
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

Hierarchical Anomaly-Based Detection of
Distributed DNS Attacks on Enterprise Networks

Minzhao Lyu, Hassan Habibi Gharakheili, Craig Russell, and Vijay Sivaraman

Abstract—Domain Name System (DNS) is a critical service for
enterprise operations, and is often made openly accessible across
firewalls. Malicious actors use this fact to attack organizational
DNS servers, or use them as reflectors to attack other victims.
Further, attackers can operate with little resources, can hide
behind open recursive resolvers, and can amplify their attack
volume manifold. The rising frequency and effectiveness of
DNS-based DDoS attacks make this a growing concern for
organizations. Solutions available today, such as firewalls and
intrusion detection systems, use combinations of black-lists of
malicious sources and thresholds on DNS traffic volumes to detect
and defend against volumetric attacks, which are not robust to
attack sources that morph their identity or adapt their rates to
evade detection.

We propose a method for detecting distributed DNS attacks
that uses a hierarchical graph structure to track DNS traffic
at three levels of host, subnet, and autonomous system (AS),
combined with machine learning that identifies anomalous be-
haviors at various levels of the hierarchy. Our method can detect
distributed attacks even with low rates and stealthy patterns.
Our contributions are three-fold: (1) We analyze real DNS traffic
over a week (nearly 400M packets) from the edges of two
large enterprise networks to highlight various types of incoming
DNS queries and the behavior of malicious entities generating
query scans and floods; (2) We develop a hierarchical graph
structure to monitor DNS activity, identify key attributes, and
train/tune/evaluate anomaly detection models for various levels
of the hierarchy, yielding more than 99% accuracy at each
level; and (3) We apply our scheme to a month’s worth of DNS
data from the two enterprises and compare the results against
blacklists and firewall logs to demonstrate its ability in detecting
distributed attacks that might be missed by legacy methods while
maintaining a decent real-time performance.

Index Terms—Distributed attack, DNS, network security,
anomaly detection.

I. INTRODUCTION

The critical role of DNS infrastructure in large enterprises
makes it a popular target for cyber-criminals. In recent years,
distributed denial-of-service (DDoS) attacks based on DNS
have risen in frequency, volume, and sophistication [1], and
it is likely to worsen further as the attack surface expands
with bring-your-own devices (BYOD) and Internet-of-Things
(IoT) appliances [40], [34]. As an example, more than 100K
compromised IoT devices were enslaved in 2016 for a global-
scale DDoS attack on Dyn’s DNS infrastructure [21] which

M. Lyu is with the School of Electrical Engineering and Telecom-
munications, University of New South Wales, Sydney, NSW 2052, Aus-
tralia, and CSIRO’s Data61, Sydney, NSW 2015, Australia (e-mail:
minzhao.lyu@unsw.edu.au).

H. Habibi Gharakheili, C. Russell and V. Sivaraman are with the School
of Electrical Engineering and Telecommunications, University of New
South Wales, Sydney, NSW 2052, Australia (e-mails: h.habibi@unsw.edu.au,
craig.russell@unsw.edu.au, vijay@unsw.edu.au).

prevented Internet users from accessing more than 1.2K web
services such as Netflix, Spotify, and Twitter. According to
EfficientIP [16], in 2020, nearly 79% enterprises suffered from
DNS attacks which cost on average $924K per attack.

In spite of these growing risks, organizations today have
huge DNS “blind spots” [10] that leave them exposed to DNS-
based attacks. Large enterprises have many departments, each
with their own information technology (IT) personnel, inde-
pendently managing DNS servers/caches (this is particularly
true in loosely-federated organizations like Universities), so
it becomes very challenging to track and lock-down internal
DNS infrastructure at a central firewall. Small businesses often
rely on their Internet Service Provider (ISP) for security, and
the ISP is quite likely to allow all DNS traffic through as they
may not have visibility of the DNS infrastructure of the busi-
ness, which can be dynamic. Further, even for organizations
that do try to restrict incoming DNS traffic, malicious entities
can spoof well-crafted DNS queries to reach and exploit their
internal DNS services. New methods are therefore needed
that are robust to dynamic DNS infrastructures and morphing
attacks.

DNS-based attacks are broadly categorized into three
groups: (1) query floods (also known as DNS flooding), mainly
sourced from botnets that directly bombard victim servers
(mainly authoritative name servers or recursive resolvers) with
a large number of queries to exhaust the victim’s resources,
(2) DNS reflection/amplification attacks that utilize open DNS
resolvers as proxies [12] by sending spoofed source address
queries (using the intended victim’s IP address), and (3) DNS
scans [7], [23] that actively probe a target network to identify
potential victims for future DNS floods and/or reflections.
As emphasized earlier, current intrusion detection/prevention
and firewall systems rely on static configurations, and are not
robust enough to detect and block these attacks in the presence
of dynamic DNS infrastructures and morphing attacks.

Most security solutions, both software-based tools and
hardware-based appliances, typically use static signatures of
known attacks. However, signature-based detection approaches
are difficult to scale cost-effectively and require regular up-
dates since attack vectors evolve rapidly [26]. Existing com-
mercial intrusion detection systems often use threshold meth-
ods [11], [19], [42], [48] whereby they search for recurring
patterns in traffic by counting the number of certain events
occurring within a “defined period”, and take action if the
configured “threshold values” are exceeded.

Existing methods require IT departments to configure static
policies and set threshold values for counting periods. De-
termining suitable thresholds is a non-trivial task since it is

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

not obvious what the optimal values for effective defensive
policies should be applied – high thresholds allow attacks to go
undetected while small thresholds can result in a large number
of false positives, incurring a high cost of investigation. If
thresholds are specifically configured by administrators (e.g.,
120% of empirical peak load for a critical server as suggested
by firewall vendors [42]), then existing firewalls can protect
specific servers (or IP subnets) from being overwhelmed by
an excessive rate of inbound packets affecting their normal
service operation. However, they are still unable to identify
and defend against distributed attacks (i.e., identifying attack
sources), since each source generates malicious traffic at low
rates [15] (and may appear legitimate). We note that low-
rate attacks (e.g., CPU-exhaustion DoS attacks [37]) are still
important to detect since they may be powerful enough to
adversely affect servers with less resources. Also, distributed
attacks often begin at a low rate before causing serious
disruption or damage [49]. They often originate from bot
devices under a subnet or autonomous system (AS) [52] that
can only be detected by maintaining information for external
entities at multiple levels of aggregation.

To address these shortcomings, we develop, implement, and
evaluate an anomaly-based detection system, incorporating
a dynamic and hierarchical graph structure of well-selected
attributes, to capture real-time volumetric behavior of external
hosts and detect external anomalous entities at various levels
of aggregation. There exist prior works which detect attacks
at destination networks, but their primary focus is to identify
“victims”. To the best of our knowledge, we are the first to
propose a victim-side method for isolating “ attack sources” in
distributed DNS attacks (i.e., DDoS floods and reconnaissance
scans) depending on their nature of distribution across hosts,
subnets, or AS.

Our key contributions are summarized as follows. Firstly,
in §III, we highlight the characteristics of malicious Internet
hosts that launch DNS volumteric scans and flooding attacks
on enterprise networks by analyzing datasets of real DNS
traffic, consisting of approximately 400 million DNS queries
and responses, collected from two enterprises over a week.
Secondly, in §IV, we develop a hierarchical graph structure
with dynamic nodes and edges for monitoring the DNS query
behavior of external entities at various levels of aggrega-
tion (namely host-, subnet-, and AS-level), identify attributes
that can be computed cost-effectively in real-time, generate
anomaly detection models using benign traffic only, and evalu-
ate them using benign traffic as well as synthetically generated
attack traffic. Finally, in §V, we demonstrate the efficacy of
our scheme especially in detecting low-rate DNS-based attacks
by replaying a month’s worth of DNS traffic to our prototype,
and validate our results by checking flagged external hosts
against public blacklists of malicious IP addresses, as well as
against logs from a commercial firewall.

II. RELATED WORK

In this section, we survey related literature for the scopes
our work falls in (i.e., DNS security and defense of distributed
network attacks) and highlight the research gaps that are
addressed in this paper.

A. DNS Security

DNS security has been an attractive topic for both industry
and academia, especially on integrity of DNS records [45],
[27], [28], and vulnerabilities of DNS infrastructure to volu-
metric attacks [33], [44], [24].

As for the integrity of domain names, malicious users on the
Internet exploit DNS protocol to signal and control malicious
network infrastructures such as DDoS botnet. Authors of [56]
analyzed DNS responses to detect unusual behaviors (anomaly
detection) related to domain names such as typo squatter
domains and fast flux domains. Kopis [2] can accurately detect
malware-related domains by using statistical features (such
as distribution of requesters) at top-level domain servers. In
[3], authors point out that attackers use domain generation
algorithm to bypass detection systems, and they come up
with a detection approach using clustering and classification
algorithms for domain names and their requesters. Further-
more, as discussed in [8], malicious entities are able to
launch resource-exhaustion attacks on DNS infrastructures by
using disposable domains. Integrity problems can also arise
during DNS lookups from legitimate users. Unsecured DNS
communication can be easily hijacked and manipulated by
third parties [27]. To address this problem, secured extensions
such as DNSSEC [4] and DNS-over-HTTPS [22] have been
proposed. However, Chung et al. revealed that the adoption of
DNSSEC is still in early stages [9].

Researchers have also investigated vulnerabilities of DNS
services and infrastructure to volumetric attacks including
DDoS and reconnaissance scans. DNSSEC is seen more
attractive by DNS amplification attackers. Rijswijk-Deij et
al. [51] showed that DNSSEC can be mis-used for larger
amplifications (in reflection attacks) compared to standard
DNS. Work in [24] actively probed DNS resolvers available
on the Internet and quantified their reflective capabilities.

In this work, we develop data-driven models, trained by
real enterprise data, to detect and identify external anomalous
sources (at three hierarchical levels including host, subnet, and
AS) that attempt to discover, attack, or exploit enterprise DNS
infrastructure, even when they reduce their activity profile by
getting distributed and reducing their traffic rates.

B. Defense of Distributed Network Attacks

Efficient defense of distributed network attacks have been
widely-studied by many researchers. Works can be classified
based on where they are deployed regarding the anatomy
of attacks, i.e., at-source, at-destination, or at-network [55].
At-source methods are deployed at the place where attacks
originated, D-WARD [38] looks for suspicious traffic patterns
(e.g., source IP spoofing on incoming traffic) and applies
rate-limiting to corresponding hosts at the network edge.
ShadowNet [6] measure traffic attributes (e.g., rate of HTTP
GET requests) from edge routers serving IoT devices to
detect IoT botnets. For at-network solutions, LADS [46] uses
lightweight SNMP and NetFlow statistics collected from an
ISP’s backbone routers, and Bohatei [18] uses SDN to reroute
suspicious traffic (e.g., excessive number of TCP SYN packets)
to IDS middleboxes on ISP networks. PSI [54] is an example

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

Table I: Summary of dataset during 1-7 May 2018.

Query In Response Out Unanswered Qry. Invalid Qry. NameError Serv.Failure Refused
University Campus 139,136,237 97,008,082 42,127,345 5,335,019 4,935,385 264,100 135,404

Research Institute 99,847,262 61,164,416 35,332,068 9,335,751 4,154,238 490,045 4,640,829

of at-destination approach. It is deployed at the edge of
an enterprise network which dynamically applies security
rules of firewalls or IDS to traffic of interest (e.g., certain
protocols) for detecting attacks towards enterprise hosts with
optimized accuracy and cost. With emerging SDNs, denial-of-
service attacks on controllers start ramping up. SWGuard [58]
defenses against control-plane reflection attacks by monitoring
victim’s down-link control messages.

Note that both at-source and at-network systems are ef-
fective in both detection and mitigation but they require
automatic coordination (signaling) between network operators
on the path between source and destination, while legacy at-
destination methods can well isolate victims but not source
of attacks. Our work is the first to develop a novel hier-
archical graph structure for detecting attacks at-destination
that can precisely identify external attack sources at IP-level
to subnet and AS levels, even the sophisticated distributed
attackers which keep their individual attack traffic rates so
low, bypassing network firewalls. Comparing our work with
systems against volumetric distributed attacks in particular,
existing methods primarily aim to detect potential victim
servers (instead of identifying attack sources) [54], [57], [25],
[31]. Moreover, their objective upon detection of an attack is
to either isolate or rate-limit the victim, affecting malicious
and benign traffic sources alike. Our work, instead, aims to
detect distributed attacks and identify their sources which can
be precisely blocked (automatically or manually) for remedial
action without affecting benign/legitimate sources.

C. Summary of Research Gaps

we have identified three research gaps in relevant existing
works. First, no prior work systematically characterized the
behavior of malicious entities that generate distributed DNS at-
tacks on enterprise networks. In §III, we highlight the anatomy
of distributed DNS attacks on enterprise assets. Second, no
prior solution considered the context of attack sources in terms
of their subnets and ASes. We, instead, develop a hierarchical
data structure (§IV) to track the behavior of attackers at
various aggregate levels. Third, existing enterprise-side de-
fense systems predominately aim to detect victim internal
servers which are under attack (i.e., identifying “destination”
of attacks), and hence do not distinguish between malicious
and benign external sources (i.e., unable to identify “source”
of attacks, especially when they are distributed). We, instead,
detect distributed attack sources (§V) even those which keep
their traffic rates relatively low to bypass security appliances.

III. PROFILE OF DNS VOLUMETRIC QUERIES TO
ENTERPRISE NETWORKS

In this section, we analyze the DNS traffic collected from
the border of two enterprise networks, a large University
campus and a medium-size research institute to profile incom-
ing queries to enterprise hosts. Our data analysis primarily

focuses on the behavior of external source entities (i.e., hosts,
subnets, and ASes outside the protected enterprise network)
that may contact or attack DNS servers in any enterprise
settings. Note that the two studied networks have rich DNS
facilities (i.e., authoritative DNS servers, recursive resolvers
and public-facing servers with assigned domain names) which
are frequently targeted by distributed DNS attacks. Smaller
organizations with fewer DNS servers can become target of
similar inbound attacks, perhaps at relatively lower frequency.

In both instances the IT department of the enterprise pro-
visioned a full mirror (both inbound and outbound) of their
Internet traffic (each on a 10 Gbps interface) to our data
collection system from their border routers (outside of the
firewall), and we obtained appropriate ethics clearances1 for
this study. We extracted all DNS packets from each of the
enterprise Internet traffic streams in real-time by configuring
OpenFlow match rules for incoming/outgoing IPv4 port 53
packets on an SDN switch. Our dataset was collected during
the full month May 2018, though our analysis in this section
focuses on a one week period (1-7 May 2018), consisting
of 139.1M and 99.8M incoming DNS queries to, along with
97M and 61.2M outgoing DNS responses from, hosts of
the university and research networks respectively – a brief
summary of the dataset for the first week of May 2018 is
shown in Table I.

A. Incoming DNS Queries

A benign incoming DNS query to an enterprise network
typically targets an authoritative name server and the corre-
sponding server responds with a NoError flag. There are,
however, other types of incoming queries observed in real
networks: unanswered queries (i.e., DNS queries with no
response) and invalid queries, those answered with flags other
than NoError, for various reasons such as the query packet is
malformed or corrupted, the query name does not exist or is
not relevant for the organization (and thus does not resolve to
any IP address), or an unintended recursive resolver is queried.

Unanswered Queries: During the first week of May 2018,
we found a total of 42M and 35M unanswered incoming
queries to the networks of the university and the research
institute respectively – approximately one third of the total
incoming queries in both organizations. We have verified
that these queries typically targeted non-DNS servers inside
the organization (by performing reverse DNS lookups) or IP
addresses that are not active/present in the network to receive
the query, and therefore were not answered.

Invalid Queries: We also found a total of 5.3M and 9.3M
invalid incoming queries to the networks of the university
and the research institute respectively – accounting for 4%

1UNSW Human Research Ethics Advisory Panel approval number
HC17499, and CSIRO Data61 Ethics approval number 115/17.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

(a) Unanswered queries. (b) Invalid queries.

Figure 1: CCDF of: (a) unanswered, and (b) invalid, query
counts per each external host for a duration of one week (to
university network).

and 9% of the total incoming queries. For the university
network, 92.5% of invalid queries were answered with a
NameError flag, indicating that the DNS server was not able
to resolve the queried name. Also, 5.3% of responses had
an error code of ServerFailure and 2.5% an error code
of Refused. Additionally, a tiny fraction of responses had
NotImplemented and FormatError flags set (118 and 12
invalid queries respectively) – these error codes indicate incor-
rect messages contained in the queries or incorrect destination
name servers (e.g., a wrong domain name for the authoritative
name server of the organization).

For the research institute, the distribution of error
codes was as follows: 44.4% with NameError, 5.2%
with ServerFailure, 49.6% with Refused, 0.4% with
FormatError and only 117 instances of NotImplemented
with additional codes including NotAuth and NXRRSet seen
in 31,540 and 24 of responses to invalid queries. The last two
error codes correspond to wrong destinations or messages in
the queries.

B. External Hosts Sending Unwanted DNS Queries
Considering all external hosts sending DNS queries to the

university network2, we counted a total of 168,538 unique
hosts (i.e., IP addresses) in our dataset for the first week of
May 2018. These external hosts come from 46,729 distinct
subnets and 16,775 unique autonomous systems. We found a
total of 112,704 external hosts sent some form of unwanted
query: 41,893 external hosts sent both unanswered and invalid
queries; 59,907 sent only unanswered queries and 10,904 sent
only invalid queries.

Interestingly, we observe that only a tiny fraction of external
hosts are very active in sending unwanted queries. In Fig. 1,
we show CCDF plots of unwanted queries counts per each
external host. It can be seen that 29 external hosts each
generated more than 100K unanswered queries, as shown in
Fig. 1(a), with three hosts each generating more than a million
unanswered queries over the week. Similarly, only 6 external
hosts each sent more than 100K invalid queries, as shown in
Fig. 1(b). We will see later in this section that these heavy
hosts are indeed involved in volumetric-based DNS attacks in
the form of host scanning and/or query flooding.

2In this subsection, we have omitted analysis of the research institute data
so as to concentrate on insights. Similar observations were made for both
organizations.

(a) Pkt count vs queried hosts count. (b) Variance of query packet size.

Figure 2: Query behavior of external hosts during a week:
(a) number of packets sent versus number of internal hosts
contacted per individual external host, and (b) CCDF of query
packet size (Bytes) per external host – normal and suspicious
external hosts are highlighted in blue and red respectively.

We now divide the external hosts into two groups: hosts
with “normal” and hosts with “suspicious” behavior in their
DNS queries – normal hosts do not send any unwanted DNS
queries to the network. Note that some of the suspicious
hosts may just have typographical errors in their DNS queries.
Suspicious hosts are distributed across 30,295 subnets of
11,539 autonomous systems. We found that 73 ASes each
with more than 100 hosts account for 59% of all suspicious IP
addresses, of which the top 5 heavy ASes contain 19% of all
suspicious hosts. This is not surprising as approximately half
of all cyber-attacks originate from compromised devices in a
small number of countries with insecure infrastructure [52].
On the other hand, 55,834 normal hosts are distributed across
10,706 unique ASes – the number of normal hosts for each
AS is evenly distributed.

Fig. 2 illustrates the difference between the query behavior
of normal and suspicious external hosts. Starting with the
scatter plot of query packets count versus number of unique in-
ternal hosts queried for each external host, shown in Fig. 2(a),
a cluster of normal hosts (shown by blue cross markers) is
clearly visible at the bottom left corner of the plot – a normal
external host does not send more than 10,000 queries in a
week. On the other hand, suspicious hosts (shown by red circle
markers) display two clusters (i.e., suspicious hosts lying on
the line y = x that send one query to a large number of
internal hosts, and suspicious hosts clustered on the left that
send a large number of queries to a limited set of internal
hosts).

Moving to the variance of the queries, we show in Fig. 2(b)
the CCDF plot of the standard deviation of packet size
sent by each of the normal and suspicious external hosts.
It can be clearly seen that suspicious hosts (as shown by
dashed red lines) display a smaller variation in the size of
their query packets compared to normal hosts, highlighting
a set of repopulated query names were automatically sent by
suspicious hosts (i.e., a bot). More importantly, we observe that
a large fraction (i.e., 42%) of suspicious hosts had identical
packet size (i.e., zero variation) for their queries during the
week.

We also analyzed the payload of queries sent by each
external host. Among suspicious hosts (excluding 4,436 hosts
with just one query), we identified 19,551 hosts each used

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

(a) Periodic (an external host from Russia). (b) Focused (an external host from China). (c) Low-rate (an external host from US).

Figure 3: Weekly time-trace of various types of DNS scans: (a) periodic, (b) focused, and (c) low-rate; on enterprise hosts
from the Internet.

identical query names for all queries during the week, with
many of these hosts having a large number of queries sent
to the university network (e.g., an external IP address sent
13,144,130 identical query packets to one internal IP address).
We also observed that most of these suspicious query names
are not relevant to the services provided by the enterprise.
For example, one IP address (located in Russia) sent 763K
queries with the query name “com” to the campus network,
and another IP (located in Lithuania) sent 397K queries for
“nrc.gov” during the week.

It is important to note that using identical query names is
also seen for normal hosts. We note that 8,836 normal external
hosts each queried only one domain name, but each of these
hosts generated only a small number of queries during the
week. Another observation for these specific normal hosts is
that the DNS ID (i.e., a 16-bit identifier in the DNS header)
varies over time, whereas for suspicious hosts only one DNS
ID was consistently used for successive DNS queries.

Next, we analyze in more detail the properties of the two
types of unwanted DNS queries.

C. DNS Query Scans

The first cluster of suspicious hosts shown in Fig. 2(a)
corresponds to scanners that sent one query packet (i.e., probe)
to a large number of (potentially all) internal IP addresses.
We note that the university owns three “/16” IPv4 address
prefixes, which represents more than 196K unique IP addresses
for internal hosts, as indicated by the largest number of
hosts contacted in Fig. 2(a). Scans are typically performed
by malicious entities to make a list of available DNS servers
inside enterprises that could subsequently be used as reflectors
for DDoS attacks [23]. Also, there are a number of “white hat”
researchers who conduct DNS query probing to only detect
(not attack) vulnerable DNS servers available on the Internet
[20], [24], [14]. Scan queries are typically crafted packets
with the query name field most likely not relevant for the
enterprise network. If this query reaches an operational DNS
server, a response may or may not be returned (depending on
the particular name server configuration). Scanners can choose
various strategies (in terms of the query rate) to perform
reconnaissance tasks. Next, we consider three types of scans
– a representative of each type is shown in Fig. 3.

1) Periodic Heavy Scans: Some scanners choose to scan the
network on a periodic basis. Fig. 3(a) shows a scanner from
Russia that conducted 4 large-scale scans during the week by
sending queries to a total of 196,865 IP addresses (i.e., almost
the full three /16 prefixes) inside the university campus. Each
scan lasted for about 2 hours and the query name “com” was
repeatedly used in all query packets. Forty one DNS servers
(i.e., recursive resolvers and authoritative name servers) inside
the organization responded to this scanner – a majority of
servers were not able to respond with a NoError flag to these
queries: 24 servers responded with error code Refused, 7 with
ServerFailure, and 2 with NameError. Surprisingly, 8 DNS
resolvers (verified by reverse lookups) inside the enterprise
network responded with NoError flag to the scanner, resolving
the queried name “com”. We note that the answers to this top-
level domain name are fairly large, resulting in an attractive
amplification factor (i.e., ratio of response size to query size)
of up to 43. We will see later in §III-D2 that some of these
servers were used as reflectors.

2) Focused Scans: Instead of blindly sweeping the entire
IP range of a target network, some scanners (those with
prior knowledge) may focus on selected IP addresses in their
dictionary. Focused scans aim to validate the availability of
potential DNS servers that can be used as reflectors/victims
– some vulnerable DNS servers may subsequently be secured
by a change of configuration or may no longer be operational.

A sample of focused scans is shown in Fig 3(b). This
scanner (located in China) targeted 18 IP addresses from 2
subnets of the university network by periodically looping over
a static list of hosts. Each scan round consisted of sending one
customized query with the name “d.c.b.a.in-addr.arpa”
to each IP address “a.b.c.d” – this reverse lookup query
causes the victim (i.e., potential DNS server) to return its
own DNS name inside the organization. We observed that
the same loop was repeated 760 times during the week. We
verified (by manual reverse lookup) that 2 of these IP addresses
are the university’s main recursive resolvers, 3 of which are
resolvers at Faculty/Department-level, and 13 IP addresses are
WiFi gateways inside the enterprise network. Among these
18 internal hosts, only one department-level DNS resolver
responded with the “NoError” flag, revealing its identity.
Other DNS resolvers were securely configured and did not
respond to this scanner – enterprise resolvers are meant to

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

(a) Targetting an internal name server. (b) Targetting an internal web server.

Figure 4: Weekly time-trace of DNS flooding on enterprise
hosts from the Internet, targeting an internal (a) name server,
and (b) web server.

serve only internal hosts.
3) Slow-Rate and Distributed Scans: As heavy scans (i.e.,

high rate queries) can be easily detected by current firewalls
and intrusion detection systems, sophisticated scanners may
choose to go under the radar by lowering their query rate
or distributing the probing task across a number of hosts.
Fig. 3(c) shows an example of a low-rate scan. The external
host (located in US) consistently sent approximately 40 queries
per hour with the question name “VERSION.BIND” – in total
5831 queries were sent to 5806 IP addresses during the
week (i.e., on average one query per internal host). We note
that this query (specific to the most widely deployed DNS
server application BIND) asks the server’s version. We found
that only one host (i.e., a department-level DNS resolver)
replied to this query with error code Refused. Interestingly,
right after this response, the scanner sent another query with
question name “direct.shodan.io” and the DNS resolver
successfully responded with NoError.

Impatient low-rate scanners tend to distribute their task
across multiple sources (more likely from a subnet/AS under
their control). In our dataset from the university network,
we found (via manual analysis) 6 distributed scans each
originating from a distinct subnet. For each of these scans we
observed a similar scan pattern (time-series, total count, query
name) across all hosts involved. For example, in one of these
distributed scans, 16 external hosts from a /22 prefix (located
in US) each sent about 75K queries (one query per internal
host contacted) asking for “dnsscan.shadowserver.org”.

We also found a distributed scan sourced from multiple
prefixes within a distinct AS – manually finding this type of
distributed attack is a non-trivial task. In this scan, only three
external hosts each from a different subnet (i.e., one in /17,
one in /12, and one in another /12 subnet) all associated with
AS4134 (located in China), each generated about 130K queries
to 65K internal hosts (i.e., two queries per internal host) asking
two domain names “www.163.com” and “version.bind”.

D. DNS Query Floods

We now consider the second cluster of hosts generating
unwanted queries, shown in Fig. 2(a). These external hosts
flood (sending a large number of queries to) a small number
of enterprise hosts. We note that some flooders aim to exhaust
the resources of the enterprise host (primarily DNS servers)

(a) Behavior of an internal resolver. (b) Aggregate queries from 3 victims to
5 internal DNS servers.

Figure 5: Weekly time-trace of a reflective DNS flooding
attack: (a) one attack reflector (an internal DNS resolver), and
(b) three external victims.

[13], [34] whereas others aim to use enterprise servers to
reflect/amplify volumetric DNS traffic to third party victims
[35]. In the latter scenario, the attacker spoofs the source IP
address of the query by using the intended victim’s address.

Similar to scanners (described in §III-C), flooders may use
one or a list of query names which may or may not be relevant
to the enterprise network. Due to the objective of flooders, we
expect to see a higher rate of queries coming from external
hosts to the enterprise network. Next, we analyze two types
of DNS query floods with supporting examples from the two
enterprise networks.

1) Flooding Enterprise Servers: DNS flooders may target
a DNS server of an enterprise to exhaust its computational
resources (by asking it to resolve an excessive number of
queries) or a non-DNS server to consume its network re-
sources. Fig. 4(a) shows the DNS traffic pattern (incom-
ing queries and outgoing responses) for one of the main
authoritative name servers inside the research institute. We
can see that this server typically handled approximately 50K
query packets per hour for domain names associated with
the research organization – number of queries and responses
are almost the same during normal operation (i.e., except
for the spike period of an attack on 2 May). However,
between 06:48AM to 08:11AM on 2 May, this server re-
ceived a surge of queries (i.e., about 1.7M queries per
hour) sourced from 29,614 external hosts, 4,053 of which
kept sending repeated queries with the research organiza-
tion domain name (the characters were randomly in cap-
ital or lower case, e.g., “reSeaRChInstituTe.OrG” and
“ResEaRchINSTituTe.oRG”). The highly suspicious external
hosts were associated with 432 ASes (122 in U.S., 40 in
Australia, 17 in Canada, and 17 in Brazil), where 26 ASes
cover 3183 (78.5%) flooders. We note that the top two ASes
(both in US) account for 1,211 and 510 flooders.

We can see that this large scale attack resulted in no query
(legitimate or malicious) being responded to, as shown by red
lines hitting zero during the attack period in Fig. 4(a). We
note that this might be because either the server became non-
operational, or the enterprise border firewall had detected the
attack and possibly dropped all queries to protect the server.

Fig. 4(b) shows a sample time-trace of DNS traffic for the
second type of victims (i.e., a non-DNS host). The victim host

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

Figure 6: Architecture schema of our methodology.

is a department-level web server in the university network.
We can see that this web server does not typically receive
DNS traffic but two instances of query floods hit this server:
spikes on 5 May and 6-7 May. During 04:33 to 05:51 on
5th May, 18 external IPs each generated about 800 queries
with the question name of either “qjnntx.eleximg.com” or
“static.mobike.com”. These suspicious external hosts are
associated with 4 ASes, of which 2 heavy ASes (AS20473
and AS36351 located in US) account for 10 and 6 attackers –
it is a common practice for attackers to develop their botnets
within a compromised subnet or AS [52].

For the second instance, between 19:03 on 6th May
till the end of the week, 11 flooders from 2 ASes (7
IP addresses from AS36351 in the US and 4 IP ad-
dresses from AS132203 in China) each sent about 15K
queries to the web server with irrelevant query names from
the list of “qjnntx.eleximg.com”, “c.afekv.com”, and
“global-ldns.v3.apsv1.com”.

2) Reflective DNS Floods: As mentioned earlier, internal
DNS servers of enterprises are targets for cyber-attackers for
reflecting volumetric DNS traffic to third party victims on the
Internet. Enterprise DNS servers are often discovered prior
to this type of attack (as explained in §III-C). We note that
the source IP address of queries in reflective DNS floods
are spoofed using the intended victim’s IP address, therefore
external victims are perceived as external flooders by the
border device of enterprise network.

We found one example of such an attack in our dataset for
the university network that was well coordinated and persisted
for almost a week by involving five internal DNS resolvers
reflecting to three victims on the Internet, as shown in Fig. 5.
5 DNS resolvers (those that successfully responded to periodic
scans) inside the university network simultaneously received a
surge of DNS query packets (i.e., around 4K-5K per hour) at
around 11pm on 1st May with the question name “ietf.org”.
We note that the response size (in bytes) varies in the range
of 15 to 45 times (i.e., the amplification factor) the query
size. Fig. 5(a) shows the query count (and the corresponding
response count) for one of these DNS resolvers – others
displayed almost the same pattern with a slight variation in
their traffic rate.

Considering aggregated query traffic (with the victims’
addresses as source) in Fig. 5(b), it is evident that the three
victims were targeted consecutively (each shown by unique
line color). We note that all of three victims are servers
associated with AS49453 located in The Netherlands.

■�t❡r♥❛❧ ❍♦s✁✂➱

❊✄☎✆✝✞✟✠ ✡☛☞✐✌✍✎✏ ✭▲✑✈✒✓ ✶✮✔

✕✖✗✘✙✚✛✜ ✢✣✤✥✦✧★✩ ✪✫✬✯✰✱ ✷✲

✳ ✴ ✵✸❣✹✺ ✻✼✽✾✿❀ ❁❂

❃❄❅❆❇ ❈❉❋●❏❑ ▼◆❖

P

◗

❘

❙❚❯❱❲ ❳❨❩❬❭❪ ❫❴

❵❜❝❞❢❤❥❦ ♠♣q✉✇①②③ ④⑤⑥⑦⑧⑨ ⑩❶

❷❸❹❺❻❼❽❾ ❿➀➁➂➃➄➅➆ ➇➈➉ ➊➋➌➍➎ ➏➐➑➒➓➔→ ➣↔↕➙➛➜

➝➞
➟➠

➡➢➤

➥➦

➧➨➩➫➭

➯➲➳➵➸

➺➻➼➽➾

➚➪➶ ➹➘➴

Figure 7: Our hierarchical data structure.

IV. VOLUMETRIC PROFILING AND DETECTION SCHEME

In this section, we present our methodology in profiling
and detecting distributed DNS attacks by developing a dy-
namic volumetric behavior model, and employing anomaly
detection algorithms. Fig. 6 illustrates the schema of our
method. We first develop (§IV-A) a binary-hierarchical at-
tributed graph data structure to describe the volumetric traffic
profile of external entities and mathematically show its efficacy
in detecting attacks (especially distributed ones) by simple
thresholding at multiple levels of the hierarchy. Our data
structure is applicable to generic volumetric scans and attacks.
In this paper, we only demonstrate its merits specifically to
DNS-based attacks. We prove by mathematical analysis that
our scheme is able to detect scans and floods of various
forms (e.g., distributed attacks are detected at an aggregated
level) and varying rates (e.g., low-rate attacks are detected
within a guaranteed time period). Legacy threshold-based
diagnosis methods only consider traffic rate as attribute for
attack detection that makes it relatively easier for stealthy
attackers to subvert the diagnosis systems. To address this
shortcoming, we identify (§IV-B) key attributes of network
traffic that are collectively able to distinguish benign versus
malicious behavior of external sources. Using these attributes,
we extend (§IV-C) our theoretical threshold-based hierarchy
to a practical machine learning-based diagnosis system that
employs anomaly detectors at three layers of host, subnet, and
AS. We evaluate the performance of our scheme (profiling
external sources using our novel data structure combined
with ML-based models) in detecting distributed attacks with
high accuracy, and highlight its superior detection ability in
comparison with simple and hierarchical thresholding-based
diagnosis methods.

A. Hierarchical Data Structure

In order to profile the volumetric behavior of an attacker, we
employ a graph-like data structure to capture the relationship
between external source entities and internal destination hosts
of a given network. External source entities can be identified
by a hierarchy of: hosts under subnets under ASes. As noted
in §III, DNS query scanners and flooders are likely to be
located within certain ASes and/or subnets. Therefore, it is
important to develop a comprehensive model that covers traffic

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

Algorithm 1 Multi-thresholding Retention Duration

1: procedure ACTIONPKTIN
2: while PktIn do
3: for n from MaxLevel to 0 do
4: if PktIn not match any node on level n then
5: create corresponding node and edge with

retentionDuration as 2n−1R
6: else
7: update the matched node and edge
8: procedure ACTIONATTACKERDETECTED
9: for n from maxLevel to 0 do

10: if noden,i on level n is anomaly then
11: if n > 1 then
12: set retention duration of its child nodes

on level n− 1 to their parent level

activity of external sources at various levels of aggregation
(as opposed to purely individual hosts level), enabling us
to detect sophisticated attacks that get distributed across a
number of hosts, subnets, or ASes, aiming to evade threshold-
based diagnosis by lowering their traffic rate.

1) Key Design Rationales: External entities can be identi-
fied by a hierarchy of: hosts under subnets under ASes. As
noted in §III-B, DNS query scanners and flooders are likely
to be located within certain ASes or subnets. Therefore, it is
important to consider a comprehensive model that covers traf-
fic activity of external entities at various levels of aggregation,
enabling us to detect sophisticated attacks that are distributed
or go under the radar (by lowering their traffic rate). Since the
set of external entities can be quite massive (i.e., potentially
the whole IPv4 space on the Internet), it becomes impractical
to keep states forever. On the other hand, forgetting states too
quickly may result in missing slow attackers. Therefore, we
need an efficient retention policy to age out inactive entities
in our data structure.

2) Theoretical Framework of Our Data Structure: Given
the above requirements, we construct a binary hierarchical
attributed graph model [43], as shown in Fig. 7. In this
diagram, enterprise internal hosts are represented by circles
at the bottom, connected via solid edges to external entities
(shown by filled squares) which themselves get aggregated to
upper-level entities via dashed edges. We apply aggregation
to both nodes and edges in this model. Level-1 entities each
represents an external host IPv4 address on the Internet (i.e.,
/32), while level-2 entities are a group of external hosts created
by masking one bit in the IPv4 address (i.e., /31) – all the
remaining levels work by incrementally masking the IP to
get a larger subnet. To visualize the edge aggregation let us
focus on two leftmost level-1 hosts (i.e., eH1 and eH2) shown
in Fig. 7. They both have a connection (i.e., e1 and e2) to
the first internal host (i.e., iH1). These two level-1 edges are
aggregated as a single edge e3 at level 2.

Dynamic retention policy: Nodes (i.e., an external entity)
and edges in our model each would have a set of attributes
(explained in §IV-B), describing their profile, and they will be
removed dynamically from the graph if they become inactive

for longer than a corresponding retention duration defined in
Algo. 1.

A new node (with an edge) is created at a level where an
incoming packet does not match any existing node at that
level in the graph (this needs to be checked for every level).
Note that each node at level n+ 1 has two children nodes at
level n because of the binary nature of subnetting operations.
We, therefore, choose to initialize Tn+1, the retention period
of nodes at level n + 1, to the sum of retention periods of
its children (Tn+1 = 2Tn, where T0 = R a constant value
set by an administrator). Upon creation of a node (with an
edge), a default retention duration (i.e., Tn = 2n−1R) of
its corresponding level n is assigned to the new node and
edge. One may consider lager factors for the initial retention
value (e.g., 3n−1R) set for levels of the hierarchy. We note
that longer retention period can result in improved visibility,
but at much higher computing costs since a larger number of
states need to be maintained. If the incoming packet matches
an existing node and edge, then the corresponding retention
duration is re-initialized.

Upon detection of an attacker node (at level n), the retention
period of the two child nodes (i.e., at level n−1) gets updated
to the same value of the level n. We double the retention period
of children for longer monitoring.

3) Detecting External Scanners & Flooders: We now show
how our proposed model can detect scanners, especially those
with low rate probing activity. Let’s assume a simple threshold
N is employed to detect scanners. A scanner node with
retention duration Tn can be detected if it probes α internal
hosts per epoch time and the condition (1) below is satisfied.

αTn ≥ N (1)

Detecting a slow scanner: A slow scanner can go unde-
tected since its node/edge is removed from the graph every
period of retention before hitting the threshold N . Instead, a
higher level node with a larger (i.e., power of two) retention
duration Tn+1 will be flagged as a scanner, and thereby the
retention duration Tn of the child nodes gets updated. The
time needed to detect the scanner child node is given by:

2
N

α
− Tn (2)

Proof of formula 2. It takes N
α for the retention policy of

a scanner node to get updated to a higher value of its parents
(i.e., time taken to detect a parent/root node as attacker). Since
the scanner node has already had αTn edges with internal
hosts, it needs to accumulate N − αTn more edges before
being detected. This takes N

α − Tn with the probing rate α.
Thus, in total, it take 2Nα − Tn for a successful detection at
the level of scanner node.

This process will be sequentially passed to nodes at lower
levels until a successful detection at the lowest level (n = 1)
is achieved. Hence, given the simple detection criteria (i.e.,
condition (1) above), an external scanner can be detected
within a guaranteed time tdetect:

tdetect =

{
N
α , if T1 ≥ N

α

nNα −
∑n−1
i=1 Ti, if Tn−1 <

N
α &Tn ≥ N

α

(3)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

Proof of formula 3. If the probing rate is high enough for
the host being detected within its initial retention period,
then the detection time is N

α . Otherwise, tdetect is derived
by aggregating multiple processes defined in formula 2 till the
lowest level.

Detecting distributed scanners: If a scan is performed by
k scanners each having rate α that cannot be detected at host-
level by default T1 (i.e., αT1 < N), it is possible (under
certain conditions) to detect them at host-level earlier than
nNα −

∑n−1
i=1 Ti, as computed in formula (3). In the best-case

scenario, if all scanners are immediate neighbors of each other
in Fig. 7 (i.e., quickly converge to one node at higher level),
and a root node (a parent covering all scanners) at higher levels
has a sufficiently large retention period, it takes tdetect given
by:

tdetect =
N

α
+

n−1∑
i=1

(
N

2iα
− Ti) (4)

Proof of formula 4. Detection time tdetect is derived in a
similar way as in formula 3, except that the scanning rate for
a node at level n is 2n−1α instead of α due to aggregation.

Otherwise, if the root node cannot be detected within its
default retention period, then the detection process takes longer
since the root node needs to be first detected as a scanner
(by updating the retention period from upper layers). In this
scenario, the detection time tdetect is given by:

tdetect =
N

α
+

−1+log2 k∑
i=1

(
N

2iα
−Ti)+

n−1∑
j=log2 k

(
N

2−1+log2 kα
−Tj)

(5)
Proof of formula 5. From level 2 to level log2 k, all children

of a scanner parent are scanners, while from level 1 + log2 k
to level n, each parent scanner has only one scanner child as
explained in scenario for formula 3. Thus, the detection time
is a combination of both processes.

To summarize, a scan can be detected at the host level within
the duration tdetect given by formula 6, while the best-case is
that all scanners are immediate neighbors with high scanning
rate, and the worst-case is when scanners are located sparsely
on the graph each with low scanning rate. In other words:

N

α
≤ tdetect ≤ n

N

α
−
n−1∑
i=1

Ti (6)

where, n is the level at which the scan is first detected (i.e.,
αTn ≥ N and αTn−1 < N).

Proof of formula 6. The best-case scenario is when the
scanning attack is detected (at the host level) within default
retention period, while the worst-case is that all attackers can
not be detected within default retention period and they are
sparsely distributed.

Detecting distributed flooders at aggregation level: Our
proposed model can detect flooders at the highest aggregation
level (i.e., root node) when a group of flooders is involved.
This enables us to effectively detect (and mitigate) distributed
attacks.

We define a simple threshold N for detecting flooder hosts,
similar to that in condition (1) but for the rate of incoming

queries. If an external host queries an internal node with more
than N packets per time epoch, it gets detected. Considering
aggregation, a node at level n is detected as a flooder if its
query rate α exceeds N ∗ 2n−1. Hence, given k immediate
neighbor flooder hosts with attack rate α, our data structure
is able to detect distributed attacks at the highest aggregation
level ndetect given by:

ndetect = 1 + log2 k (7)

4) Practical Design Choices: We have demonstrated the ef-
ficacy of our mathematical-based model to detect challenging
(low-rate and/or distributed) scans and floods. To realize and
further improve this model for detecting volumetric attacks in
real networks at scale, we consider three key design choices
as follows.

First, instead of aggregating external source entities se-
quentially by subset mask, we track their activities in our
model using a three-level hierarchy including AS level,
subnet level (i.e., registered subnets under the administration
of each AS), and host level (i.e., IP address of individual
external source hosts). Second, since applying thresholds only
on the traffic rate of an external host cannot isolate low-
rate attackers from normal users, we use a collection of
attributes to accurately model the behavior of external hosts
individually as well as at aggregated levels (i.e., subnets and
autonomous systems), as explained in §IV-B. We replace the
thresholding-based detection function with anomaly detection
techniques. To enhance resilience against morphed attacks
that deviate from known signatures [47], we train our models
only with the behavior of benign external entities (i.e., hosts,
subnets, and ASes) and hence detect anomalies as described
in §IV-C. Third, to scale our solution it is important to react
quickly, and manage costs of memory access efficiently since
a large amount of data needs to be processed in real-time. We,
therefore, use online algorithms [32] to receive one data point
at a time and use it to update a set of attributes – the required
statistics (variance and average) are computed in a single pass
when costs of memory access dominate those of computation.
We compute the variance attribute using Welford’s method
[53] and the average attributes are computed by exponential
averaging. After the update, the data point is discarded and
only the updated attributes are kept in memory.

B. Identifying and Computing Attributes of DNS Traffic for
External Entities

We analyzed the DNS query behavior of external hosts (with
their subnets and autonomous systems) in §III-B. Given the
insights obtained from real attackers, we now identify and
compute important attributes (for each external entity) needed
for our detection models to distinguish normal external entities
from anomalous ones.

1) Attributes: We showed in §III-B, DNS-based attackers
tend to craft query packets using a set of predefined domain
names. We define our first attribute as varPktSize (i.e., vari-
ance of packet size sent by the external entity), since the size of
query packets sent by scanners and/or flooders are less variant
compared to queries from normal (legitimate) hosts.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

Table II: Summary of data cleansing for the university network (1 May 2018).

Reason of Removal Unanswered NameError ServerFailure Refused NotImplemented FormatError

Number of Pkts 9,970,082 689,422 40,247 29,155 21 18

Normal external users (including individual clients and
recursive resolvers) may only query a limited number of
internal hosts (i.e., DNS servers of the organization). Scanners,
on the other hand, contact a larger number of internal hosts
(especially at relatively large time-scales). We therefore choose
our second attribute as numHostQry (i.e., number internal
hosts queried by each external entity).

Both external flooders and heavy scanners send a much
larger number of query packets (in total) to the enterprise
network compared to normal external users. Flooders focus
on one or a set of internal hosts, whereas scanners sweep
over a wider range of internal hosts. So, we choose our third
attribute as avgPktCountHost which is the average number of
query packets sent to each internal host contacted.

For our last attribute (i.e., varPktCountHost), we compute
the variation of query packet count sent to each internal host by
an external entity. Note that the value of this attribute is smaller
for scanners compared to flooders and legitimate users, since
scanners tend to send an identical number of query packets
(e.g., one or two) to internal hosts of interest.

High-profile DNS query-based attacks can be quickly de-
tected by either numHostQry (for heavy scanners) or avgP-
ktCountHost (for heavy flooders). For relatively low-profile
attacks (i.e., distributed floods and/or slow scans), we need
an enhanced visibility of the behavior of external entities
using the collection of four attributes, aggregated-level models
with dynamic retention policies. Next, we discuss how these
attributes for each external entity (i.e., node in the graph
model) are computed in real-time.

2) Managing States for Edges: As explained in §IV-A, an
external entity is related to an internal host using an edge in
our graph model. We dynamically update the four attributes of
each external entity every epoch time (e.g., one minute) using
a number of states maintained for the graph edges.

For an edge, we track three main states including total
number of packets (denoted by Np), total volume of packets
(denoted by Vp), and variance of packet size (denoted by
σp) during each epoch – arrival of a DNS query updates
these three states for the corresponding edge. Edge states are
exponentially averaged (with weighting factor of 0.9) at the
end of each epoch – we employ the Welford’s method [53] to
compute σp in a single pass (i.e., online algorithm).

Computing Attributes: Given edge states, the four at-
tributes of an external node are computed as follows.
numHostQry equals the number of edges associated with the
node; varPktSize equals the weighted average of σp across all
edges (i.e., Σ

σp.Np

ΣNp
); avgPktCountHost equals the average Np

across all edges (i.e., ΣNp

numHostQry); and, lastly varPktCoun-
tHost can be derived by computing the standard deviation of
Np on all associated edges.

C. Anomaly Detection Model

We now train, tune and validate the accuracy of three
anomaly detection models, namely host-level, subnet-level
and AS-level for external source entities. We note that the
intended pattern of inbound DNS traffic can vary across
different enterprises, depending on the richness and size of
their infrastructure, and their services offerings. Therefore,
each network would have its own set of models trained by
their own records of DNS traffic activity to achieve the best
detection performance. To make the training process portable
across enterprises, our engines for data cleansing, producing
training set, and generating models are fully automated and
consume DNS logs (i.e., PCAP files) as inputs.

1) Dataset Preparation: Benign instances obtained from
real DNS traffic of each enterprise are used for training
anomaly detection models of the corresponding network.
Additionally, we generate and collect data of DNS attacks
including scans and floods of varying rates in our lab testbed.
This attack dataset (together with the benign dataset) is used
to evaluate the accuracy of our host-level anomaly detection.

Benign dataset: We clean our raw dataset (of 1st May)
by removing unanswered and invalid queries, and use it for
generating benign instances. We acknowledge that our cleaned
dataset can still contain “not purely benign” instances, thus we
tune a hyper-parameter called “contamination level” during
model training to reduce the effect of outliers in the dataset.
For example, we extracted 3.6M DNS queries (as benign) after
removing 10.7M queries from the university dataset3 on 1 May
– details of removed queries are shown in Table II. Using
cleaned data, we generated 32.4M, 24.5M, 11.1M benign
instances (of 1-minute granularity) for the host-, subnet-, and
AS-level models respectively.

Attack dataset: We set up an isolated testbed in our lab to
emulate an enterprise network communicating with external
hosts via a border router. The internal and external networks
were configured with a subnet from a /16 IPv4 address prefix.
We configured a DNS server (running BIND 9) and one
regular host inside the enterprise zone, and 3 DNS servers
and 2 attacker machines (running a customized script using
the Python Scapy library) on the external zone – each machine
running Ubuntu 16.04.4 and equipped with a 2.1GHz CPU and
8GB RAM.

Our attack script running on the two machines (i.e., M1
and M2) generated query scans (from M1) to the entire IP
range and query floods (from M2) on the DNS server of the
internal zone (enterprise network). We generated a diversity
of attack patterns by varying three parameters for each attack
type. For query scans, we varied parameters as follows: the
query rate from 1 to 72K (in 12 steps) packets-per-hour; query
names selected randomly from a varying size (1 to 10) of
a pre-populated list of the university sub-domains; and, the

3We omitted results of data cleansing and model training for the research
institute. Fairly similar observations were made in both organizations.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

Table III: Model tuning (host-level).

Cont. Level Accuracy TN TP AUC

0.0001 99.39% 99.98% 65.35% 76.94%
0.0002 99.42% 99.96% 68.41% 89.34%
0.0005 99.54% 99.89% 79.45% 97.05%
0.0010 99.76% 99.81% 97.21% 99.96%
0.0020 99.57% 99.61% 97.43% 99.91%
0.0050 99.03% 99.04% 98.524% 99.74%
0.0100 98.03% 98.03% 98.55% 98.86%
0.0200 96.09% 96.05% 98.74% 97.05%
0.0500 90.16% 90.01% 99.13% 61.34%

Figure 8: Importance of attributes across the three models.

number of queries per internal host from 1 to 4. For query
floods, the rate varied from 1 to 300 (in 12 steps) packets-
per-second; query names were selected similar to query scan
attacks; and, the query types were chosen from four common
types (i.e., A, AAAA, ANY, PTR). In total, we generated 480
scans and 480 floods with each attack lasting for 3 hours. Note
that multiple attacks, each sourced from a unique crafted IP
address, were scheduled in parallel. We collected data of the
attacks on the testbed, computed attributes of external attackers
during their activity, and generated 556,258 instances at host-
level and 13,904 instances for both subnet- and AS-level – all
instances associated with one subnet and one AS.

2) Attribute Analysis: We now employ “information gain”
(IG) metric to quantify the impact of our attributes in distin-
guishing benign and anomalous instances. This metric mea-
sures the correlation between each of the attributes and the
predicted output of decision trees (valued between 0 and 1,
where 0 indicates an irrelevant attribute and 1 highlights an
important attribute). This method calculates the reduction of
entropy values by excluding a certain attribute from predic-
tion. We note that training a model with attributes of low
information-gain can lead to issues like overfitting, since the
classifier gets trained by noise or less-relevant information.

We show in Fig. 8 the importance of our four attributes
for host-level, subnet-level, and AS-level models. It can be
seen that the importance all attributes (across the three models
of our hierarchy) is larger than 0.5, and hence carrying a
significant amount of information in differentiating benign and
malicious entities. In addition, we observe that varPktSize
(with importance value equal to 0.772) is a fairly important
attribute for the host-level model – this is because an anoma-
lous external host will likely craft DNS packets of the same

Table IV: Model tuning (subnet-level and AS-level).

Cont. Level TN of subnet model TN of AS model

0.0001 99.98% 99.98%
0.0002 99.97% 99.96%
0.0005 99.96% 99.90%
0.0010 99.91% 99.82%
0.0020 99.80% 99.63%
0.0050 99.02% 98.97%
0.0100 98.02% 97.94%
0.0200 96.08% 95.87%
0.0500 89.99% 89.91%

size, and hence resulting in a low (close to zero) variance
for their packet size. Also, it is seen that the importance of
numHostQry and varPktCountHost slightly increases from
the host-level model to subnet-level and AS-level models,
highlighting that these attributes become more influential at
aggregate levels.

3) Model Tuning and Evaluation: We considered two
widely-used anomaly detection algorithms, namely isolation
Forest [29] (decision-tree based) and one-class SVM [36] (high
dimensional distribution-based). We evaluated the accuracy of
these algorithms using 10-fold cross validation on the benign
dataset (obtaining the True Positive rate) and testing on the
attack dataset (obtaining the True Negative rate). Note that
True Positives indicate benign instances that are correctly
classified as benign, and True Negatives are attack instances
that are correctly labeled as attack.

To be more specific, we trained and evaluated our model for
each algorithm by varying the contamination-level parameter4

for the isolation Forest, and kernel functions (i.e., linear,
Gaussian, polynomial, sigmod, and RBF) for the one-class
SVM. For each set of tuning parameters or functions, the
training dataset (benign only) is randomly partitioned into
ten equal size subsets. Of the ten subsets, nine are used as
training data, and the remaining subset is retained as the
validation data for testing the model. During the testing phase,
benign instances from the single subset of validation is used
to compute the rate of True Positive (TP) while the entire
attack dataset is used to compute the rate of True Negative
(TN). We found that the isolation Forest model outperforms
the one-class SVM model by both TP and TN rates. Given
the multi-centric distribution of our benign dataset (instances
are geometrically located in several clusters [17]), the SVM
model at best yields an overall accuracy of 63.6% (TN rate of
63.5% and TP rate of 74.6%).

We tuned and evaluated5 the host-level model of isolation
Forest considering both TP and TN rates, as shown in Table III.
We can see that increasing the contamination-level causes
the TP rate to fall monotonically (from 99.98% to 90.01%),
since the algorithm excludes more training instances at the
boundary of benign clusters when the contamination-level gets
larger. On the other hand, the TN rate is positively correlated
with the contamination-level, as low-profile attackers become

4A value between 0 and 1 that indicates the fraction of anomalies (i.e., not
benign instances) in the training dataset.

5In our evaluation, we used a mixed dataset (of labeled benign and attack
instances) to compute overall accuracy, true negative rate and true positive
rate.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

(a) The host model. (b) The subnet model. (c) The AS model.

Figure 9: Confusion matrix of best-performing selected models
at: (a) host, (b) subnet, and (c) AS, levels – columns corre-
spond to true labels and rows correspond to predicted labels.

similar to benign hosts in their attributes. We, therefore, set
the contamination-level to 0.001, resulting in the best overall
accuracy among all models and a reasonably high rate of both
TP and TN.

By tuning and evaluating models of subnet-level and AS-
level, we observe a similar impact of the contamination-level
on TN rate (as shown in Table IV) – the TP rate would
be consistently 100% (except for the contamination-level at
0.0001) since our attack instances at subnet-level and AS-
level represent a network of high-profile attackers. Given the
optimal value of the contamination-level (obtained from the
host model), we achieve TN rates of 99.91% and 99.82%,
and AUC values of 99.95% and 99.98% for the subnet-level
and AS-level models, respectively. The three best-performing
models trained with a contamination-level equal to 0.0001 are
selected for our university dataset, and their performance is
summarized by confusion matrices shown in Fig. 9.

By applying our best-performing models on the proposed
graph data structure to the synthetic attack dataset, all external
attackers are detected at the host level – 91.37% are detected
immediately (within the first minute of their commencement);
3.45% (low-rate scans and floods) are detected in 2 minutes;
and only 1.72% of very low-rate scans (with the rate of
1 packet per second) are detected after 8 minutes of their
commencement.

Impact of Training Data Composition on Detection
Performance: We have so far generated an almost perfect iso-
lation forest model (accuracy of 99.76%) by training it on the
purified data (benign-only). It has been shown in [30] that fine-
tuning the contamination-level (during training) may make no
or little difference to the model performance in certain situ-
ations where the training data consists of well-distinguished
malicious and benign instances (mix of “black and white”
instances) with ground-truth labels. We, therefore, quantify the
impact of impurified data (raw DNS data, consisting of benign
and malicious instances) on the performance of detection for
the host-level model. We tune the contamination-level ranging
from 0 to 0.2 is steps size of 0.005. We observe that the
model gives its best overall accuracy of 93.33% (true positive
86.94%, and true negative 99.72%) at the contamination-level
set to 0.085. This mis-detection of attack instances (low true
positive) highlights the fact that inclusion of anomalies in
the training data can be detrimental to the performance of
isolation forest one-class classifier (the boundary of the model
becomes loose), especially in absence of ground-truth labels

Figure 10: CCDF of anomaly score instances in evaluation
dataset (host-level model).

for relatively uncertain benign and malicious instances (“gray”
instances).

Understanding False Alarms of Our Model: The isolation
Forest algorithm outputs a score of anomaly (i.e., a value
between 0 and 1) for a given instance – where 0 score means
purely normal and 1 indicates a definite anomaly. We use the
anomaly score to quantify the severity of malicious behaviors
for external entities – a high anomaly score indicates that
the detected external entity strongly displays the behavior of
an attacker (e.g., high rates attack traffic or highly repetitive
packet contents), whereas lower anomaly scores suggest that
the anomalous external entity has slightly deviated from the
expected normal behaviors (e.g., a slow-rate scanner). We
show in Fig. 10 the CCDF of anomaly score for our ground-
truth evaluation instances (benign and attack). It can be seen
that about 90% of benign instances (shown by blue lines and
cross markers) have a low score of less than 0.3. We also
observe that the anomaly score for only a small faction of
benign instances (i.e., 0.2%) exceeds the red boundary line
(i.e., 0.5) in Fig. 10, separating benign and malicious entities.
We found that the reason for benign instances getting larger
anomaly scores was their avgPktCountHost attribute which
was slightly higher, compared to other benign instances. For
example, an external host (in the benign dataset) had sent
9,492 query packets (all responded with NoError flag) to 12
internal hosts in an hour – we are not able to verify if this
host (and it’s behavior) was illegitimate or not.

Moving to the distribution of anomaly score for attackers
(shown by black lines and circle markers in Fig. 10), about
85% of attack instances result a score of more than 0.6. We
also see a tiny fraction (2.8%) of attacks (floods and scans)
have a score of less than 0.5 generating False Positive alarms –
these instances mainly correspond to (a) the beginning of low-
rate scans depending on the traffic rate, and (b) low rate floods
with a diversified set of query names (e.g., 10 query names).
We note that these low-profile attacks may not be detected
by the host model in a short timescale, but they ultimately
get detected by the aggregated-level models (as explained in
§IV-A).

Limitation of Our Evaluation: Note that our training
dataset (benign) was obtained from a “real” production net-
work while the attack traffic traces were collected from a lab

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

Table V: Summary of in-the-wild dataset – May 2018.

Qry. in # Resp. out # Resp. in # Qry. out # ext. host # ext. subnet # ext. AS

University Campus 520,229,825 219,095,708 629,058,944 709,593,940 374,348 81,778 25,263

Research Institute 351,733,547 126,321,729 178,292,559 212,671,912 179,568 51,389 18,819

testbed (“synthetic”), and hence the overall evaluation mix
may not necessarily represent realistic traffic instances. For
future studies, one may want to consider a more comprehen-
sive attack dataset, covering a wider set of volumetric DNS
attacks (direct and/or distributed) that are collected from real
networks.

4) Testing the Dataset with a Commercial Firewall: We
replayed our mixed dataset through a typical enterprise next-
generation-firewall (Palo Alto Networks firewall appliance PA-
3020 [41]) which was configured using the vendor’s official
user manual [42]. This firewall generates Host Sweep and UDP
Flood alerts for DNS scans and floods, respectively. We found
that the firewall missed 83% of scanners and 16% of flooders
(i.e., in total 51% true positives) in our dataset, according
to its threat logs – note that all missed attackers had a low
rate (i.e., below 20 hosts every 10 seconds for scanners and
100 packet-per-second for flooders) of DNS traffic. Also, the
firewall generated no alert for benign instances (i.e., 100%
true negatives) .

Comparing these results obtained from the firewall with
those in Table III, it can be seen that our anomaly detection
scheme performs much better than the firewall by considering
the TP metric (i.e., 97.21% in Table III versus 51% highlighted
in the above paragraph). In terms of the TN metric, the
performance of our scheme is very close to that of the firewall
(i.e., 99.81% in Table III versus 100% stated in the above
paragraph). Note that our scheme raises malicious alarms for a
tiny fraction (i.e., 0.18%) of benign instances due to impurities
considered for the training dataset.

5) Testing the Dataset with Pure Thresholding of Our
Hierarchical Structure: In order to evaluate the efficacy of
our hierarchical structure (with appropriate parameters R, α,
N from §IV-A3), we applied thresholds on the packets rate
in our dataset (mixed benign and malicious). Our thresholds
are chosen according to industry best practices [42] (i.e.,
120% of maximum normal value). For detecting flooders,
we set host-level, subnet-level, and AS-level thresholds on
avgPktCountHost equal to 51, 64, and 82, respectively. Also,
for detecting scanners, thresholds on numHostQry are set to
8, 13, and 15 at respective levels of the hierarchy.

Our evaluation results show that all of the attacks (100%)
are detected by AS-level and subnet-level thresholding, while
89.42% of scans and 64.75% of floods are detected at the
host-level, resulting in an overall true positive rate of 77.08%.
Also, considering the true negative rates, we observe 98.24%,
98.57%, and 99.18% at AS-level, subnet-level and host-level,
respectively.

In summary, applying the thresholding method of our hi-
erarchical structure yields 99.18% TN and 77.08% TP at the
host level, while our anomaly detection model gives 99.81%
TN and 97.21% TP at the host level (Table III), and the
legacy thresholding employed by a commercial firewall results

Figure 11: Prototype implementation.

in 100% TN and 51% TP (§IV-C4). This shows that our
hierarchical data structure significantly improves the perfor-
mance of thresholding methods, but it is less performant when
compared with our anomaly-based approach which models
more comprehensive dynamic behavioral profiles.

V. IMPLEMENTATION AND IN-THE-WILD DETECTION

In this section, firstly, we demonstrate the efficacy of our
detection method using a replay of DNS traffic collected from
the two enterprises over a month. We then draw insights
into the severity of attacks detected with a closer look at
examples of low-profile scans and distributed floods. Next, we
compare the output of our system using a public blacklist from
Symantec and a commercial firewall from Palo Alto Networks.
Finally, we quantify the performance of our system and show
how we can detect DNS attacks in real-time with acceptable
memory and CPU footprints for a one month period with real
traffic of a large enterprise.

A. Prototype Implementation

Fig. 11 depicts the prototype implementation of our real-
time system that is deployed in our lab processing full DNS
traffic copied from the border of both enterprise networks.
We use an SDN switch (NoviFlow 2122 [39]) that takes a full
copy of enterprise Internet traffic (both inbound and outbound)
and selectively mirrors only DNS traffic (source or destination
port number equal to 53) to a compute node (i.e., network
function). All software modules are implemented on a generic
server (equipped with 16 2.10GHz CPUs and 64GB RAM)
running Ubuntu 16.04.4. Our packet processing module (i.e.,
network function) written in the Golang language using the
Data Plane Development Kit (DPDK) and the Intel NFF-Go
library. It extracts necessary attributes (i.e., source/destination
IP/port and packet size) from incoming query packets, and
passes them to update our hierarchical data structure also
written in Golang. We use IPASN data files (i.e., “.dat” files)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

Figure 12: Clustering external anomalous hosts.

to map external IPs to their corresponding subnets and ASes,
which are generated from MRT/RIB BGP archives [5]. Our
proposed detection modules are implemented using Python3
to be compatible with machine learning utilities. For decision-
making functions, we use the best-performing anomaly detec-
tion models (from §IV-C) trained with the contamination-level
equal to 0.001 (at all three levels: host, subnet, and AS) – they
perform reasonably well by both TP and TN metrics.

B. Summary of Dataset

A summary of our in-the-wild dataset collected over the
month May 2018 is shown in Table. V. For the university
network, we have a total of 2.0B DNS packets including 520M
incoming queries, 219M outgoing responses, 709M outgoing
queries and 629M incoming responses. Focusing on external
entities who sent DNS queries to the network, we see a total
of 374K unique hosts associated with 81K subnets and 25K
ASes. For the research institute, there were 867M DNS packets
of which 351M packets were incoming queries sourced from
179M external hosts associated with 51K subnets and 18K
ASes on the Internet.

We replayed the dataset of each organization on our system
with the corresponding models. Instances were created at run-
time for trained models to predict whether they are normal
or anomalous. We made a log of all anomalous instances
detected by our system for post-analysis and drawing further
insights. After evaluating the university dataset, we found
14785 external hosts (i.e., 3% of total hosts), 7403 subnets,
and 2415 ASes flagged as anomalous. Also, for the research
institute, 4332 external hosts, 2121 subnets, and 922 ASes
were detected as anomalous entities.

C. Clustering Anomalous Entities

In order to distinguish scanners from flooders (at all three
levels), we applied an unsupervised clustering algorithm, i.e.,
expectation-maximum (EM), to those entities detected as
anomalous. For the clustering model, we used two of our previ-
ously identified attributes (in §IV-B) namely avgPktCountHost
and NumHostQry as they collectively distinguish flooders from
scanners.

As a result of clustering for the university network: 14171
flooders and 621 scanners were found at the host-level; 7493
flooders and 107 scanners were identified at the subnet-level;

Table VI: Top scanner ASes.

AS ID Loc. Subnet Host
42570 CH 1 242
60781 NL 1 48
36375 US 1 32

Table VII: Top flooder ASes.

AS ID Loc. Subnet Host
32934 US 11 865
16509 US 87 707
14618 US 59 495

and, at the AS -level, 2430 and 47 flooders and scanners were
found. For the research institute, 4332 hosts, 2122 subnets,
and 921 ASes were identified as flooder entities, and also 490
hosts, 63 subnets, and 36 ASes were found as scanners.

Fig. 12 shows the scatter plot of two attributes, clearly sep-
arating flooders from scanners. As expected, flooders (shown
by blue circle markers) are primarily located in the top left
region of the plot while all scanners (shown by red cross
markers) are grouped on the lower right region. Interestingly,
we observe that several blue circles (clustered as flooders)
are located very close to scanners group – this is because of
their avgPktCountHost attribute value was higher than other
scanners, and thus are classified as flooders.

D. Anomaly Scores
We now consider attack profiles by checking the anomaly

score as well as the distribution of flooders and scanners at
various levels of aggregation. Higher anomaly scores indicate
a larger deviation from normal values of attributes (e.g., large
packet rates, highly repeated DNS query size, or numerous
internal host contacted). Fig. 13(a) shows the score of anoma-
lous entities detected by our isolation Forest models for hosts,
subnets, and ASes. The first observation is that the anomaly
score of detected attackers from real networks are relatively
larger (i.e., well above the border line 0.5) compared to attacks
generated in our lab. We also see that at least 10% of instances
(in all three models) have the score value greater than 0.7,
highlighting the confidence of our models in detecting these
anomalous entities in the wild.

We show in Figures 13(b) and 13(c) the distribution of
clustered anomalous entities. Fig. 13(b) shows the CCDF plot
of the number of anomalous hosts in anomalous ASes. The
majority of ASes cover less than 100 anomalous hosts (both
flooder and scanners). We observe that one AS has about
250 scanners but 7 ASes have relatively a large number of
flooders (possibly distributed). The same observation is made
for anomalous hosts of subnets, as shown in Fig. 13(c). We
verified that the tail of curves in Figures 13(b) and 13(c)
correspond to large anomaly scores (i.e., between 0.75 and
0.80). The top distributed scanner hosts are located in one
subnet, while the top distributed flooder hosts are spread across
many subnets (under the administration of one AS). We list
top scanner ASes and flooder ASes in Tables VI and VII
respectively, based on their count of anomalous hosts. It can
be seen that the top distributed scanner hosts are located in
one subnet, while the top distributed flooder hosts are spread
across many subnets (under the administration of one AS).

E. Two Representative Attacks
In order to demonstrate the efficacy of our scheme, we

focus on two representative attacks (i.e., a low rate scan and

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 15

(a) Anomaly score of anomalous instances. (b) Anomalous host count in anomalous ASes. (c) Anomalous host count in anomalous subnets.

Figure 13: Severity of attacks in the university network: (a) anomaly score, and (b, c) distribution of clustered anomalous hosts
in anomalous subnets and ASes.

(a) A low-rate scan. (b) A distributed flood.

Figure 14: Anomaly detection examples: (a) low-rate scan, and
(b) distributed flood.
a distributed flood) that are typically missed by traditional
solutions.

Fig. 14(a) shows the time-trace of anomaly score at all
three levels, tracking the evolution of our detection. This
attack is the low-rate scan which we manually identified in
§III-C, shown in Fig. 3(c). As mentioned earlier, 37 hosts
from a /16 subnet performed a scan to the university network
simultaneously each with the rate of less than 1 packet-per-
hour. We observe that this attack is first detected at the AS-
level (shown by red lines in Fig. 14(a)). It takes 7 minutes
for the subnet model to raise an anomaly alarm (shown by
black lines in Fig. 14(a)), and the host model starts detecting
attackers after more than an hour and half (we plot the score
for only one of 37 scanners as highlighted by blue lines in
Fig. 14(a)). This detection was successfully achieved because
of our hierarchical aggregation and dynamic retention policy
(explained in §IV-A) – detection of the attack at AS-level
increased the retention duration of child subnets, leading to
a detection at the subnet-level (with some delay) which in
turn elongated the retention policy of child hosts, enabling the
host model to detect the scanner hosts.

For our second example of attack, we show in Fig. 14(b)
the time-trace of anomaly score for one /16 subnet consisting
of 7 flooders which participated in a widely distributed flood
that we described in §III-D, shown in Fig. 4(a). We note
that this subnet is the only subnet under its AS that has
anomalous behavior – the AS looks normal otherwise. We can
see in Fig. 14(b) that right from the beginning of this flood
(i.e., around 7:07AM on 2nd May), the subnet was detected
as a heavily anomalous entity, while its AS was classified
as normal. We observe that the flooder host (one of 7) is
consistently flagged as anomalous with the score 0.64 due to
its repeated flooding pattern, while the anomaly score of the
subnet rises in time as more external hosts join this distributed
attack.

F. Comparison with Blacklist and Commercial Firewall

We selected 200 hosts6 , those that are flagged during the
entire month May 2018 – the top 100 hosts with the highest
anomaly score and the bottom 100 with the lowest anomaly
score (above the border line 0.5). We checked these hosts
against an IP reputation repository (i.e., blacklist) maintained
by Symantec [50]. This web-based tool takes an IP address
as input and reports if it was involved in malicious activities
such as sending spam or spreading viruses. We found that the
majority (i.e., 63%) of hosts in our top 100 list are flagged
as malicious IPs in the Symantec blacklist – 6 of them are
scanners and 57 of them are flooders. Also, 58 hosts in our
bottom 100 list are seen in the blacklist – all of these hosts
are flooders.

Finally, to compare our system with a commercial firewall,
we replayed our in-the-wild dataset through the Palo Alto
Networks firewall appliance PA-3020 [41]. We extracted and
analyzed the syslog file produced by the firewall during our
traffic replay. The firewall detected 70 scanner IP addresses
for the university dataset and 107 scanners for the research
institute – this is a subset (11.3% for the university dataset
and 21.8% for the research institute) of our detection results.
Unsurprisingly, all of the scanners detected by the firewall had
a high rate of probing, while none of low-rate scanners were
flagged.

For the query floods, the firewall captured 5 distributed
attacks in the university network and 2 attacks in the research
institute, as those victim internal hosts received an excessive
number of UDP packets within a short time interval. Although
the firewall logged all external IPs that sent packets when the
alarm was triggered, it was not possible to precisely identify
and locate attackers. Our system, instead, not only detected
all those distributed attacks flagged by the firewall, but also
precisely captured the source (i.e., external anomalous hosts,
subnets or ASes). Besides, it is important to note that our
system detected 9 flooding attacks (sourced from the bottom
100 list) for the university network, but none of them were
alerted up by the firewall as the attack rate was relatively low.
We manually checked these low-rate floods and found that
they all sent repeated queries (with identical query name) to 6
non-DNS servers, 2 authoritative name servers, and 3 internal
recursive resolvers.

6Automatic lookup of all flagged hosts in the blacklist is prevented by
anti-robot image test.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 16

(a) Total memory usage. (b) Updating the graph structure. (c) Extracting attributes & calling models. (d) Prediction responsiveness.

Figure 15: Real-time performance of our detection system under full load of the university campus network.

G. Real-Time Performance of Our Detection System

To demonstrate the practicality of our proposed scheme we
quantify the performance of our system (explained in §V-A)
with one month’s worth of real traffic from the university net-
work7. Fig. 15 shows the real-time utilization of memory and
CPU in our prototype. The memory consumption is recorded
every minute, as shown in Fig. 15(a). Also, we measure the
CPU utilization for two separate processes, namely Updating
the graph structure upon arrival of DNS packets (Fig. 15(b)),
and Extracting attributes from the graph structure and calling
models at three levels of hierarchy (Fig. 15(c)) – each process
utilizes one CPU. Additionally we quantify the inference
responsiveness (i.e., time taken for computing attributes and
obtaining results from models at the end of each epoch)
as shown in Fig. 15(d). It is seen that all four metrics are
bounded by reasonable values: the memory consumption is
capped at 2.5GB, Updating and Processing respectively use
up to 16% and 1.3% of CPU, and the system responds in less
than 0.5s. Note that our system performance fluctuates (within
a bounded region) due to the variation in the traffic. This
demonstrates that our system can meet reasonable performance
criteria typically required by enterprise network operators.

VI. CONCLUSION

Enterprise networks are the target of sophisticated DNS
attacks in the form of query floods, reflection and amplification
attacks, and scans. Existing security appliances are not well-
equipped to protect network assets from dynamic attacks
sourced from distributed and automated external hosts on
the Internet. We have developed a method using anomaly-
based detection models to automatically detect DNS floods
and scans of varying rates sourced from one or a distributed
set of external hosts. We highlighted the characteristics of
malicious entities sending query-based attacks, developed a
hierarchical and dynamic graph data structure for scalable
monitoring and detection of scans and volumteric attacks,
identified key attributes to effectively differentiate attacker
entities versus normal external users, and employed anomaly
detection models (trained/tuned using benign and attack traffic)
in our dynamic data structure. Lastly, we demonstrated the
efficacy of our scheme and compared our system with a public
blacklist and a commercial firewall.

7We omit results of the research institute since its load was lower than the
university network.

ACKNOWLEDGMENTS

This work was completed in collaboration with the Aus-
tralian Defence Science and Technology Group.

REFERENCES

[1] Akamai Technologies, “Threat Advisory: Mirai Botnet,” https://bit.ly/
2UC1JfJ, 2017, accessed: 2017-12-3.

[2] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, II, and D. Dagon,
“Detecting Malware Domains at the Upper DNS Hierarchy,” in Proc.
USENIX Security, Berkeley, CA, USA, Aug 2011.

[3] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From Throw-away Traffic to Bots: Detecting
the Rise of DGA-based Malware,” in Proc. USENIX Security, Bellevue,
WA, USA, Aug 2012.

[4] R. Arends, R. Austein, D. M. M. Larson, and R.Rose, “DNS Security
Introduction and Requirements,” RFC 4033, Mar 2005. [Online].
Available: https://www.ietf.org/rfc/rfc4033.txt

[5] H. Asghari, “Offline IP address to Autonomous System Number lookup
module,” https://pypi.org/project/pyasn/, 2020, accessed: 2020-11-05.

[6] K. Bhardwaj et al., “Towards IoT-DDoS Prevention Using Edge Com-
puting,” in Proc. USENIX HotEdge, Boston, MA, USA, Aug 2018.

[7] J. Bushart, “Optimizing Recurrent Pulsing Attacks using Application-
Layer Amplification of Open DNS Resolvers,” in Proc. USENIX WOOT,
Baltimore, MD, USA, Aug 2018.

[8] Y. Chen et al., “DNS Noise: Measuring the Pervasiveness of Disposable
Domains in Modern DNS Traffic,” in Proc. IEEE/IFIP DSN, Atlanta,
Georgia, USA, Jun 2014.

[9] T. Chung et al., “Understanding the Role of Registrars in DNSSEC
Deployment,” in Proc. ACM IMC, London, UK, Nov 2017.

[10] Cisco Blog, “Overcoming the DNS Blind Spot,” https://blogs.cisco.com/
security/overcoming-the-dns-blind-spot, 2016, accessed: 2019-05-15.

[11] Cisco Systems, “Protection Against Distributed Denial of Service At-
tacks,” https://bit.ly/2WUbvvK, 2018, accessed: 2018-11-2.

[12] D. Dagon et al., “Recursive DNS Architectures and Vulnerability
Implications,” in Proc. NDSS, San Diego, CA, USA, Feb 2009.

[13] N. Daswani and H. Garcia-Molina, “Query-flood DoS Attacks in
Gnutella,” in Proc. ACM CCS, Washington, DC, USA, Nov 2002.

[14] K. Du, H. Yang, Z. Li, H. Duan, and K. Zhang, “The Ever-Changing
Labyrinth: A Large-Scale Analysis of Wildcard DNS Powered Blackhat
SEO,” in Proc. USENIX Security, Austin, TX, USA, Aug 2016.

[15] Z. Durumeric et al., “ZMap: Fast Internet-wide Scanning and Its Security
Applications,” in Proc. USENIX Security, Washington, D.C. , USA, Aug
2013.

[16] EfficientIP, “EfficientIP and IDC: DNS Attacks Cost Nearly $1 Million
Each, Increasingly Impacting the Cloud ,” Global DNS Threat Report,
2020.

[17] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-
dimensional and large-scale anomaly detection using a linear one-class
svm with deep learning,” Pattern Recognition, vol. 58, pp. 121 – 134,
Apr 2016.

[18] S. K. Fayaz et al., “Bohatei: Flexible and Elastic DDoS Defense,” in
Proc. USENIX Security, Washington, D.C., USA, Aug 2015.

[19] Fortinet, “FortiDDoS and Verisign DDoS Protection Service,” https://
bit.ly/2DsDObH, 2018, accessed: 2018-11-2.

[20] K. Fukuda, J. Heidemann, and A. Qadeer, “Detecting malicious activity
with dns backscatter over time,” IEEE/ACM Transactions on Network-
ing, vol. 25, no. 5, pp. 3203–3218, Oct 2017.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 17

[21] T. Greene, “How the Dyn DDoS attack unfolded,” https://www.
networkworld.com/article/3134057/how-the-dyn-ddos-attack-unfolded.
html, 2016, accessed: 2020-11-03.

[22] P. Hoffman and P. McManus, “DNS Queries over HTTPS (DoH),” RFC
8484, Oct 2018. [Online]. Available: https://tools.ietf.org/html/rfc8484

[23] J. Krupp et al., “Identifying the Scan and Attack Infrastructures Behind
Amplification DDoS Attacks,” in Proc. ACM CCS, Vienna, Austria, Oct
2016.

[24] M. Kührer et al., “Going Wild: Large-Scale Classification of Open DNS
Resolvers,” in Proc. ACM IMC, Tokyo, Japan, Oct 2015.

[25] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary, “Offloading Real-
time DDoS Attack Detection to Programmable Data Planes,” in Proc.
IFIP/IEEE IM, Arlington, VA, USA, Apr 2019.

[26] H. Li, H. Hu, G. Gu, G.-J. Ahn, and F. Zhang, “vNIDS: Towards Elastic
Security with Safe and Efficient Virtualization of Network Intrusion
Detection Systems,” in Proc. ACM CCS, Toronto, Canada, Oct 2018.

[27] B. Liu et al., “Who Is Answering My Queries: Understanding and
Characterizing Interception of the DNS Resolution Path,” in Proc.
USENIX Security, Baltimore, MD, USA, Aug 2018.

[28] D. Liu, S. Hao, and H. Wang, “All Your DNS Records Point to Us:
Understanding the Security Threats of Dangling DNS Records,” in Proc.
ACM CCS, Vienna, Austria, Oct 2016.

[29] F. T. Liu et al., “Isolation Forest,” in Proc. IEEE ICDM, Pisa, Italy, Dec
2008.

[30] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-Based Anomaly
Detection,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, Mar. 2012.

[31] Z. Liu, H. Jin, Y.-C. Hu, and M. Bailey, “MiddlePolice: Toward
Enforcing Destination-Defined Policies in the Middle of the Internet,”
in Proc. ACM CCS, Vienna, Austria, Oct 2016.

[32] J. Loveless, S. Stoikov, and R. Waeber, “Online algorithms in high-
frequency trading,” ACM Queue, vol. 11, no. 8, pp. 30:30–30:41, Aug.
2013.

[33] M. Lyu et al., “Mapping an Enterprise Network by Analyzing DNS
Traffic,” in Proc. Springer PAM, Puerto Varas, Chile, Mar 2019.

[34] M. Antonakakis et al., “Understanding the Mirai Botnet,” in Proc.
USENIX Security, Vancouver, BC, USA, Aug 2017.

[35] D. MacFarland et al., “The best bang for the byte: Characterizing the
potential of DNS amplification attacks,” Computer Networks, vol. 116,
pp. 12–21, Apr 2017.

[36] L. M. Manevitz and M. Yousef, “One-class Svms for Document Clas-
sification,” J. Mach. Learn. Res., vol. 2, pp. 139–154, Mar. 2002.

[37] W. Meng et al., “Rampart: Protecting Web Applications from CPU-
exhaustion Denial-of-service Attacks,” in Proc. USENIX Security, Bal-
timore, MD, USA, Aug 2018.

[38] J. Mirkovic and P. Reiher, “D-WARD: A Source-End Defense Against
Flooding Denial-of-Service Attacks,” IEEE Trans. Dependable Secur.
Comput., vol. 2, no. 3, pp. 216–232, Jul. 2005.

[39] NoviFlow, “NoviSwitchTM 2122 High Performance Open-
Flow Switch,” https://noviflow.com/wp-content/uploads/
NoviSwitch-2122-Datasheet-1.pdf, 2018, accessed: 2018-28-1.

[40] Y. M. P. Pa et al., “IoTPOT: Analysing the Rise of IoT Compromises,”
in Proc. USENIX WOOT, Washington, D.C., USA, Aug 2015.

[41] Palo AIto Networks, “PA-3000 Series Datasheet,” https://bit.ly/
2MPcsk2, 2018, accessed: 2018-28-1.

[42] Palo Alto Networks, “DoS and Zone Protection Best Practices,” https:
//bit.ly/2HQOMwU, 2018, accessed: 2018-28-1.

[43] J. J. Pfeiffer III et al., “Attributed Graph Models: Modeling Network
Structure with Correlated Attributes,” in Proc. ACM WWW, Seoul,
Korea, Apr 2014.

[44] C. Rossow, “Amplification Hell: Revisiting Network Protocols for DDoS
Abuse,” in Proc. NDSS, San Diego, CA, USA, Feb 2014.

[45] S. Schüppen, D. Teubert, P. Herrmann, and U. Meyer, “FANCI : Feature-
based Automated NXDomain Classification and Intelligence,” in Proc.
USENIX Security, Baltimore, MD, USA, Aug 2018.

[46] V. Sekar et al., “LADS: Large-scale Automated DDOS Detection
System,” in Proc. USENIX ATC, Boston, MA, USA, May 2006.

[47] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection,” in Proc. IEEE S&P,
Oakland, California, USA, May 2010.

[48] Sophos Group, “Sophos XG Firewall: How to prevent DoS and DDoS
attacks,” https://bit.ly/2tcOPZY, 2018, accessed: 2018-11-2.

[49] Symantec, “The continued rise of DDoS attacks,” https://bit.ly/
2UFeWqK, 2019, accessed: 2019-4-2.

[50] Symantec Corporation, “IP Reputation Investigation,” https://ipremoval.
sms.symantec.com/, 2018, accessed: 2018-28-1.

[51] R. van Rijswijk-Deij, A. Sperotto, and A. Pras, “DNSSEC and Its
Potential for DDoS Attacks: A Comprehensive Measurement Study,”
in Proc. ACM IMC, Vancouver, BC, Canada, Nov 2014.

[52] A. Wang, A. Mohaisen, W. Chang, and S. Chen, “Delving into Internet
DDoS Attacks by Botnets: Characterization and Analysis,” in Proc.
IEEE/IFIP DSN, Rio de Janeiro, Brazil, Jun 2015.

[53] B. P. Welford, “Note on a method for calculating corrected sums of
squares and products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.

[54] T. Yu et al., “PSI: Precise Security Instrumentation for Enterprise
Networks,” in Proc. NDSS, San Diego, CA, USA, Feb 2017.

[55] S. T. Zargar et al., “A Survey of Defense Mechanisms Against Dis-
tributed Denial of Service (DDoS) Flooding Attacks,” IEEE Communi-
cations Surveys & Tutorials, vol. 15, no. 4, pp. 2046–2069, Mar 2013.

[56] B. Zdrnja, N. Brownlee, and D. Wessels, “Passive Monitoring of DNS
Anomalies,” in Proc. DIMVA, Lucerne, Switzerland, Jul 2007.

[57] M. Zhang et al., “Poseidon: Mitigating Volumetric DDoS Attacks with
Programmable Switches,” in Proc. NDSS, San Diego, CA, USA, Feb
2020.

[58] M. Zhang, G. Li, L. Xu, J. Bi, G. Gu, and J. Bai, “Control Plane
Reflection Attacks in SDNs: New Attacks and Countermeasures,” in
Proc. Springer RAID, Heraklion, Crete, Greece, Sep 2018.

Minzhao Lyu received his B.Eng. degree (First
Class Hons.) from the University of New South
Wales, Sydney, Australia in 2017. He is currently
pursuing Ph.D degree in the area of computer net-
works from the University of New South Wales and
CSIRO’s Data61. His research interests include pro-
grammable networks, network security and applied
machine learning.

Hassan Habibi Gharakheili received his B.Sc. and
M.Sc. degrees of Electrical Engineering from the
Sharif University of Technology in Tehran, Iran in
2001 and 2004 respectively, and his Ph.D. in Elec-
trical Engineering and Telecommunications from the
University of New South Wales (UNSW) in Sydney,
Australia in 2015. He is currently a Senior Lecturer
at UNSW Sydney. His research interests include
programmable networks, learning-based networked
systems, and data analytics in computer systems.

Craig Russell received his Ph.D. in Applied Mathe-
matics from Macquarie University, Sydney in 1997.
He is currently Director of Engineering at Canopus
Networks and Adjunct Senior Lecturer at UNSW,
and has previously held commercial roles in the
telecommunications and software industries. He has
design, implementation and operational experience
in a wide range of advanced telecommunications
equipment and protocols as well as experience in
developing software applications. His research in-
terests are in software-defined networking and the

application of machine learning techniques to solve problems in network
security.

Vijay Sivaraman received his B. Tech. from the
Indian Institute of Technology in Delhi, India, in
1994, his M.S. from North Carolina State University
in 1996, and his Ph.D. from the University of
California at Los Angeles in 2000. He has worked
at Bell-Labs as a student Fellow, in a silicon valley
start-up manufacturing optical switch-routers, and
as a Senior Research Engineer at the CSIRO in
Australia. He is now a Professor at the University of
New South Wales in Sydney, Australia. His research
interests include Software Defined Networking, net-

work architectures, and cyber-security particularly for IoT networks.

