[{“device”:<hash(mac>,

“duration”:<time>}]

}

{“function”:”offer”, 

“inputs”:[{“eligibility”:<SSID>,

“granularity”:<num>},

“price”:<$price>},

“deadline”:<time>}]

}

{“function”:”select”, 

“inputs”:[{“witnesses”:list]

}

{“function”:”submit”, 

“inputs”:[{“statement”:<256-bit>,

}] 

}

! "

# $

Fig. 5. Data field in witnessing transactions vary by function type.

group of them that yield the best verification accuracy, given a
limited budget. In this section we first describe the structure of
witness statements, and then develop an optimization problem
of selecting witnesses.

A. Witness Statements and Verification

We consider a standard form of witness statements (with
flexible granularity) that fulfill the following requirements:
(a) not revealing any information of the sensor data, (b)
allowing the HSP to check whether a specific data packet
has been logged into the statement with some degree of
certainty, and (c) being lightweight for resource-constrained
witnesses to participate. One of the possible candidates for
witness statement is bloom filter which was employed in [14]
to provide opportunistic binding of the medical data to its
context.

A bloom filter is a probabilistic data structure that is
typically used to add elements (data packets) to a set (filter)
and test if an element is in a set. Instead of the elements
themselves, a hash of them is added to the set. When testing if
an element is in the bloom filter, false positives are possible –
either an element is definitely not in the set or that it is possible
the element is in the set. An empty Bloom filter is a bit array
of M bits, all set to 0. There are also k independent hash
functions, each of which maps an element to one of the M
bit positions. To add an element, feed it to the hash functions
to get k bit positions, and set the bits at these positions to 1.
Note that with more elements embedded in the filter, the error
rate (false positive) increases. For given filter size M and the
probability of false-positive f , the number of data elements n
in the filter is determined by:

n =
−M(ln2)2

ln(f)
(1)

Also, the optimum number of hash functions needed to
generate a bloom filter of size M bits with n logged elements
is given by:

k =
M

n
ln2 (2)

For our application, each witness commits to a number of
inserted packets in each statement n (passed as granularity
in step2 ) while the size of bloom filters for all witness
statements is fixed (say, M = 256). Witnesses, therefore, may
generate and submit a number (denoted by m) of statements
based on their target false-positive probability f and the total
number of packets (denoted by N ) they have heard from the
IoT sensor.
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m =
N

n
=
−Nln(f)
M(ln(2))2

(3)

On the other hand, the HSP verifies the presence of certain
packets in the submitted bloom filters by applying the same
hash functions used to generate the statement. To test if a
packet is in the filter, the HSP feeds it to the hash functions
to get k bit positions. If any of the bits at these positions is 0,
the packet definitely is not in the filter. If all are 1, then the
packet may be in the filter with the probability of 1− f . It is
important to note that a negative response from the statement
is certain since bloom filter cannot result in a false negative.
Since witnesses are independent, the verification probability
(denoted by τ ) using bloom filters submitted by W witnesses
can be derived from:

τ = 1−
W∏
i=1

fi (4)

B. Optimal Witness Selection

As discussed in §III-C ( step2 ) each potential witness
offers a price for the service requested by the HSP. This
price (denoted by α) is the sum of blockchain cost (paid
to network miners for approving submitted statements) and
the remuneration (reward) expected by potential witnesses. In
absence of a behavioral model for the reward (requested by
witnesses), we only consider the first component of the price,
namely the blockchain cost of statement submission – we will
derive (§V-A) the blockchain cost from our instance of private
Ethereum network. A thorough study on the pricing model
for individual rewards requested by witnesses is left for future
work. Note that witness statements need to be approved by
the blockchain miners, and thereby get appended as a valid
transaction to the public ledger. Obviously, targeting a lower
false-positive probability f requires a larger number of bloom
filters (statements) to be submitted by the witness that results
in a higher price charged to the HSP. Therefore, the cost of
receiving witness statements from a witness which commits
to error probability f at price α is given by:

c = mα =
−Nln(f)α
M(ln(2))2

(5)

Given a list of offers from W potential witnesses, each with
(fi, ci), the HSP needs to select a combination of them that
collectively give the highest verification probability (the lowest
error) subject to its budget constraint (denoted by C). This can
be formally defined as an optimization problem:

max 1−
W∏
i=1

(fi)
xi

s.t.
W∑
i=1

xici ≤ C

(6)

The objective function is maximized over xi which indicates
whether the ith witness to be selected by the HSP.

xi =

{
1 witness i is selected,
0 witness i is not selected,

(7)

In order to better analyze this optimization problem, we
consider two classes of the witnesses including: (a) “high-
class” witnesses which are powerful devices, affording more
memory and power for witnessing service (giving quality
statements at higher price), and (b) “low-class” witnesses that
are relatively low power (giving less-accurate statements at
lower price). Let us assume there exist H high-class and
L low-class potential witnesses, offering the pair of error
and cost as (fh, ch) and (fl, cl), respectively. Now, our
optimization problem becomes selecting the optimum number
of witnesses from the two classes while keeping the total cost
lower than a constant:

min fHh f
L
l

s.t. chH + clL ≤ C
H,L ∈ Z+

(8)

The optimization is performed over variables H and L,
while false-positive probabilities (fi’s) and associated costs
(ci’s) are known constants. We note that the objective function
is a monotonically decreasing non-linear function of H and L.
Intuitively, the verification error (our objective) decreases by
the number of witnesses selected, resulting in higher costs.
This trend is magnified by the quality of combined witnesses.

Fig. 6 shows the dynamics of verification error and to-
tal cost as a function of selected witnesses count – lines
indicate the quality of selection (composition of high-/low-
class witnesses). These values are computed by considering
the following assumptions: M = 256 (size of bloom filter);
N = 150 (total number of packets to be witnessed); fh = 0.15
(false-positive rate of high-class witnesses); and fl = 0.35
(false-positive rate of low-class witnesses). Given M , fh and
fl, we compute nh = 64 and nl = 117 from Eq. 1, resulting
the number of statements per witness mh = 3 and ml = 2. We
note that Ether (ETH) is the fuel for an Ethereum network. In
order to interact with the Ethereum blockchain, user nodes
need to pay to miner nodes for the computation of that
transaction. That payment is calculated in gas [46] , and gas is
always paid in ETH. From our experimental setup (explained
in §V-A), we found that submitting a 256-bit transaction
requires spending α = 2.77¢ [47]. Therefore, the price of offer
for high-class and low-class witnesses, respectively, equals to
ch = 8.31¢ and cl = 5.54¢ (from Eq. 5).

Here in Fig. 6, we consider five scenarios ranging from
selecting purely low-class witnesses (shown by solid blue
lines) to mixes of low-/high-class witnesses (shown by dashed
lines) to purely high-class witnesses (shown by solid red lines).
It can be seen that the verification probability (one minus error)
and the total cost (for the HSP) monotonically increase by the
number of witnesses. Also, improving the quality of witnesses
from “100% low-class” to “100% high-class” accelerates the
change rate (slope of lines) for both the verification error and
the total cost. For example, given 10 witnesses, the verification
error is 5×10−5 when all witnesses are chosen from the low-
class type (solid blue line in Fig. 6(a)), resulting in a total cost
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Fig. 6. Dynamics of (a) verification error, and (b) total cost, as functions of the number of selected witnesses and the quality of their statements.
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Fig. 7. Example of feasible region and optimal point of the integer linear
programming for C = 30¢

of 20¢ (solid blue line in Fig. 6(b)). Improving the quality
of witnesses to high-class fraction being 50% (dashed green
lines) and 100% (solid red lines) would reduce the error by 2
and 4 orders of magnitude, respectively, while incurring 25%
and 50% additional cost.

We note that our optimization problem (8) is an integer
non-linear programming. Since the objective function is a log-
convex function and monotonically decreasing, its logarithmic
transformation is also convex and monotonically decreasing
[48]. This means that we can equally minimize the logarithmic
transformation of the objective function in Eq. 8. Applying
logarithmic transformation, multiplying the objective function
by −Nα

M(ln(2))2 and considering Eq. 5, our optimization problem
is expressed as a standard integer linear programming (ILP):

max chH + clL

s.t. chH + clL ≤ C
H,L ∈ Z+

(9)

Restricting the variables to be positive (H,L ∈ Z+) in
conjunction with having only one linear constraint with a
negative slope will result in a triangle feasible region. Now,
problem (9) is a standard ILP, which does not have a closed-
form solution [49]. We illustrate in Fig. 7 the feasible region
with a cost constraint C = 30. The dotted blue line is our
objective function and our optimal solution is the closest point
(of the grid) to this line from the triangle region below it.
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Fig. 8. Optimal verification error and composition of witnesses versus budget
constraint.

In other words, the optimal solution is the combination of
witnesses that yield a cost value close to this upper bound line.
As highlighted by the green dot in Fig. 7, our optimal solution
is obtained by selecting two high-class witnesses (H = 2) and
two low-class witnesses (L = 2).

Fig. 8 shows the output of the optimization problem (Eq. 8)
when the budget constraint varies from 0 to 120 cents.
Obviously, for a budget constraint less than cl = 5.54¢, it
becomes infeasible to find the optimal solution (no witness can
be selected). At a microscopic level, we observe that adding
to the budget may at least increase the witnesses count or their
quality. At a macroscopic level, instead, relaxing the budget
constraint would result in a larger number of witnesses (height
of stacked bars) along with an improvement in their quality
(height of red bars).

V. EVALUATION RESULTS

We now evaluate the efficacy of our solution by applying
it to real trace data. We first set up a private Ethereum
environment to deploy our smart contract and obtain the cost
(price) of submitting transactions on the blockchain network.
As discussed in §IV-B, this price is considered as the sole
contributor to the cost of selecting individual witnesses, and
modeling witness rewards is beyond the scope of this paper.
We next simulate our witness selection algorithm on trace
data. Though our algorithm is designed for sensor networks at
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home or hospital premises, obtaining WiFi data from sufficient
households to test the algorithm at scale is very challenging. To
validate our algorithm at larger scale, we use traces taken from
the WiFi network of a multi-story building on our university
campus.

A. Experiments with Ethereum Platform

We set up a private blockchain network on a machine (with
2.5 GHz Quad-Core Intel Core i7 and 6GB of memory) using
a “private” Ethereum network [50]. The private Ethereum
is available for research purposes and private business use-
cases that allows developers to run their smart contracts on
an isolated local Ethereum environment without the need to
necessarily spend real ethers. All the nodes and transactions
of a private network can be readily realized on the public
network too, with no modification [51]. To interact with the
blockchain network, we use the Go-version Ethereum client
(Geth v1.9.7) [50]. Also, we develop our smart contract as an
app with four functions (§III-C) in Solidity v0.5.15. Lastly, we
deploy the smart contract on the Ethereum blockchain using
the Ethereum JavaScript API called web3.js v1.2.6 [52]. Our
experimental codes are publicly available on [53].

Each of the witnesses in our scenario can choose to indi-
vidually participate in the witnessing service by responding
to a request from the HSP, submitting their statements on
the blockchain. Note that the cost of this service merely
depends on the size of statement submitted by each witness,
independent of other witnesses. To obtain the unit cost, we
conducted an experiment on our private instance of Ethereum
network (running on our local machine) by creating two
representative nodes (a witness and an HSP). The experiment
initiates by a transaction from the HSP, sending the witnessing
smart contract (discussed in §III-C) to the Ethereum network.
Once this transaction is fully executed (1,500,000 gas), the
address of the smart contract becomes available to both
HSP and witness. With known address of the contract, the
HSP invokes the function “request” (300,000 gas) in Fig. 5.
Thereafter, the witness invokes “offer” (23,000 gas) which is
followed by a “select” call from the HSP, accepting the offer
and authorizing the witness to access the function “submit”.
Finally, the witness submits its statement, embedded as input
part of the function “submit” (each call 23,000 gas) and gets
paid automatically from the HSP’s account.

From our Ethereum testbed, we found that it requires
23, 000 gas in order to submit a witness statement of size 256
bits to the blockchain. The dollar value of each gas fluctuates
based on the dynamics of the crypto-currency market. At the
time of our experiments (25 January 2020), 1,000,000 gas =
0.0075 Ethereum (ETH) and 1 ETH = 160.36$ – this means
that 23000 gas is equal to α = 2.77¢ [47]. Also, the initial
deployment of witnessing smart contract would cost 1,500,000
gas that is equal to 180¢ (one-off payment made by the HSP).
Note that witnesses will pay an amount (proportional to the
size of transactions) for all transactions including offer and
submit. Since the offer transaction occurs once per each
session of witnessing we only consider the cost of submit
transactions in our witness selection algorithm.
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Fig. 9. Number of high-class witnesses available around each of 31 WiFi
access points.

B. Evaluation in a Multi-Story Building

To evaluate the efficacy of our scheme, we obtained WiFi
trace data from our University IT department. The data con-
tains session logs during a day (12:00am-11:59pm) for 31
WiFi access points (AP) located in a 5-story building. Each
record contains device MAC address (note that we have hashed
this to preserve anonymity); a unique AP name that clearly
indicates the building name, floor level, and access point ID;
time at which the device associated to/disassociated from the
AP (note that this is in minutes and therefore we do not have
sub-minute accuracy); and avg throughput indicating data rate
during the session.

To simulate our scheme, we assume that each AP (static and
powerful) represents a high-class witness and a user device
(mobile with limited compute power) represents a low-class
witness. Since APs are spread across the building, we call
the coverage area of each AP a “zone” from which user
devices connect to the AP. Obviously wireless zones overlap,
and hence for a given AP there exist a number of “neighbor
APs” within its close proximity. A witnessing scenario in this
environment is as follow. We consider our target sensor in an
AP zone with several high-class witnesses (neighbor APs) and
a number of low-class witnesses (user devices connected to
the AP). Fig. 9 shows the distribution of high-class witnesses
across 31 zones – each zone corresponds to a WiFi AP in the
building. It can be seen that each zone comprises 5 high-class
witnesses on average. This number varies in certain zones –
for example zone gap3 located at ground level covers 11 APs,
or zone 5ap1 located at level5 accommodates only one AP.

Obviously, high-class witnesses (neighbor APs) consistently
stay present within their corresponding zones, but low-class
witnesses (user devices) are mobile and hence their availability
changes over time. To get a sense of the availability of low-
class witnesses, we plot in Fig. 10(a) the complementary cu-
mulative distribution function (CCDF) of all sessions duration
in our trace. Of a total of 8263 WiFi sessions, more than
half (52%) had a duration more than 10 minutes. Therefore,
we consider a witnessing epoch to last 10 minutes. A target
wearable sensor is assumed [14] to transmit (on average) 15
packets per minute, and hence a total of N = 150 packets will
be witnessed during a witnessing epoch.

In our simulation, we divide a day into 144 distinct epochs
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Fig. 10. CCDF of: (a) duration of WiFi sessions in our trace data, (b) cost of selecting “all” available witnesses across all epochs and WiFi zones, and (c)
maximum of epoch cost per zone.
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Fig. 11. Dynamics of witnessing for a low-density zone 4ap5 when optimization is not needed: (a) count of available witnesses, (b)) cost of witnessing, and
(c) verification error of witnessing.

of 10-minute. For each epoch, we only consider those user
devices as potential low-class witnesses that remain connected
to the same zone for the whole duration of that epoch – devices
which switch their zone during the epoch are filtered out. This
means that potential witnesses are required to be in the vicinity
of the target sensor (present in the zone) during an epoch. With
this condition, 27% of sessions on average are removed per
epoch-zone – note that in three-quarters of epoch-zones less
than 40% of sessions are filtered out, while for a third of
epoch-zones all sessions persist during the epoch (no session
was filtered out).

Moreover, we note that cost constraints and pricing strategy
chosen by the HSP can be influenced by a number factors such
as the importance of data transmitted by the target sensor,
the matter of urgency for detecting security breaches, the
availability of potential witnesses, or the number of sensors
to be witnessed at scale. It is important to note that having
a generous budget for the HSP may result in selection of all
available witnesses, making the optimization unnecessary. On
the other hand, a very tight budget can make it infeasible
for the optimization algorithm to select even one low-class
witness. For this paper, we consider a simple pricing strategy
for the HSP whereby a fixed budget is pre-decided for every
epoch, and all epochs are treated equally – more sophisticated
strategies can explored in future works.

Recall from §IV-A, selecting a witness would cost ch =
8.31¢ for the high-class and cl = 5.54¢ for the low-class,
given α = 2.77¢ (computed from our Ethereum testbed in
§V-A) and N = 150 packets transmitted by the target sensor
over a 10-minute epoch. Note that the number of witnesses
(both high-class and low-class) during each epoch is known,

and hence the incurred cost incurred of selecting all available
witnesses (in a given zone) can be computed. Fig. 10(b) shows
the CCDF of cost per epoch during day-time (i.e., 8am-5pm
when user devices are likely present) across all zones. We
observe that for a given zone/epoch there is an 80% chance
to have the cost more than 50¢, when the HSP chooses to
select all available witnesses in the sensor environment. Note
that some zones get more crowded than others depending on
their location (meeting rooms, study spaces, offices, research
labs, or entry/exit points) in the building. We computed
the maximum cost of each zone across epochs of the day.
Fig. 10(c) shows the CCDF of maximum cost per zone. We
observe that for a third of zones (low-density ones) the cost
is always below 90¢, hence for these zones the HSP may
prefer to go with all available witnesses in the environment
without employing the optimization algorithm. We, therefore,
set the budget constraint to a fixed value equals to 90¢ in
our simulations, highlighting the fact that the optimization
may be needed in two-third of the zones (high-density ones)
where there likely be a large number of mobile devices
available to perform witnessing. Note that our “static” budget
constraint is chosen based on empirical observations from
a representative environment, purely for demonstrating the
feasibility of a single epoch witnessing via blockchain logging
contract. Given mobile nature of wireless nodes, a successful
witnessing can only be achieved during short time intervals,
and hence witnessing longer than a few minutes requires a
dynamic strategy in selecting witness nodes over multiple
epochs. This would entail a dynamic pricing strategy for a
multi-epoch witnessing which is beyond the scope of this
paper.



IEEE INTERNET OF THINGS JOURNAL 12

12am 4am 8am 12pm 4pm 8pm 12am

Time

0

5

10

15

20

25

N
um

be
r o

f w
itn

es
se

s

Available high-class

Available low-class

(a) Available witnesses.

12am 4am 8am 12pm 4pm 8pm 12am

Time

0

2

4

6

8

10

12

14

N
um

be
r o

f w
itn

es
se

s

num of high-class

num of low-class

(b) Selected witnesses.

12am 4am 8am 12pm 4pm 8pm 12am

Time

0

20

40

60

80

100

120

140

160

180

200

C
os

t (
¢)

Optimum cost

Maximum cost

(c) Cost of witnessing.

12am 4am 8am 12pm 4pm 8pm 12am

Time

10
-18

10
-15

10
-12

10
-9

10
-6

10
-3

V
er

ifi
ca

tio
n 

er
ro

r

Lowest without constraint

Optimum with constraint

(d) Verification error of witnessing.

Fig. 12. Dynamics of witnessing for a high-density zone 4ap2 when optimization is needed: (a) count of available witnesses, (b) count of selected witnesses,
(c) cost of witnessing, and (d) verification error of witnessing.

Given the budget constraint, we now simulate our scheme
during the whole 24 hours in two representative zones: a low-
density (AP 4ap5) and a high-density (AP 4ap2). Fig. 11
shows the dynamics of witnessing (number of witnesses, cost,
and verification error) for the low-density zone. It is seen
in Fig. 11(a) that this zone accommodates two high-class
witnesses (shown by a flat dashed red line) and up to 6 low-
class witnesses (mostly 1-3 during working hours as shown
by dotted blue lines). For this low-density environment, no
optimization is needed since the total cost of selecting all
available witnesses is well below the budget constraint 90¢,
and hence all available witnesses are selected. We observe
in Fig. 11(b) that the highest cost is about 54¢ for epochs
between 10am-11:30am when the total count of witnesses
reaches to its maximum of 8. As a result, the lowest veri-
fication error becomes identical to the optimal verification, as
shown in Fig. 11(c) – the lowest error of 10−4 can be achieved
at the cost of 54¢ per epoch during the peak time of this zone.

Moving to the high-density zone which hosts 6 high-class
witnesses and 5-24 low-class witnesses during day time, as
shown in Fig. 12(a). The HSP now needs to run the opti-
mization algorithm for selecting the optimal combination of
witnesses available in the environment. We observe that during
early morning (12am-9am), selecting all available witnesses
results a cost less than the constraint 90¢, as shown in
Fig. 12(c). Following 9am, it is seen that the cost is saturated
at 90¢ as a result of optimization. Focusing on optimization
results, we observe that two-third of high-class witnesses
are left out due to abundance of low-class witnesses during
busy epochs (around 12pm and closer to 5pm), as shown in

Fig. 12(b). In this scenario, the optimum verification error
would be higher than the lowest error as shown in Fig. 12(d)
– during the peak time the best error 10−8 is achieved by
selecting 2 high-class and 13 low-class witnesses.

VI. CONCLUSION

In this paper, we have proposed an on-demand and dis-
tributed scheme to verify healthcare IoT data. Our architecture
provides the motivation and means to engage via smart con-
tracts on a blockchain: Health authorities can request witness
statements needed for data verification of target sensors;
local witness devices can monetize their statements without
compromising their privacy. We developed an optimization al-
gorithm for health authorities to select an optimal collection of
available witnesses to achieve the best verification probability
subject to a budget constraint. We simulated our algorithm
on real data captured from WiFi connections in a multi-story
campus building to show that a verification probability of more
than 99% can be achieved at cost of less than two dollars for
one-hour witnessing service. This work is the first step towards
on-demand witnessing of sensors network data, applicable
to real-world scenarios. In future work we plan to develop
a method to dynamically adjust the budget constraint for
improving the verification probability over longer periods with
variable number of witnesses. We will also consider a more
accurate model for overhearing in lossy wireless networks.
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