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Understanding and Reducing HVAC Power
Consumption Post Evacuation Events in

Commercial Buildings
Iresha Pasquel Mohottige, Hassan Habibi Gharakheili, Arun Vishwanath, Salil S. Kanhere, Vijay Sivaraman

Abstract—Buildings are required to follow standard opera-
tional procedures during emergency evacuation. In addition to
people evacuating the building, one of the recommended steps
during a fire evacuation is to shut down the air handling units
(AHUs) of the heating, ventilation and air conditioning (HVAC)
system to prevent smoke from spreading in the building via the
air ducts. Shutting down the AHU will inevitably cut off cooling,
resulting in internal temperatures rising steeply particularly
on hot days. This phenomenon imposes considerable power
demand on the HVAC to rapidly cool the building down during
reoccupation. In this paper, we study the energy implications
of post evacuation scenarios. Our contributions are three-fold:
(1) We quantify power excursion caused in 43 evacuation events
across 14 buildings of a university campus using a data-driven
building thermal model. We show evacuations during summer
season can result in power consumption up to 150% above
the power demand threshold. (2) We develop a method to
reschedule planned evacuations in order to eliminate the power
excursions while adhering to building evacuation standards.
(3) We develop a formal optimization framework to minimize
the energy costs during planned and emergency evacuations
without compromising desired thermal comfort temperatures by
intelligently cooling the building post evacuation. This is the first
study to understand and reduce the HVAC power consumption
associated with building evacuation events.

Index Terms—HVAC power consumption, evacuation, WiFi
occupancy, thermal model

I. INTRODUCTION

MOST fatalities during a building fire emergency are
not due to the fire but rather due to suffocation at-

tributed to smoke spreading through the building [15]. While
building heating, ventilation and air conditioning (HVAC) is
necessary to provide adequate climate control for occupants,
an unintended consequence of keeping the ventilation sys-
tem (i.e., fans) operational during a fire is smoke spreading
rapidly to the non-affected sections of the building via the
air handling ducts. To mitigate this disastrous outcome, the
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HVAC is automatically switched to a fire-safe mode, either
via a dedicated smoke control system, which either turns
of the AHU or the entire HVAC system [22]. Either way,
altering the operation of the HVAC can cause the internal
zone temperatures to deviate significantly from the desired
comfortable (i.e., set-point) temperatures. The duration of the
shut down and the current outside air temperature may further
exacerbate the situation. Deactivating the HVAC system (due
to a fire evacuation) during noon hours on a hot summer day,
can raise the indoor temperature to be equal to the ambient
outdoor temperature in a few tens of minutes [10], [18].

Once an all-clear is given post evacuation, building reoccu-
pation begins. During this time, the HVAC system typically
runs at full load to cool the building down rapidly and bring the
zone temperatures to more comfortable levels as determined
by the configured set-points. A significant power draw during
this event can adversely impact the electricity bills paid by
the building owners. Electricity suppliers maintain reserve
generation capacity as stand-by to respond to transient power
demands. However, they charge a significant premium for such
service. Note that up to 70% of the building energy demand
can be attributed to HVAC alone [3], [30], [35].

More important than drills (planned) are emergency evac-
uations (unplanned) that can occur more frequently than ex-
pected, especially in older buildings [39], with no control over
their occurrence time. Thus, power excursions post evacuations
may result in the premise owners being penalized for exceed-
ing the peak demand threshold that is set out in their contract.
To the best of our knowledge, no prior work quantifies the
impact of evacuation events on the cost of energy. The peak
demand charge can constitute between 50% and 70% of the
monthly electricity bill [14], [16]. At the same time, occupant
thermal comfort is a key concern of the building managers.
Therefore, it is challenging to achieve a balance between the
energy costs and the occupant thermal comfort during post
evacuation scenarios. While numerous prior works exist like
[35] on quantifying and managing the daily cost of HVAC
systems, our work is first to analyze the energy implications
of atypical events such as evacuations.

For this work, we obtain WiFi session traces data (for com-
puting building occupancy), and a list of planned and emer-
gency evacuation events (detected by an automatic method
which we developed in our prior study [23]) in 14 build-
ings of a large university campus during a period of 180
days. For our first contribution, using real-data we show
that excursions occur in cooling power demand of buildings
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in post fire evacuation scenarios as a result of deactivating
the HVAC system. We then quantify the power excursions
of real evacuations across buildings of a university campus
using occupancy data obtained from WiFi traces and a data-
driven building thermal model. Our analysis demonstrates that
evacuations (particularly during summer) can result in HVAC
power excursions of up to 150% above the peak power demand
threshold, imposing heavy power tariffs. Our second contribu-
tion develops a rule-based method for automatic rescheduling
of “planned” evacuations retrospectively in order to eliminate
the power excursions while adhering to evacuation standards
of commercial buildings. Finally, we formulate an optimiza-
tion problem for dynamic pre-cooling during reoccupation
(especially during emergency evacuations) to minimize the
collective cost of power excursion and delay in reaching to
thermal comfort of occupants subject to maximum permissible
power and temperature excursions (typically set by building
managers). For a practical realization of our dynamic method,
we relax the constraint (and associated cost) of occupants
thermal comfort, and show (using real-world data from 43
evacuations) how power excursion is mitigated while incurring
acceptable delays (about 5 minutes on average) in reaching to
comfortable indoor temperature.

The rest of the paper is organized as follows: §II describes
prior work on evacuation and energy management in commer-
cial buildings, and §III describes our analysis that highlights
the impact of evacuations on power consumption of building
HVAC systems using real data. In §IV, we present a method
for rescheduling planned evacuations to eliminate the power
excursions, while in §V we develop a formal optimization for
building pre-cooling post evacuation to minimize the cost of
power and temperature excursions. The paper concludes in
§VI.

II. RELATED WORK

In this section, we first review related work on building
evacuations and then discuss prior studies that employ occu-
pancy derived by WiFi data for building energy management.

Building Evacuation: Related works on building evacu-
ations are largely based on modeling and simulations but
have not studied the role that WiFi session data of occupants
can play in enhancing planning and execution of evacuations.
Evacuations can either be planned (drills) or due to emergen-
cies. Operational drills are routinely conducted to ascertain the
efficacy of emergency evacuation procedures. In this context,
work in [9] explored the possibility of applying network flow
optimization models to building evacuations and work in [20]
established an evacuation model that combined heuristic algo-
rithms with network flow control to reduce evacuation time.
Authors of [12] employed greedy algorithms to model building
evacuations considering network flows that are constrained by
the number of people present. In addition to drills, emergencies
inside buildings, from fire to toxic chemical spillage, require
immediate evacuation. Other scenarios, such as system faults
or smoke from bush fires being sucked into the air ducts,
may lead to false alarms, as reported in [25]. When such
events occur, evacuations can last from a few minutes to a
few hours. For example, a recent evacuation in Changi airport
tower, Singapore [26] lasted for nearly 2 hours.

Occupancy Driven HVAC Energy Management in Build-
ings: While building energy management is a well-studied
topic, an emerging body of work specifically uses WiFi-based
occupancy information to reduce HVAC energy consumption.
Melfi et al. [21] showed the potential of using existing IT
infrastructure in buildings, including WiFi AP logs, to lower
the building energy demand. Occupancy is implicitly obtained
by tracking MAC and IP addresses at these APs, which in
turn can be used to direct HVAC and lighting only to the
occupied zones, thus saving energy. A practical system that
infers occupancy using WiFi and uses it to control the HVAC
of a commercial building leading to an 18% reduction in
energy consumption, was demonstrated by Sentinel in [5].
Learning the spatial occupancy patterns enabled by WiFi
connection logs and using that information to drive HVAC
scheduling is shown to reduce the energy consumption of
several buildings spanning a large campus by over 30% in
work by Trivedi et al. [33]. The authors in [35] employed pre-
cooling methods to reduce the HVAC energy consumption of
commercial buildings. They employed ”Gray-box” approaches
to model the thermal dynamics of buildings, as opposed
to physics-based “White-box” approaches [1], [4], [19] or
purely data-driven “Black -box” approaches [32]. Inspired by
work in [35], we use the Gray-box model, which accounts
for occupancy and outside temperature. To the best of our
knowledge, mitigating the adverse impact of HVAC power
draw post emergency evacuations with the use of occupancy
derived by WiFi session data has not been explored in the
literature. Our work fills this important gap.

III. IMPACT OF EVACUATION EVENTS ON
HVAC POWER CONSUMPTION

In this section, we begin by introducing the buildings, data
sets of the study, and the building thermal model. Next, our
method to determine the peak demand threshold of a building
is presented. Finally, we quantify the impact of evacuations
on building HVAC power consumption.

A. Buildings and Datasets

This study was conducted on a large university campus,
analyzing 43 evacuations that took place in 14 buildings. The
buildings are primarily used for office and/or academic activity
purposes. For our study we obtain two types of data sets;
(1) building evacuation drill schedule and reports provided by
campus estate management, and (2) daily WiFi session logs
for all campus APs provided by the campus IT department.
We note that appropriate clearance (UNSW Human Research
Ethics Advisory Panel approval number HC190372) was ob-
tained from the University ethics review board for this study.
We further note that user IDs and MAC addresses contained
in the WiFi logs are anonymized prior to storage/analysis by
applying a one-way hash function.

Evacuation dataset: Campus Estate Management provided
us with: (a) schedule of planned evacuations (aka drills) across
all buildings on campus over the 6-month period (from Oct-
2018 to May-2019) of this study, (b) copies of drill reports
from seven planned evacuations over this period, and (c)
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TABLE I
SAMPLE WIFI SESSION LOGS.

User ID MAC addr AP name Assoc. time Disassoc. time Thput. (Kbps)
145e7e26 b76690ac J17 F1 AP01 31/01/2019 10:40 31/01/2019 11:15 0.1

145e7e26 127d4fb7 J17 F1 AP02 31/01/2019 10:55 31/01/2019 11:20 8.6

b6c72a33 decf7837 J17 F3 AP12 31/01/2019 11:15 31/01/2019 11:20 561.8

date/time of all unplanned evacuations that were recorded for
four of the buildings over the study period. Evacuation drills,
typically one per year, are planned by Estate Management at
the beginning of each calendar year. Each drill is attended by
a team of fire wardens, some of whom walk through various
floors to clear people out while others are stationed at the
various exits. After the drill, a report is filed that estimates
the timing aspects of the drill, such as time of alarm, end of
evacuation, and start of reoccupation, as well as number of
occupants evacuated. These reports are analyzed to check if
adjustments need to be made to the evacuation procedures to
speed it up, and to make qualitative judgments.

WiFi dataset: The campus IT department manages a rich
WiFi infrastructure comprised of over 5000 access points
(APs). We focus on 14 buildings and use the building oc-
cupancy profile derived from WiFi session data to develop a
method to automatically detect evacuation events. The Uni-
versity IT department provided us with: (a) data showing
the physical mapping of WiFi APs to buildings and floor
levels, and (b) daily session logs across the 5249 APs for
a period of 210 days from Oct-2018 to May-2019, from
which we redacted data for the Christmas holiday period
(since campus operations are minimal) to get 180 days of
usable data. Combining the two gave us a total of around 65
million WiFi session records; Table I shows a representative
snapshot. Each record contains a unique User ID (note that we
have hashed this to preserve anonymity); device MAC address
(also hashed to preserve anonymity); a unique AP name that
clearly indicates the building name, floor level, and access
point ID; time at which the device associated to/disassociated
from the AP (note that this is in minutes and therefore we do
not have sub-minute accuracy); and avg throughput indicating
data rate during the session. For example, the top session
in Table I belongs to user 145e7e26 who connected from
device b76690ac to AP1 located in building J17 floor F1,
from 10:40am to 11:15am, and used an average throughput of
0.1 Kbps over the session. The second record represents the
same user but with a different device 127d4fb7 connected to
AP2 located on the same floor of the building from 10:55am to
11:20am, while the third record is a different user connected to
a different floor of the same building, connected for 5 minutes
with an average throughput of 561.8 Kbps.

Temperature dataset: We obtained outdoor air temperature
data (with hourly resolution) for the area of our university cam-
pus, spanning the period between Oct-2018 and May-2019,
from a public repository of air quality and meteorological data
provided by the New South Wales Department of Planning,
Industry and Environment, Australia [27]. In Australia, with
a moderate climate, the recommended set point for HVAC
systems in summer is 25◦C [6]. For typical commercial HVAC
systems, the supply air temperature is set to its minimum
value of 13◦C [36]. We will apply our outdoor temperature
dataset along with the desired set-point temperature and HVAC

(a) Building occupancy profile ob-
tained from WiFi data.
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(b) CO2 concentration computed
from occupancy profile.

Fig. 1. Building daily profile of: (a) occupancy, and (b) CO2 concentration
– note that a 20-min evacuation event occurs at 2:12pm.

TABLE II
NOMENCLATURE OF OUR GRAY-BOX MODEL.

Symbol Description Units
Tz Zone temperature C

Ts Supply air temperature C

Ta Outside air temperature C

Tz,sp Building set-point temperature C

Cz Zone thermal capacitance kJ/C

ka Heat transfer coefficient between ambient and zone kW/C

ko,2 Captures the non-occupancy loads such as plug loads and lighting kW

θCO2 CO2 concentration micromol/mol

ko,1 Maps the CO2 concentration to internal heat gain kWmol/micromol

Q̇cooling Power demand of HVAC cooling kW

cp,a Specific heat capacity of air kJ/kg/C

ṁs(t) Mass flow rate of conditioned air with temperature kg/s

ṁs,o Mass flow rate of air corresponding to the nominal position of the damper kg/s

kc Effective gain term of the proportional controller kg/s/C

supply air temperature to compute the indoor zone temperature
(§III-C) using the thermal models of individual buildings
(§III-B).

B. Thermal Model of Building

We borrow the building thermal model from [35], and adapt
it to individual buildings in our university campus. Specifically,
we adopt the Gray-box approach to model evolution of zone
temperature as a function of the heat gain from the outside,
internal heat gain due to occupancy and zone cooling rate
due to air renewal supplied by the HVAC. The mathematical
representation of the Gray-box model is given by:

Cz
dTz
dt

= ka(Ta(t)− Tz(t))︸ ︷︷ ︸
heat gain from outside air

+ ko,1θCO2(t) + ko,2︸ ︷︷ ︸
heat gain from occupants

+ Q̇cooling(t)︸ ︷︷ ︸
cooling load

(1)

Here, Cz is the zone thermal capacitance which is without
loss of generality assumed to be unity, as proposed in [38].
This means cooling load refers to the scaled cooling load and
therefore, air conditioning power shown in the paper are scaled
with respect to Cz . The heat gain from outside air is captured
by the following terms: Ta, outside air temperature, Tz , zone
temperature, and ka, heat transfer coefficient between ambient
and zone. The heat gain from occupants is modeled as an affine
function where θCO2 is CO2 concentration, ko,1 and ko,2 are
linear regression coefficients. ko,1 maps the CO2 concentration
to internal heat gain and ko,2 captures the non-occupancy loads
such as plug loads and lighting.
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(a) Power demand.
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(b) Zone temprature.
Fig. 2. [Default Settings] daily trace of: (a) power demand, and (b) zone temperature; in building C22; on Tuesday 15-Jan-2019.

Fig. 1(a) shows the occupancy profile of building F25
during a day on which an evacuation occurred. The building
occupancy is estimated by counting the total number of unique
user ids connected to all WiFi APs in the building. To discount
the impact of users who connect to the building APs while
walking past, we filtered out the devices (from WiFi traces)
with transient connections. Specifically, devices which record
average daily session duration of less than 5 minutes in a
building were not considered as occupants. The heat gain
from occupants (CO2 concentration) is obtained by computing
the rate of change of occupancy. The corresponding CO2

concentration is shown in Fig. 1(b). We capture the heat gain
due to people exiting and reoccupying the building using
the evacuation patterns observed in our previous work [23].
Qcooling(t) in Eq. 1 is the rate of heat efflux attributed to
cooling (cooling load) and it is given by Eq. 2.

Q̇cooling(t) = cp,a[ṁs(t)(Ts(t)− Tz(t))] (2)

ṁs(t) = ṁs,o + kc(Tz(t)− Tz,sp(t)) (3)

where cp,a is the specific heat capacity of air and ṁs(t)
is the mass flow rate of conditioned air with temperature Ts.
As shown in Eq. 3, the mass flow rate is approximated to
ṁs,o + kc(Tz(t) − Tz,sp(t)) where Tz,sp is the building set-
point temperature. The coefficients ṁs,o and kc represent the
mass flow rate of air corresponding to the nominal position
of the damper (i.e., a static offset in the actuator output) and
effective gain term of the proportional controller, respectively.
Table II summarizes nomenclature of our Gray-box model.

Deriving model parameters: It has been shown [17] that
a data-driven thermal model (similar to our Gray-box model)
developed for a building can be used to model the dynamics
of indoor temperature in other buildings of similar size. In
absence of Building Management System data for buildings
of our university campus, we model the dynamics of indoor
temperature using the scaled version of constant coefficients in
Eq. 1 that were obtained from a commercial building studied
in [35]. Note that, the accuracy of the approximated thermal
model in our study cannot be evaluated without ground-
truth data of indoor temperature. In what follows, we derive
the scaled parameters ka, ko,1, ko,2, ṁs,o and kc based on

physical properties (i.e., surface area, volume, and capacity)
of individual buildings.

Considering Eq. 1, we note that in the first term ka =
h.A (according to Newton’s law of cooling), where h is
heat transfer coefficient depending on materials of building
(wall/roof/window), and A is the surface area through which
the heat is transferred. We, therefore, scale this parameter
ka based on the buildings surface area with an assumption
that heat transfer coefficients remain consistent across various
buildings – buildings are made of the same materials. The
parameters ko,1 and ko,2 in the second term of Eq. 1 corre-
spond to heat gain of building occupants. We, therefore, scale
them proportional to the occupant capacity of a building. The
occupant capacity is computed by dividing the total floor area
by unit area per person (i.e., 5 m2 in multi-purpose educational
buildings [8]). Lastly, coefficients ṁs and kc in third term of
Eq. 1 correspond to cooling load, and get scaled based on
the total volume of the buildings. Note that the height of a
floor in commercial buildings is assumed to be 3 m [31] when
computing the surface area and volume of individual buildings.

C. Power Demand Threshold of Buildings

Having obtained the thermal model of individual buildings
on our university campus, we now analyze the dynamics of
cooling power and zone temperature during evacuation events.
We note that the power excursion can only be quantified when
the power demand threshold value of buildings is known. This
threshold value is contracted between building managers and
energy suppliers. In absence of such data in our study, we
estimate the peak demand threshold value by analyzing the
variation of daily power demand in our dataset.

For ease of illustration, let us consider an example building
C22. Using the thermal model generated for this building
(§III-B), we plot the time trace of power demand in Fig. 2(a)
and zone temperature in Fig. 2(b) on a typical working day
(Tuesday, 15 Jan 2019) in default settings without applying
any control. The cooling load (power demand) is computed
by Eq. 2 and the internal zone temperature (Tz) is recursively
computed by Eq. 1. It is recommended [29] that HVAC
systems are turned off during weekends and night hours of
weekdays, and remain operational (tuned on) during days
times (e.g., 7am-7pm [2]) Monday to Friday. For our university
campus, typical working hours are 8am-5pm, and hence HVAC
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(a) Power demand.
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(b) Zone temprature.
Fig. 3. [Night Pre-cooling] daily trace of: (a) power demand, and (b) zone temperature; in building C22; on Tuesday 15-Jan-2019.

(a) Building occupancy. (b) Zone temperature. (c) Power demand.
Fig. 4. Daily trace of: (a) building occupancy, (b) zone temperature, and (c) power demand, for an evacuation drill that begins at 2:10pm and lasts for an
hour; in building C22; on Friday 15-Mar-2019.

systems are turned on at 7am in the morning (an hour prior to
expected occupancy time of 8am), so that comfort temperature
is reached before occupants arrive, and turned off at 5pm
while maintaining comfort conditions until the end of the
expected occupancy. Therefore, in warmer months indoor zone
temperature gradually increases (during evening/night hours)
to levels that are several degrees higher than thermal comfort
temperature – as shown in Fig. 2(b), indoor temperature has
risen up to 27.5◦C. In order to rapidly cool-down the building
and ensuring a comfortable indoor temperature for occupants
arriving at around 8am, the HVAC system starts full-load in
the morning (between 7am and 9am), resulting in a significant
peak of power demand, as shown in Fig. 2(a). As a result,
indoor temperature steeply falls from 27.5◦C to about 25◦C,
as shown in Fig. 2(b).

Note that, the power demand is a function of mass flow
rate ṁs(t), supply air temperature Ts(t), and zone temperature
Tz(t), as expressed by Eq. 2. Ideally, when HVAC is turned
off at 5pm, it is expected that the two impacting factors ṁs(t)
and Ts(t) become zero, hence resulting in zero power demand.
However, in our thermal model Eq. 1 (borrowed from [35]),
ṁs(t) approximates the rate of mass air flow (expressed by
Eq. 3) and is a function of Tz(t), and T(z, spn)(t), resulting in
negligible values for power demand after 5pm before reaching
to zero.

To avoid morning spikes in power demand, building man-
agers often implement various pre-cooling strategies [29], [35]
(circulation of cool air within a building) during the off-peak
hours (night time/ early morning) with the intent of gradual

cooling over a longer period prior to arrival of occupants.
It is important to note that we illustrate in Figures 2 and 3

the impact of two policies (default versus night pre-cooling)
on the power consumption of a given building.

In this paper, we apply a heuristic-based night pre-cooling
method (suggested in [35]) that starts after midnight every day
depending on outside air temperature. Fig. 3 illustrates power
demand and zone temperature for building C22 with pre-
cooling applied on data of 15th of January 2019 in comparison
to the Fig. 2 with default setting. The pre-cooling method
employs Time Dependent Dijkstra (TDD) algorithm to bring
down the zone temperature Tz to occupant thermal comfort
temperature 25◦C with minimal energy cost. We obtain the
daily power demand profile of individual buildings with night
pre-cooling applied across the 180 days. For each building,
the maximum value of daily morning peaks is chosen as the
power demand threshold of the building. We note that daily
morning power demands are fairly consistent with a small
standard-deviation of 0.13 (on average across all buildings).
This suggests that for a given building, morning peak demand
varies slightly during the course of 180 days. We denote the
threshold peak power demand by Pth which will be used to
quantify the power excursions in the following section.

D. Impact of Evacuation Event on HVAC Power Consumption

We now analyze 43 evacuation events (planned and emer-
gency) that occurred in the 14 buildings and quantify their
impact on the HVAC power consumption using thermal models
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generated in §III-B. We quantify the magnitude of power ex-
cursions caused by an evacuation, as the maximum overshoot
with respect to building Pth derived in §III-C. An evacuation
event evolves in three stages: (i) immediate evacuation upon
hearing the alarm, (ii) gathering at designated assembly point,
and (iii) reoccupation. The HVAC is shut down during stages
(i) and (ii), and we call this period as “evacuation duration” –
during this period Qcooling is set to zero.

Upon commencement of reoccupation, the HVAC system
is switched on, and hence the supply air temperature Ts is
typically (default settings) set to its lowest set point 13◦C in
order to quickly bring the internal temperature to comfortable
thermal levels.

Fig. 4 shows daily trace of occupancy, zone temperature,
and power demand in building C22 for a day on which an
hour-long evacuation drill took place – data points are shown
with a 5-min resolution. The evacuation starts at 2:10pm
as highlighted by a significant dip (from 600 to close to
300) in the building occupancy profile, shown in Fig. 4(a).
The HVAC is automatically turned off at commencement of
evacuation (2:10pm), and hence indoor temperature increase
by 2.4◦C (from 24.9◦C to 27.3◦C), as shown in Fig. 4(b). At
reoccupation (3:15pm), the HVAC is turned on, attempting to
rapidly cool down the building for occupants. As a result, the
power demand exceeds Pth, resulting in a maximum overshoot
of 82% shown in Fig. 4(c). Here, we quantify the magnitude of
power excursions by the maximum overshoot (with respect to
building Pth) caused by evacuation events, comparing various
evacuations across buildings. In §V, we will accumulate power
overshoots (when demand exceeds Pth) over time to quantify
a total power cost incurred by evacuation events.

1) Power Excursion of Real Evacuations: We now look at
the variation of HVAC power demand post-evacuation for all
of the 43 evacuations in 14 buildings in our study and quantify
their maximum overshoot.

Among the 43 evacuations, 33 of them resulted in power
excursion (77%) – this is because our study spans months from
Oct-2018 to Apr-2019 which corresponds to the warm/hot
seasons in the Southern Hemisphere (Sydney, Australia). The
magnitude of power excursions for these 33 evacuations ranges
from 3% to about 140%. There are 3 evacuations with power
excursions of more than 100%. The largest overshoot of 143%
is for an evacuation in F21 on 06-Dec-2018 at 12:44pm
followed by a 131% overshoot resulted from an evacuation in
F25 on 31-Jan-2019 at 11:16am, and 114% overshoot resulted
from an evacuation in F23 on 28-Feb-2019 at 1:43pm. It is
interesting to note that all three of the above evacuations
occurred during the middle of the summer months (Dec-
Feb) with high daily outside temperature profiles. We show
in Fig. 5 the building occupancy, outside air temperature and
HVAC power demand for the evacuation with largest power
overshoot in F21. We note that the evacuation duration is 105
minutes and the outside air temperature is 34.5◦C. The power
overshoot is less than 100% for the remaining 30 evacuations
with power excursions. We note that for evacuations without
power excursions the outside air temperature, Ta (ranging from
19.2◦ C - 23.1◦ C) and evacuation duration, (≤30 minutes)
were both lower than those values reported for evacuations

TABLE III
IMPACT OF VARIOUS FACTORS ON POWER OVERSHOOT.

Factor F-statistic Mutual Information
Outside air temp. 0.63 1.00

Evacuation duration 1.00 0.75

Occupancy 0.12 0.21

with excursions.
2) Factors Impacting Power Excursion: Previously, we

demonstrated that high power overshoot is reported for evac-
uations during summer months with high outside temperature
values. In this section, we analyse how outside air temperature,
evacuation duration and occupancy (at evacuation) correlate
with the scale of power overshoot.

We compute uni-variate F-test statistic and mutual infor-
mation to quantify the relationship between each of factors
with power overshoot as shown in Table III. F-test captures
linear dependency, while mutual information captures all types
of dependencies. F-statistic rates evacuation duration as the
most discriminating feature, closely followed by outside air
temperature. Mutual information rates outside air temperature
as the most discriminating feature, closely followed by evacu-
ation duration. Both methods mark occupancy at evacuation as
less related to power overshoot compared to the other factors.
We plot in Fig. 6, the percentage power excursion against
the outside temperature, evacuation duration and occupancy
at evacuations. Fig. 6(a) and Fig. 6(b) show that higher the
outside air temperature, and evacuation duration higher is
the power overshoot. It seems that the quantitative measures
largely agree with our intuitive perception.

IV. RESCHEDULING EVACUATION DRILLS

In the previous section, we demonstrated that excursions
can occur in building HVAC power demand due to post
evacuation cooling, incurring excessive energy costs. In this
section, we aim to develop a method for rescheduling planned
evacuations in buildings to manage their potential energy costs
– note that the schedule of planned evacuations is known
in advance. In order to comply with the requirements of
building safety standards, evacuation drills are conducted at
least once a year [24], [28]. We retrospectively analyze data
traces of planned evacuations to see whether they can be
rescheduled to eliminate the power excursion post evacuation,
while fulfilling the safety standards, especially related to the
number of occupants at the start of an evacuation.

A. Shifting Evacuation Events

Given the occupancy pattern of a planned evacuation, we
retrospectively and synthetically shift the evacuation event to
a different time and/or day, while relatively preserving the
original occupancy pattern of the planned evacuation. In our
previous work [23], we showed how evacuations display a
sharp dip (i.e., people evacuating) in the building occupancy
followed by a sharp rise (i.e., people re-occupying), forming
a V-shape pattern. This V-shape pattern in building occupancy
during a known planned evacuation is captured as the profile of
the evacuation event (“evacuation pattern”). We reschedule an
evacuation drill at a different time during the working hours of
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Fig. 5. Daily trace of: (a) building occupancy, (b) outside air temperature, and (c) power demand, for evacuation drill which begins at 12:44pm and lasts for
an hour and 45 minutes in building F21
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(a) Power versus outside air temperature.
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(b) Power versus evacuation duration.
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(c) Power versus occupancy at evacuation.
Fig. 6. Correlation of power overshoot with: (a) outside air temperature, (b) evacuation duration, and (c) occupancy at evacuation.

(a) Occupancy. (b) Power demand.
Fig. 7. Building daily profile of: (a) occupancy and (b) power demand, for
an evacuation injected at 9am.

days of the week in which the actual evacuation was originally
planned, by temporal shifting (via simulation) its pattern across
the building occupancy profile.

For the evacuation pattern, let there be n time epochs (of
5-minute) during an evacuation event, each occurs at time
ti with corresponding occupancy yi where 1 ≤ i ≤ n.
Our objective is to inject a rescheduled evacuation at time
t̂1 when the building occupancy equals to ŷ1. This process
requires us to adjust the building occupancy for n epochs
(starting from t̂1) according to dynamics of occupancy during
the original planned evacuation. Eq. 4 is used to adjust the
building occupancy (i.e., ŷ2 to ŷn) for the shifted evacuation.

ŷi+1 = ŷi

(
1 +

yi+1 − yi
yi

)
(4)

Once the evacuation is shifted to a new time t̂1, it is
necessary to fill the gap in the occupancy profile corresponding
to the duration of actual planned evacuation. We construct
new occupancy data points by applying linear interpolation

(a) Occupancy. (b) Power demand.
Fig. 8. Building daily profile of: (a) occupancy and (b) power demand, for
an evacuation injected at 12pm.

connecting the first and last data-points of the gap in the oc-
cupancy profile. Following this update to the daily occupancy
profile (due to rescheduled evacuation), the power demand is
recomputed using the thermal model (Eq. 1) and modified
occupancy.

To illustrate the process, let us start from Fig. 4(a) where
the occupancy profile of building C22 is shown with an
evacuation scheduled at 2:10pm. We show in Figures 7 and 8
how this evacuation is synthetically shifted to 9am and 12pm,
respectively on the same day. It is seen that the evacuation
rescheduled at 9am does not cause a power excursion (daily
power never exceeds the building threshold power Pth = 2.9
in Fig. 7), while the evacuation rescheduled at 12pm results in
a 58% excursion at 12:40pm as shown in Fig. 8. Note that the
original evacuation pattern is patched by linear interpolation
(highlighted by green box) in both Figures 7 and 8.

B. Typicality of Building Occupancy
An important parameter pertinent to an evacuation drill is

the number of building occupants at the scheduled start time of
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Fig. 9. CCDF of building occupancy (number of connected devices) during
6 months, highlighting (red × markers) the occupancy at planned evacuation.

(a) Maximum power demand. (b) Typicality.
Fig. 10. Variation of (a) maximum power demand, and (b) typicality, for
evacuations rescheduled on the same day of the original planned evacuation
in building C22.

drill. Regulations for building fire safety [7] recommend that
fire drills should be conducted with “appropriate number” of
people inside a building. This is indeed merely a qualitative
measure. We, instead, quantify it by using the “typicality”
metric – this is the percentile level at which the building
is occupied at start of evacuation compared to its historical
occupancy count [23]. This quantification helps to specify
measurable guidelines for scheduling drills. Fig. 9 shows the
CCDF of building occupancy in four representative buildings
from our dataset. We mark (red ×) the occupancy of each
building at the start of the planned evacuation. It can be
seen that the typicality is fairly high in percentile (seemingly
appropriate) across the representative buildings with F21 at
89%, C22 at 93%, J17 at 95%, and F23 at 89%. Note that
all 14 planned evacuations demonstrated high typicality high-
lighting that building managers intentionally schedule them at
times when buildings are relatively highly occupied (> 80%),
adhering to standards.

C. Rescheduling Evacuation Drills

We now develop a method to reschedule the planned evacu-
ation in order to eliminate the costs of power excursions, while
ensuring the typicality measure of building occupancy is also
appropriate.

We synthetically shift (via simulating data traces) a resched-
uled evacuation event during working hours (i.e., 8am-4pm).
At each run of the simulation, we shift the start of the
evacuation ahead by 15 minutes, recording the maximum
power demand due to cooling post evacuation as well as the
typicality of building occupancy. The objective is to ensure

Fig. 11. Maximum power demand versus typicality of rescheduled evacua-
tions (injected every 15 minutes) during the week of the planned evacuation.

Algorithm 1 Finding desirable rescheduled evacuation drills.
1: AT ← {t1, t2, t3, ....., tN}

where ti’s are chosen at 15-min resolution during
working hours in the week of planned evacuation

2: Pth ← P ∗

3: Tth ← 80%

4: function RESCHEDULEDTIME (AT , Pth, Oth)
5: AST ← {}
6: for t belong to AT do
7: Pmax ← compute max power demand at t
8: Tm ← compute typicality measure at t
9: if Pmax < Pth and Tm > Tth: then

10: AST .insert(t)

11: return AST

that: (a) the maximum power demand remains below Pth of
the building (contracted with the energy provider), and (b)
typicality is more than a threshold, say, 80%.

We aim to find those rescheduled evacuation events that
satisfy the above objectives. In Fig. 10, we plot dynamics
of maximum peak power demand and typicality for evac-
uations rescheduled every 15-minute for the building C22
on the same day as the original planned evacuation. The
dotted red line in Fig. 10(a) highlights the building peak
power threshold Pth that are rescheduled between 8am and
4pm. We observe that the maximum power demand due to
evacuation is higher than the building Pth for the simulated
evacuations. As observed from Fig. 10(b), the typicality during
evacuation consistently remains above the threshold of 80%
for all simulated evacuations between 9am to 4pm. Therefore,
none of the rescheduled times (on the same day as the original
planned evacuation) meet both of the requirements, namely
maximum power demand and typicality of occupancy. Note
that the search algorithm is repeated for remaining days of
the week during which the original evaluation was planned,
to minimize disruptions to scheduled planning, although we
could have technically considered rescheduling to the week
before and after. The pseudo code of the method proposed to
determine potential times to reschedule the planned evacuation
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is shown in Algorithm 1.
Fig. 11 shows the scatter plot of maximum of power demand

versus typicality for all potential rescheduled evacuation times
(at 15-min resolution) during the entire week (from 11-Mar-
2019 to 15-Mar-2019) during which the drill in C22 was
originally planned. Note that each blue dot on this plot
represents a potential rescheduled evacuation. We show power
demand threshold with horizontal dotted red lines; it is the
maximum of the daily morning peaks of the building across
180 days (with pre cooling), and the minimum requirement
for typicality of occupancy with vertical red dotted line. The
bottom right quadrant shaded in green, represents the instances
when both requirements are satisfied and is thus the region of
interest. We observe that there are three different time epochs
which match our desired criteria.

We, in §III, analyzed 14 planned evacuations and showed
that 10 of them incurred post evacuation power demand ex-
cursions. For those 10 buildings, we run our search algorithm
to find a desirable time-slot for rescheduling the evacuation
drill. Our algorithm finds an appropriate time to reschedule 7
evacuations within the same week. However, for evacuation
drills in three buildings, namely F21, C20, and F25, it was
impossible to reschedule them at a different time in the week
they were originally planned. We found for buildings C20
and F25 that the average of their daily occupancy profiles
during our search within the week was respectively, 25% and
38% lower than their average occupancy across the entire
6-month period, resulting in low typicality, which explains
the inability of our search algorithm to find a suitable epoch
for rescheduling the evacuation. Note that the typicality of
occupancy at actual planned evacuations as it took place for
buildings C20 and F25 are closer to the typicality threshold
with values 86% and 82% respectively. For building F21, the
average temperature during the week under consideration was
5.6◦C (25%) warmer than the average temperature over the
entire 6-month period, consistently causing power excursions,
which explains why rescheduling is not feasible. We also
found that the temperature was relatively high during the week
before (∼10% warmer than average) and after (∼20% warmer
than average) the originally planned week. One can extend the
search horizon beyond one week (before and/or after), but this
is outside the scope of this paper.

V. OPTIMIZING COST OF ENERGY AND
THERMAL-DISCOMFORT POST EVACUATION

In the previous section, we demonstrated how evacuation
drills can be (retrospectively) rescheduled for another time
and/or day during the week they are originally planned to
eliminate the undesirable energy costs due to HVAC power
demand excursions. We also showed for some buildings it may
not be always possible to find a suitable time slot to reschedule
drills. However, it is important to note that rescheduling
cannot be considered as a solution for unplanned evacuations.
Therefore, in this section our objective is to find a way to
minimize the post-evacuation cooling energy costs while the
thermal comfort of occupants is maximized.

A. Typical Behavior of HVAC System Post Evacuation
When HVAC is activated post evacuation, it typically runs

at full capacity to rapidly cool down the building. We plot
in Fig. 12(a) the dynamics of power demand when a static
cooling Ts is applied for a representative planned evacua-
tion which occurred during morning time on 10-Apr-2019
in building M15. For comparison, we show how the power
demand changes when the static set point varies from its lowest
possible value (Ts = 13◦C shown by dotted blue line) to
slightly larger values (15◦C and 17◦C, respectively shown by
pink line with cross markers and black line with star markers).

When Ts is set to 13◦C, the building HVAC system runs
with its full capacity to rapidly cool down the building, re-
sulting a maximum excursion of 38%. Increasing the set point
Ts to 15◦C would halve the maximum excursion, lowering
it to 17.3%. A further increase in Ts, setting it at 17◦C
would cause the power demand to fall under Pth, and thus
mitigating the excursion. Fig. 12(b) illustrates the building
zone temperatures corresponding to these three set points. We
observe that the comfort temperature 25◦C is achieved within
an hour from the commencement of building re-occupation.
When Ts = 15◦C, thermal comfort is reached in 90 minutes.
However, when Ts = 17◦C, the comfort temperature is only
reached just prior to close of business at 4pm. The key
message from this observation is that the power demand can be
appreciably controlled by lowering the cooling load (reducing
the HVAC set point Ts), but at a cost of delaying the time
taken in reaching the comfort temperature with the caveat that
excessive delays are undesirable for building occupants.

B. Optimizing Energy and Thermal Comfort
We now develop a non-linear optimization problem for post

evacuation cooling to minimize the cost associated with (a)
building power excursion, and (b) occupants thermal comfort,
subject to certain constraints. The optimization framework
allows us recompute the optimal value of HVAC supply air
temperature dynamically (every epoch time, say 5-minute).
Our objective is to minimize the total cost at each epoch given
by:

min J(k) = α.PE(k) + β.TE(k) (5)

where α.PE(k) is power excursion cost and β.TE(k) is
occupants discomfort cost at each epoch time k, where k =
1, 2, . . . , N . Note that N denotes the number of time epochs
between start of reoccupation and end of working hours.
Scaling parameters α and β are constant. The cost J(k) is
optimized independently at every epoch. PE(k) is the power
overshoot with respect to the building demand threshold Pth,
and is computed by:

PE(k) = Q̇cooling(k)− Pth (6)

where Q̇cooling is the power demand of HVAC cooling given
by:

Q̇cooling(k) = cp,a(ṁs,o + kc(Tz(k)−
Tz,sp(k)))(Ts(k)− Tz(k))

(7)
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(a) Power demand. (b) Zone temperature.
Fig. 12. Time trace of: (a) power demand, and (b) zone temperature, post-evacuation given static values of supply air temperature (Ts) in building M15.

To compute thermal discomfort, there exist some standard
metrics such as Predicted Mean Vote (PMV) and Predicted
Percentage Discomfort (PPD) [11], [37]. PMV is an index that
estimates the mean of the thermal sensation vote from a group
of people while PPD estimates the percentage of thermally
dissatisfied people from PMV. For our study, we did not have
access to a range of data such as mean radiant temperature, rel-
ative air velocity, relative humidity, metabolic rate and clothing
insulation, which are required for PMV/PPD estimation, and
hence considering these thermal comfort metrics is beyond
the scope of our paper. Instead, we compute TE(k) as the
overshoot of comfort temperature with respect to Tmin(k),
the lowest achievable zone temperature when Ts = 13◦C, and
is computed by:

TE(k) = Tz(k)− Tmin(k) (8)

where zone temperature, Tz , is a function of supply air
temperature Ts, and is computed by:

Cz
Tz(k + 1)− Tz(k)

∆T
= ka(Ta(k)− Tz(k))+

ko,1θCO2(k) + ko,2 + Q̇cooling(k)
(9)

where ∆T is the control interval (say, 5 minutes) for setting
the supply air temperature. Our decision variable is the supply
air temperature of the HVAC system, Ts, in order to obtain
an optimal cooling while the total cost of energy and thermal
comfort is minimized. We note that Ts is capped by the lowest
supply air temperature, Ts∗ (typically 13◦C) that provides the
maximum cooling, and hence our first constraint is given by:

Ts(k) ≥ Ts∗ (10)

Further, we assume that relative excursions of power and
thermal comfort are respectively capped at PE

∗ (say, 10%) and
TE

∗ (say, 1%), as per requirements of the building manager,
giving two more constraints:

PE(k)

Pth
≤ PE

∗ (11)

TABLE IV
NOMENCLATURE OF OUR OPTIMIZATION FRAMEWORK.

Symbol Description (at time instance k) Units
PE(k) Power overshoot with respect to Pth kW

Pth Building power demand threshold kW

PE
∗ Maximum power overshoot (configured) −

TE(k) Overshoot of comfort temperature with respect to Tmin(k) C

Tmin Lowest achievable zone temperature capped by T ∗
s C

TE
∗ Maximum overshoot in comfort temperature (configured) −

Ts(k) Supply air temperature C

Ts∗ Lowest supply air temperature C

β Scaling parameter associated with power excursion $/C

α Scaling parameter associated with thermal comfort $/kW

TE(k)

Tmin
≤ TE∗ (12)

Table IV summarizes nomenclature of the optimization
framework.

Computing Constant Parameters α and β: We now
describe how scaling parameters α and β are determined to
compute the cost of power excursion and occupants discom-
fort. The coefficient α is the cost incurred per unit of power
excursion. We discussed in §I that peak demand charge is
an essential component of the monthly electricity bill for
commercial/industrial subscribers who typically generate a
higher peak load than residential subscribers. Authors of [35]
reported that a static penalty of ≈A$25 is applied per unit
power excursion for a medium-size commercial building when
the maximum demand recorded over a billing period exceeds
the peak demand threshold. We compute α for our buildings by
scaling the cost per unit excursion given by [35], proportional
to the volume of buildings, similar to the way we obtained
the thermal model of individual buildings in §III-B. There
are other strategies that dynamically adjust the unit cost per
excursion in proportional to the amount of overshoot beyond
the peak demand threshold [13].

Moving to the scaling parameter β, the cost incurred per unit
of temperature excursion, we note that commercial buildings
invest some money on an annual basis to improve the quality
of work environment. Indoor thermal comfort is one of the
key factors determining the quality of work environment. We,
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(a) Supply air temperature. (b) Zone temperature. (c) Power demand.
Fig. 13. Time-trace of dynamics of: (a) power demand, (b) temperature, and (c) supply air temperature, post-evacuation when Ts is set dynamically, for an
evacuation in building M15 that lasts 35 minutes.

therefore, use this annual investment as a proxy of discomfort
cost if the indoor temperature goes above the standard comfort
level. Let us assume that organizations spend about 25%
of their personnel costs in improving the quality of work
environment. According to the annual report of our university
in 2019 [34], the average salary cost of each employee is
nearly A$180,000 per annum. Given a total of 6700 full-time
employees, the total annual “employee cost” becomes A$1300
million. Therefore, considering 40 working hours per week
and 52 weeks per year, the investment of thermal comfort per
employee per each 5-minute epoch becomes equal to A$2.
The annual report further states that the ratio of students to
staff is 9 to 1 in our university. We assume that the capacity of
each building is shared by students and staff uniformly with
the same ratio, and hence compute the parameter β for each
building as A$2 ×Nstaff , where Nstaff is the staff fraction
(i.e., 10% in our scenario) of total building capacity.

It is important to note that α and β are constant scaling
parameters provided as input to our optimization. The value
of these parameters is determined based on certain contextual
values like dollar penalty per unit of power excursion and
personnel cost. The above values are illustrative figures of α
and β for our specific context that are obtained from public
data of our country and university. One may choose a different
method and/or data for setting these input values (adjusting the
weight of energy cost against thermal comfort) before applying
the optimization.

C. Practical Optimal Cooling Strategy

We formulated a non-linear optimization problem in the
previous subsection to achieve a desired level of thermal
comfort for occupants with reduced energy costs. Building
facility managers may not have the resources and know-how
to practically execute the non-linear optimization described
above. To enable ease of use of the optimal framework, we
propose a heuristic algorithm to find a “near-optimal” solution
for this problem. To do so, we relax the thermal comfort
condition and aim at eliminating the energy costs of power
excursion due to evacuation. Obviously, Ts will be adjusted
dynamically during 5-min epochs (relatively short intervals),
so that the peak demand never exceeds Pth.

Our method for a near-optimal solution is as follows. We
search for the best Ts value every epoch by initializing Ts =
Ts

∗, where Ts∗ is the lowest supply air temperature (typically
13◦C) providing the maximum cooling. If the resulted power

Algorithm 2 Computing supply air temperature dynamically.
1: Ts ← Ts

∗

where Ts∗ is lowest supply air temperature.
2: Pth ← P ∗

where P ∗ is threshold peak power demand.

3: function COMPUTESUPPLYAIRTEMP (Ts)
4: P (Ts) ← Q̇cooling at Ts
5: γ ← P (Ts)−Pth

Pth
, γ is power overshoot.

6: if γ > 0: then
7: Ts ← (1 + γ) ∗ Ts
8: return COMPUTESUPPLYAIRTEMP (Ts)
9: else if |γ| < 0.01 then:return Ts

10: else
11: Ts ← (1− γ) ∗ Ts.
12: return COMPUTESUPPLYAIRTEMP (Ts)

demand (computed by Eq. 2) exceeds the threshold Pth,
yielding an overshoot of γ percent, then we increase Ts by
the same factor γ. Note that the rate of change of temperature
is linearly correlated with change rate of HVAC cooling load
according to Eq. 2, and hence one may use a fraction of γ
to adjust Ts. This search process continues until the resulting
power falls below the threshold Pth. We note that our strategy
may become too conservative, resulting in a significant power
undershoot (γ < 0) – in that case, we need to reduce Ts
accordingly again proportional to γ. Our search terminates
when | γ |< 0.01. The pseudo code of the algorithm with
asymptotic time complexity of O(n) is shown in Algorithm
2.

D. Evaluation of Optimization Methods

In this section we evaluate the non-linear optimization
(optimal solution) and the proposed practical cooling strategy
(near-optimal solution) on a planned evacuation (discussed
earlier in Fig. 12) and compare the two methods.

We show in Fig. 13 how supply air temperature (Ts) , zone
temperature (Tz), and power demand vary post evacuation for
the planned evacuation in building M15. The evacuation causes
a power excursion of 38% as shown in blue dotted line in
Fig. 13(c). In §III we showed that this can be rescheduled
within the same week as originally planned, such that there is
no excursion in power. Fig. 13(a) illustrates the dynamics of
Ts adjustment obtained from our near-optimal solution (shown
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(b) Power excursion is independent
of the control interval.

Fig. 14. Impact of control interval of Ts on thermal comfort and peak power
demand.

by solid green line) compared to the optimal solution obtained
by brute forced method (shown by dashed black line) and the
baseline scenario where Ts is statically set to its lowest value
Ts

∗ = 13◦C (shown by dotted blue line). It is seen that our
near-optimal solution cannot start the supply air temperature
below 16.7◦C in order to avoid the power excursion, but the
optimal solution starts at 14.7◦C which minimizes the total
cost. It takes 35 minutes for our near-optimal Ts to reach
to its maximum cooling value Ts∗, while this measure is 25
minutes for the optimal solution.

As a result, with our near-optimal strategy, a comfortable
indoor temperature (25◦C) is achieved with a fairly low delay
(5-minute) compared to the baseline scenario, as shown in
Fig. 13(b). Such delay is not observed with the optimal
solution since up to 10% power excursion is allowed for the
optimal solution – note that our near-optimal solution aims to
mitigate the power excursion. We note that brute force search
needs on average more than 3 minutes per each run (epoch)
to compute the optimal solution in a search space of a billion
data points. The search space would be much larger if upper
bounds of PE

∗ and TE
∗ are chosen more generously, and

hence a longer time is needed to find the optimal solution.
On the other hand, our near-optimal algorithm takes less

than 1 second to produce the near-optimal solution per epoch,
which makes it practical for dynamic cooling in real-time.
Note that our near-optimal algorithm was implemented in
Python running on an Intel i7 machine with 16 GB mem-
ory. During each time epoch, the algorithm converges after
performing tens of iterations within a second. The algorithm
searches for the best (lowest) Ts that results in power demand
of maximum overshoot ±0.01%. Importantly, we observe in
Fig. 13(c) that our near-optimal setting of Ts completely
mitigates the power excursion, while both the optimal and
baseline solutions incur power excursions of 10% and 38%,
respectively.

Evaluation of Dynamic Cooling for Real Evacuations:
We evaluated the efficacy of our near-optimal dynamic cooling
strategy for the 33 evacuations which resulted in some level
of power excursion. We compute the delay (compared to
the baseline) in reaching the comfort temperature during the
working hours (8am-4pm). Note that for seven evacuations
that occurred in the afternoon the indoor temperature does
not reach to the comfort level 25◦C prior to the end of
working hours even with the baseline cooling strategy. Fig. 15
illustrates two examples as follow: (a) for four cases, our
dynamic method manages to bring the indoor temperature
to the level of the baseline method by 4pm, as shown in
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(a) Bldg F21, evacuation at 2:01pm.
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(b) Bldg C20, evacuation at 2:52pm.
Fig. 15. Samples of post evacuation where the zone temperature cannot reach
to 25◦C by 4pm (end of working hours) with our optimal cooling.

TABLE V
SUMMARY OF METHODS (THEIR USE, OUTCOME, AND COMPLEXITY).

Proposed solution Applicable Domains Power excursion Thermal discomfort Time shift Time complexity

Rescheduling (Rule-based heuristic) Drills only Zero - 0-120 hours Low (<1 sec per run)

Optimal (Non-linear optimization) Drills & Emerg. Minimized Minimized Zero High (≈ 3 min per run)

Near-optimal (Practical optimization) Drills & Emerg. Zero Non-Zero Zero Low (<1 sec per run)

Fig. 15(a), hence is considered as zero delay, and (b) for three
cases, our method can only meet the baseline temperature post
4pm, as shown in Fig. 15(b), hence are excluded. The average
delay across, the 30 evacuations (in which our method meets
the comfort temperature or baseline level), was found to be
less than 7 minutes which is acceptable. The largest delay of
15 minutes was recorded for the largest building F21. Our
proposed practical strategy can be incorporated into existing
HVAC systems. It can be configured to activate post evacuation
automatically. Note that in our evaluation, we relaxed the
constrain of thermal comfort to mitigate power excursion
costs. That said, to balance the thermal comfort of occupants
against the associated cost of power excursions, one needs to
solve the formal optimization problem as formulated in Eq.5
with all constrains included – mathematical analysis of trade-
off is beyond the scope of this paper.

Impact of control interval: We have so far used a fixed
control interval (∆T = 5 minutes) which is the resolution of
our occupancy data. We now experiment with larger values
of the control interval and quantify how they affect the
time to reach to the thermal comfort temperature. Note that,
the resolution of our occupancy data does not allow us to
experiment with values less than 5 minutes. In Fig. 14, we
show how the amount of time taken to reach thermal com-
fort temperature (time-to-comfort-temp), and power excursion
varies by different control intervals, considering our three
solutions, namely baseline, near-optimal, and optimal, for a
representative building in our study. As shown in Fig. 14(a),
the time-to-comfort-temp increases with control interval for all
the three solutions. This is because the supply air temperature
is adjusted very infrequently (a conservative approach of
larger control intervals), which causes the zone temperature
to fall slower compared to frequently adjusting the supply
air temperature (an aggressive approach with smaller control
intervals). It can also be seen that the gap between near-
optimal and baseline solutions is widened for greater values
of the control interval. As observed in Fig. 14(b), power
excursion is unsurprisingly independent of the control interval.
This is because the optimal solution aims to cap the power
excursion at 10%, while our near-optimal solution is designed
to mitigate the power excursion. Finally, the baseline approach
incorporates no control.
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Summary of Methods for Reducing HVAC Power Con-
sumption: In Table V, we present a comparison summary
of the three methods developed in this paper. Our reschedul-
ing method is only applicable to planned evacuations where
building managers have control over their scheduled time. By
retrospectively shifting an evacuation to an appropriate time
within the same week in which it was originally planned,
our method aims to eliminate the power excursion associated
with post evacuation HVAC cooling. On the other hand,
our non-linear optimal and practical optimal methods for
indoor cooling are applicable and adaptable to both types of
evacuations, planned and emergency. Regardless of the time of
occurrence of evacuations, our optimization method dynam-
ically adjusts the supply air temperature using the thermal
model of the building. Our proposed near-optimal cooling
strategy (quantified across 33 emergency evacuations) reduces
the computational complexity (at the expense of slight thermal
discomfort) in managing power demand post evacuation, and
hence is more practical to be used in real-time.

VI. CONCLUSION

In this paper, we first showed that evacuation events give rise
to building power excursions and then quantified the power
overshoot with respect to the peak power demand. Secondly,
we developed a method for rescheduling evacuation drills to
eliminate the power excursions that occur as a result of cool-
ing post evacuation. Thirdly, we developed an optimization
framework to minimize total costs associated with both power
excursion and occupant thermal discomfort subject to supply
air and maximum overshoot constraints. Lastly, we proposed
a near-optimal cooling strategy that constrains the power
consumption by dynamically adjusting the HVAC supply air
temperature during reoccupation. In future work, we plan to
consider the trade-offs between loss of productivity and cost
of cooling in scenarios where occupants may have to return
to the building the following day due to smoke accumulated
indoors.
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