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Estimating Passenger Queue for Bus Resource
Optimization using LoRaWAN-enabled

Ultrasonic Sensors
Thanchanok Sutjarittham, Hassan Habibi Gharakheili, Salil S. Kanhere, and Vijay Sivaraman

Abstract—Anecdotal evidence has shown that bus stops around
our University campus, specifically those serving express buses
to city center, can get very crowded during certain times. This
not only causes immense frustration to students who experience
large variations in wait-time, but also creates challenges for the
university and transport authority in knowing when to schedule
extra buses. This paper outlines our efforts to instrument a
main bus stop on our university campus with IoT sensors to
monitor passengers queue length. Our specific contributions are
as follows: (1) We begin by developing a LoRaWAN ultrasonic
sensor for detecting people in the queue. The sensor emits an
ultrasonic tone pulse every few seconds, and determines whether
someone is in front of it based on the reflections received, if any.
Ten sensor units are built, tested, and tuned in a lab environment
to achieve optimum detection accuracy and data transmission
rate; (2) Next, we install these sensors at a 6-meter interval
along the campus fence bordering the bus-stop. We develop an
algorithm to infer the number of passengers in the queue from
sensor data and demonstrate that it achieves reasonable accuracy
with a mean absolute error of 10.7 people (for a queue size of
up to 100 people); and (3) we develop an optimization model to
reschedule bus dispatching time, aiming to minimize total wait
time of passengers. We show that a reduction of up to 42.93%
in passengers’ wait time can be achieved by adopting demand-
driven bus scheduling.

Index Terms—LoRaWAN sensors, bus queue monitoring, op-
timization

I. INTRODUCTION
University campuses are essentially a microcosm of a city

and can often encompass vast areas (e.g., Stanford owns 8183
acres of land). They include a diverse range of facilities
including residences, sports centres, offices, lecture theatres,
and public transport stops. Universities are thus under constant
pressure to improve efficiencies and offer better services to
the various stakeholders including students, staff and visitors.
On a typical weekday, thousands of people would arrive and
depart the campus at various times of day. A vast majority
of these would avail of public transport services for their
daily commute. Transit stops at universities are notorious for
overcrowding during peak hours [1]. It is not uncommon for
commuters to wait for a second or even a third service to
arrive before there is sufficient room to board.

Prolonged waiting is highly undesirable on multiple fronts
including loss of productivity, fatigue, tiredness and discour-
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agement for using public transport. Advanced transport system
has provided myriad of opportunities to improve the experi-
ence of drivers and passengers [2]. In an effort to assuage this
problem, many public transport providers have deployed real-
time vehicle tracking services, whereby the arrival time of the
next service is displayed in real-time on a display installed
at transit stops or through mobile applications. During peak
times, the passenger demand may outstrip the available capac-
ity on the next arriving service, resulting in many passengers
having to wait for longer. A system that can measure the length
of the queue at transit stops in real-time would therefore be
favorable for passengers, by aiding their decisions on transit
stop selection and trip start time. The ability to estimate
passenger demand would also enable a pragmatic approach
to transit scheduling, which would lead to efficient transit
resource management and thus an enhancement in commuter
transit experience.

However, monitoring passenger queue length and wait time
at transit stops still remains a challenge, especially in an
outdoor scenario where power and wired connectivity are
usually inaccessible, thus hindering sensor deployment efforts.
Many studies have proposed mobile detection and crowd-
sensing based approaches [3], [4] to measuring queue size
or dwelling time of people, yet the solutions have only been
tested and deployed in an indoor environment. Furthermore,
such systems would require a fair fraction of queue members
to actively participate in order to achieve a good accuracy.
Existing works related to measuring crowding in an outdoor
scenario are mostly camera based [5], and if applied to queue
measurement can raise privacy concerns.

In this paper, we propose a novel end-to-end sensor-based
system for measuring queue length in an outdoor setting. The
solution is weather resistant, battery-operated, and communi-
cates wirelessly, allowing outdoor deployment where access
to power and communications ports are infeasible. We deploy
our system to monitor one of the busiest bus stops on our Uni-
versity campus and show that our collected data can improve
operational transit scheduling decision. Our key contributions
are as follows: (1) we design and implement people detector
devices using ultrasonic sensing. The device uses LoRaWAN
for data communication by utilizing a public LoRaWAN base-
station located on our campus. We test and tune the sensor and
LoRaWAN-based parameters to achieve optimum detection
sensitivity and superior data delivery ratio for our deployed
environment while achieving low energy consumption. Our
implementation choices enable ease of deployment in an
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outdoor space; (2) We deploy ten people detector devices at
one of the busiest bus stops on campus. The sensed data and
empirical observations are used to develop an algorithm to
infer queue length. Our method yields a reasonable accuracy
with Mean Average Error (MAE) of 10.7 people for a queue
size of up to 100 people; (3) We demonstrate that the data
on actual transit demand can be used to optimize dispatching
time of buses by formulating an optimization model, aiming
to minimize total wait time of passengers at the bus stop.
The experiments performed on the real-world deployment data
show that up to 42.93% of passenger wait time can be reduced
by reallocating the existing bus resources.

To the best of our knowledge, we are the first to employ an
ultrasonic sensor-based solution using LoRaWAN to address
the challenges in measuring queue length in an outdoor
scenario. We use bus stops as an illustrative example for
public transit stops. Our solution could also be applied to
other transportation modes, and for any outdoor scenario (e.g.,
stadiums, airports) where an orderly queue is formed.

The rest of this paper is organized as follows: Section §II
describes relevant prior work. In §III, we present our design
and implementation of people detector units. Our developed
intelligent queue inference algorithm and deployment of the
sensors are described in §IV. We then show the potential of
collected passenger demand in optimizing transit bus schedul-
ing in §V. Finally, this chapter is concluded in §VI.

II. RELATED WORK

Many existing works have proposed methods to estimate
queue length [6], [7], waiting-time [3], [8], or crowd density
in general [9], [10]. This section surveys the most commonly
used approaches to deduce crowding information.

WiFi/Bluetooth Signals: Due to the prevalence of mobile
devices that support wireless communication such as WiFi
and Bluetooth, many researchers have attempted to leverage
these signal traces in estimating human crowd information. For
instance, Wang et al. [6] uses a single WiFi monitor to track
human queue in retail environment by analyzing RSS trace
from mobile devices, Shu et al. [8] uses WiFi positioning
data to estimate queueing time at an airport, and several
works [9], [11] estimate crowd density within an indoor area
by exploiting WiFi and Bluetooth captures. These methods,
require WiFi access points or at least a signal monitoring
device to be installed at certain locations, which may not be
suitable for an outdoor scenario.

Crowd-sensing or Crowd-sourcing: Crowd-sensing
through the use of information obtained from smartphones
has been explored to estimate people crowding information.
Okoshi et al. [3] and Li et al. [4] use crowdsourced data
from sensors embedded in smartphones such as accelerometer
and magnetic compass to estimate queue waiting time in
a retail environment. The proposed methods are able to
distinguish queuers from non-queuers with good accuracy,
yet high number of participants (who are willing to install
and have the application running on their mobile phones)
are required to achieve such good results. Elhamshary et al.
[10] also leverages data sensed from users’ smart phones
in order to estimate crowding level in railway stations by
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Fig. 1. Installation locations of people detection devices at a bus stop.

exploiting a wider range of sensed data including individual’s
trajectory from entrance and ambient sound from smart
phone’s microphone. However, the method is not suitable
for queue-specific detection, but instead can be used for
monitoring of human crowd-level in general. An even more
user-centric approach is using crowd-sourcing kiosks that asks
users about their estimated waiting time through an interactive
interface [12]. This method poses several drawbacks including
a high likelihood of insufficient contributions from queuers
and deployment difficulty.

Camera: A more traditional approach for crowd detection
is the use of camera-based systems [7], [13], [14], employing
video or image analysis. However, this approach is expensive,
endangers privacy, and its accuracy can largely depend on the
camera’s field of view. The camera-based approach also poses
deployment difficulties, especially in an outdoor environment
where power and communications are not easily available.

Most of existing methods for measuring crowding and queue
information are only applicable to an indoor setting such as
retail environments or airports. Works that have been deployed
in an outdoor settings either aim to estimate overall crowd
density [15] or focus on tracking individuals [16], [17]. To
the best of our knowledge, none of these works attempt to
estimate the length of an orderly queue and waiting time in
an outdoor scenario.

III. SENSING PEOPLE IN QUEUE: DESIGN,
IMPLEMENTATION, AND QUEUE INFERENCE ALGORIHTM

In this section, we propose a novel end-to-end sensor-based
system for human queue length measurement in an outdoor
space. We first describe the design and implementation of
a people detector unit (PDU), which serves as a sensor unit
in our system. Additionally, we demonstrate the performance
of the sensors through experimentation and parameter tuning.
We then introduce an algorithm that infers queue length
information from the sensed data. Note that we obtained
appropriate ethics clearance (UNSW Human Research Ethics
Advisory Panel approval no. HC180359) prior to conducting
this research work.

A. Design Decisions

Our bus stop of interest is located outside our university
campus which serves express bus service to the city center. The
formation of the queue is in a straight line, along the campus
fence. Fig. 1 shows the presence of passenger queue relative
to the road, bus stop, campus ground, and fence. The expected
area where the queue forms is approximately at a distance of
2-3 meters from the fence and can on occasion extend beyond
the edge of the fence line. The goal of each PDU is to detect
and indicate whether there is a queue formation in front of
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TABLE I
SUMMARY COMPARISON OF SENSOR TECHNOLOGIES FOR BUS QUEUE MONITORING.

Technology Contact
based

Passive/
Active

Spacial Privacy
intrusive

Unit
cost
(USD)

Relative
power draw

Other limitations

Scannable QR codes no passive single yes 10-1 None Low participation, high abuse.
Pressure pads yes active either no 102 Low Council permission, tripping hazard.
Passive infra-red no active single no 101 Low Only useful at night.
Camera no active multi yes 102 High Large data volumes.
Laser time-of-flight no active single no 102 Low Expensive & niche.
Ultrasonic time-of-flight no active single no 100 Low
WiFi session logs no active multi yes 0 None Unreliable, only covers certain WiFi users

(not all queue members).

it. Since power and communications points are not available
within the proximity of the bus stop, we chose to use an
array of small single spatial sensors rather than a single multi-
spatial sensor (such as camera) due to portability and battery
life requirements. Our choices of sensors and communications
technologies are discussed next.

1) Sensing Choices: We now compare several sensing
technologies for people detection as summarized in Table I.
Criteria used for our comparison include whether the sensor is
contact-based (require physical contact with queue members
to take measurement), whether the sensor is passive (require
conscious effort from queue members to record readings),
collected data size, privacy, cost, and power draw.

Scannable QR code is a form of passive sensor that
requires queue members to scan unique QR code posters
placed along the length of a bus queue. Despite being a cheap
and flexible option, sufficient frequency of participation is
required to make the solution effective.

Pressure-pads are flat devices placed on the ground to
detect the weight of users standing on them. Unfortunately
their installation on a footpath is complicated, requiring ex-
tensive approvals, mechanical protection (vandalism, weather,
vehicles), and safety risk mitigation (tripping hazards).

Passive infrared sensors detect the infra-red light emitted
by all warm entities (humans). However, these sensors cannot
discriminate between people and other sources of heat (e.g.,
vehicles, sunlight), making them inappropriate for outdoor
roadside installation and operation, especially during the day.

Camera sensors: A low-resolution of 640×480 pixels cam-
era already requires the transmission of 300,000 samples,
which even with compression will still require significant
time and energy. Additionally these devices collect personally
identifiable information, which would require more complex
data handling and approval arrangements.

Existing WiFi infrastructure produces session logs that
can potentially be used to determine queue occupancy with-
out additional capital costs, however this method has severe
accuracy and validity limitations. Only users of the university
WiFi systems will be measured. Moreover, it is difficult to
determine exactly where users are relative to each access point
(e.g., in a bus queue or in a nearby cafe) and WiFi coverage
can often be poor at bus stops as they are usually located at
the edge of the campus.

Ultrasonic distance sensors and laser time-of-flight sen-
sors take distance measurements between themselves and
objects in front of them. They operate by emitting a small

amount of sound or light, and measure how long it takes for
this wave to bounce off a nearby object and come back. Ultra-
sonic waves are sound waves above human hearing, typically
chosen to avoid irritating humans and to allow smaller physical
sensor size. As sound waves are many magnitudes slower than
light waves, ultrasonic distance sensors are typically much
simpler, cheaper, and available in more varieties than their
laser counterparts.

Summary: We chose ultrasonic distance sensors because of
their low power requirements, low cost, low implementation
complexity and high likelihood of detecting the presence of
individuals in a queue while not being adversely impacted
by other objects in the environment. Compared to light and
infra-red solutions, they do not suffer interference problems
(sunlight, car headlights, etc), and compared to solutions such
as WiFi they are less likely to miss a fraction of queue
members. Ultrasonic, whilst not a perfect sensing method,
avoids most of the disadvantages of other sensing technologies.

2) Communication Choices: Data collected by sensor units
must be communicated back to a central location for perma-
nent storage and analysis. Real-time streaming of collected
data permits immediate analysis and reporting. Wired commu-
nication is infeasible due to its high infrastructure costs and
its inflexibility for making positional adjustments. Thus we
only consider wireless communications solutions for which
we have a set of requirements including low power draw,
simple to operate, long-range, low-cost, and multiple devices
should be able to directly communicate with a gateway. Note
that high data-rate is not a requirement for our PDU, as
the distance measurement data collected is at the scale of a
few bytes per minute. In the following, we discuss several
wireless communication options in detail. A summary of our
comparison is available in Table II.

WiFi (802.11) is a large collection of standards optimized
for high data-rates and persistent sessions. Notable amount of
time, along with exchanging of control messages is required to
initiate wireless connections; hence demanding high software
complexity and high power draw.

Bluetooth is a collection of standards optimized for master-
slave communications. While this is optimal for operating
simple devices such as microphones and speakers, it is not
effective or simple for the operation of an arbitrary number of
PDUs simultaneously. Some methods allow for multiple client
devices (“Bluetooth Piconet”). However, this requires further
synchronization complexity, and imposes a (low) total device
limit of 7.
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TABLE II
SUMMARY COMPARISON OF COMMUNICATION TECHNOLOGIES FOR BUS QUEUE MONITORING.

Technology name Data-rates Intended
Range(Max)

Primary topology Usage
Complexity

Power
draw

Cost

WiFi Low to high Medium Star, P2P High High Low
Bluetooth Low to med Short Master-slave High Low Low
Wireless broadband Low to high Long Star High Low High
Zigbee, NRF24, etc Low to med Short Various Low Low Low-Moderate
LoRaWAN Low Long Star Low Low Moderate
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Fig. 2. Interior of a PDU.

Wireless broadband systems such as 3G, 4G, and LTE
can be optimized for low power signaling and sleeping after
a connection is initially negotiated, however compliant radio
modules are typically very expensive and complex to operate.
Many vendors require signature of non-disclosure agreements
and external Linux-running microprocessors with proprietary
drivers for these devices to function.

Proprietary low-power communications systems and mod-
ules such as IEEE 802.15.4 (Zigbee) and NRF24 provide low-
cost, simple-interfaced and low-power solutions. Unfortunately
their range is very limited, requiring the installation of local
(line-of-sight) reception towers near instrumented bus stops.

LoRaWAN and LoRa are a set of low-power and long range
communications standards. Radio modules are easily available
with simple UART-style interfaces and communications can be
performed over kilometers in non-line-of-sight urban environ-
ments. The typical network topology is star, with an arbitrary
number of low-power devices transmitting to a centralized
(infrastructure) base-station for data collection. Base-stations
themselves can either be shared (public) resources run by
third parties or private infrastructure [18], in both cases the
standards use an advanced encryption standard (AES) im-
plementation to provide message security [19]. Unfortunately
LoRa is implemented on a wide variety and disparate set
of frequency standards [20], with many LoRaWAN radio
modules on the market only supporting a single frequency
band. LoRaWAN radio modules that meet local regulatory
requirements are also not necessarily cheap.

Summary: We chose LoRaWAN as the communications
platform for this work because of its longer range, lower power
draw, and simpler implementation complexity compared to
other alternatives.

B. Implementing People Detector Units

We designed and assembled ten people detector units
(PDUs) using Ultrasonic distance sensors and LoRaWAN
radio modules, covering the entire fence length in our de-
ployment environment with approximately ten people queuing
between two consecutive sensors. Sensor units were designed

to measure the presence of a bus queue as shown in Fig. 1. An
array of small single-spatial sensors was chosen over a single
multi-spacial sensor (such as a camera) due to portability
and battery life requirements, as discussed in §III-A1. Each
component of the PDU and important design decisions taken
during the implementation are described below:

1) Control board: A red circuit board containing a small 8-
bit micro-controller and miscellaneous periphery components
was used to coordinate each PDU. We adopted an “wake-and-
return-to-sleep” design to maximize battery life. Each PDU
spends as much time as possible sleeping, only waking to
take brief measurements or transmit measured data. PDUs
are also configured to stop transmitting if they are unable to
take any successful measurements. This greatly reduces the
amount of transmissions when there is low occupancy at the
stop, both increasing battery life and reducing interference
to external devices using the same radio spectrum. Further-
more, the message payload is optimized to reduce message
length. Distances are stored as 8-bit values with the resolution
of distance measurement of 2 cm (permitting a theoretical
measurement range of 0-510 cm). No checksum or other
metadata are included in the payload, instead we rely upon
the LoRaWAN protocols for reliability and error detection.

2) Ultrasonic Sensor: The HC-SR04 ultrasonic distance
sensor is a low-cost off-the-shelf greymarket part1, most
variants of which can provide practical distance measurements
from 0.01 m to 3 m with better than 0.02 cm of resolution
depending on the target object being observed. Our testing
reveals most HC-SR04 sensors are unreliable for detecting soft
and uneven objects such as humans beyond approximately 1
meter, where successful measurement rates fall below 50%. A
failed measurement (“infinite distance”) indicates that either a
queue member in front of a sensor has been missed (false
negative) or that there is no detection within 3.5 meters
(true negative). False positives (incorrectly detecting people
in empty queue) are rare events for our sensors. In order to
address the issue of unreliable detection, we configure the
ultrasonic sensor to repeatedly make up to 5 measurement
attempts (with a millisecond gap) until a valid (non-infinite)
measurement is obtained. This configuration allows us to
afford a high accuracy while maintaining low false-positive
and -negative rates. The sensors are configured to measure
and record the distance every 10 seconds, and transmit (via
their LoRaWAN interface) a batch of 6 measurement records
every minute.

1“Greymarket” parts are manufactured by a variety of vendors with no
central authority and often no relevant/accurate data-sheet. Use of these parts
is common in most manufactured electronics today, however the increased
variance in quality & performance demands more attention be paid by users
to their testing & implementation.
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(a) Unmodified ultrasonic sensor.
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(b) Modified ultrasonic sensor.

Fig. 3. Probability of detecting a human at various proximities of the sensor
(the sensor is located at origin).

Multiple PDUs operating in the same location could po-
tentially pick up each other’s ultrasonic pulses, providing
incorrect measurements. To statistically minimize this effect,
we design the sensor units to be as non-deterministic in
their timing as possible; where small changes in measurement
success (num of cycles), transmit time and clock speed would
prevent PDUs from synchronizing their behavior. Units are
RC-oscillator controlled (rather than crystal controlled) and
do not contain real-time clock. Even if all units are turned on
simultaneously they naturally spread out their timings.

3) LoRaWAN Radio: Multitech mDot radios2 are chosen as
they were the only market-available option at the time of im-
plementation that was compatible with the local (legal) LoRa
frequency plan, available off-the-shelf (in-stock) and provided
a well-documented UART interface for simple operation. We
choose to utilize a public LoRaWAN base station already
provisioned by our campus Estate Management. The use of
a public tower necessitated the use of an intermediary organi-
zation, The Things Network (TTN)3, in our data collection.

4) Power supply: Two 1.5V AA alkaline cells are used due
to the concern about the longevity of rechargeable solutions
in enclosures placed in direct sunlight. The 3V supplied is
enough to operate the micro-controller and radio, however
it is not sufficient for the ultrasonic distance sensor, which
requires 5V. We use a discrete voltage doubler (operating at a
fixed frequency by the micro-controller) as a simple solution
to this problem. It has near-zero quiescent power draw and
was later modified (see §III-C3) to provide extended battery
life operation.
C. Performance Evaluation and Tuning

In this subsection, we evaluate the performance of our
PDUs in terms of detection range of the ultrasonic sensor,
communication reliability of the LoRaWAN radio, and energy
consumption of the entire unit.

1) Detection Range: Our PDU utilizes a HC-SR04 ul-
trasonic sensor to return the distance to the closest object
from the sensor. We first evaluate the detection ability in our
laboratory. Our initial testing verified that the sensor performed
well in returning the distance to large solid objects, however
detection of people was erratic. We found that the sensor
underperformed when the human subject moved more than
1.5 meters away from it. Also, the detection ability varied

2https://www.multitech.com/brands/multiconnect-mdot
3Public-use LoRaWAN base stations: https://www.thethingsnetwork.org/

TABLE III
LORAWAN DATA RATE SETTINGS AND ASSOCIATED THEORETICAL

TIME-ON-AIR FOR 6-BYTE PAYLOAD.

Data rate DR0 DR1 DR2 DR3 DR4 DR5

Spreading Factor 12 11 10 9 8 7
BW (kHz) 125 125 125 125 125 125
Time-on-air (ms)

(for 6-byte payload) 1319 741 330 185 103 51

depending on the type of clothing (e.g., soft long sleeved top)
worn by the subject. The cause of such poor detection ability
with people is due to ultrasonic waves not being reflected
strongly off people to be detected at the sensor. Soft clothing
is also not a good reflector of ultrasonic waves when compared
to bare human skin.

Emil [21] has done an in depth analysis of the HC-SR04
performance and has reverse engineered it. The author found
that the band-pass filter used on the receiver circuit for
detecting the reflected ultrasonic wave is centered at 18kHz.
As the wave emitted by the sensor is 40kHz, the reflected wave
back to the sensor is also expected to be 40kHz and having
the received wave filtered by a band-pass centered at 18kHz
reduces the receivers sensitivity. Therefore, as suggested by
Emil, we modified two resistors used in the filter circuit of the
HC-SR04, and hence enhanced the sensitivity of the receiver.

We then evaluate two groups of sensors namely three units
of “unmodified” and one unit of “modified” HC-SR04’s. For
each sensor, the human subject stood at cells on a clearly
marked grid map. We collected 100 readings at each position,
then the average was used for each group of sensors. The
results of this experiment are shown in Fig. 3, where the
sensor is located at coordinate (0,0) facing right. Each cell
value indicates the probability of human detection (green cells
show high detection and red cells show low detection). It is
clearly seen that the modified sensor (Fig. 3b) has a better
field of view, detecting the test subject in most situations even
if they are not standing directly in front of the sensor. The
detection range is also greatly increased. We also observe
that the detection ability of the unmodified sensors tapers off
after 1.5 meters whereas the detection ability of the modified
sensors starts to taper off at a further distance of 3 meters. The
results of the experiment is conclusive in demonstrating that
the modified sensor has significantly better ability in detecting
people than the original version.

2) LoRaWAN Communications Reliability: We quantify the
reliability of LoRaWAN by using packet delivery ratio (PDR)
as a performance metric. PDR is defined as the fraction of
packets received by the gateway out of the total number of
packets sent. Reliability of LoRaWAN notably depends on
the deployment environment as well as settings on LoRaWAN
physical layer. There are three main parameters that can be
tuned including spreading factor, SP (number of bits used to
represent a symbol, which directly impacts bit rate and thus
time-on-air of packets); bandwidth, BW (defines the range of
frequencies over which LoRa signal spreads, higher bandwidth
allows for faster data transmission rate but reduces receiver
sensitivity and communication range); and transmission power,
TXP (amount of energy used to transmit a packet). LoRaWAN
introduces a new variable called data rate (DR), which is
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Fig. 4. Packet delivery rate (PDR) varies by data rates (DR) and transmission
power (TXP).
an arbitrary configuration parameter used to define different
combinations of SP and BW settings. The respective configu-
rations (available in our country) that we evaluated are shown
in Table III. Note that BW configurations are constant across
all data rates, but the spreading factors vary from 12 (low data
rate of DR0) to 7 (high data rate of DR5). In theory, lower
data rate decreases the signal to noise ratio (SNR) limit at
the receiver gateway (causing the receiver gateway to become
more sensitive to the received signal), thus creating a more
reliable LoRaWAN link. However, this will also raise time-
on-air of the transmitted packet, which in turn increases the
chance of collision.

To evaluate the performance of various configurations of
DR and TXP, we wrote a script to randomly cycle the setting
combinations for all of our 10 PDUs. We consider six data
rates (DR0-DR5) and six transmission power settings (TXP
values of 2, 6, 10, 14, 18, and 36 dBm), thus a total of
36 combinations. The PDUs were set to transmit a 6-byte
data packet every minute, and a total of 30 samples were
collected for each setting combination per PDU. This yields
a total sample size of 10,800 transmissions (from ten units).
The random cycling of settings helps reduce sampling bias
caused by environmental factors such as temperature, humid-
ity, and line-of-sight that can impact the reliability of LoRa
links. Furthermore, repeated measurement attempts (explained
in §III-B2) were made during this phase of experiment to
introduce random delays between successive transmissions,
and thus preventing PDUs from getting synchronized, thus
minimizing collisions. We installed our 10 PDUs on the fence
(at the bus stop) to collect data for reliability analysis.

Fig. 4 shows PDR (y-axis) for various combinations of
DR settings (x-axis) and transmission power settings (facets).
We observe that for transmission power up to 10 dBm, PDR
has a general declining pattern in data rate (from DR0 to
DR5) and is widely spread in values between 70% and 90%
– this behavior complies with other experimental studies on
LoRaWAN performance [22], [23], where a low data rate was
reported to result in more reliable link and thus gives a better
PDR. By increasing the transmission power (TXP of 14 and
18 dBm), no obvious pattern is observed across various DR
values, suggesting that the delivery rate is less susceptible to
the changes in LoRaWAN data rate setting. This is due to the
fact that higher transmission power yields stronger signals that
are less prone to attenuation caused by the environment.

3) Energy Consumption: We evaluate the energy consump-
tion of our PDUs by computing the estimated battery life.
Battery lifetime (in days) can be computed by dividing the
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Fig. 5. Estimate of battery life with different LoRaWAN parameter settings.

usable energy available in the batteries (found from manu-
facturers data sheet [24]) by the total daily energy consumed.
We start by computing the energy consumed for one packet. In
our PDUs, the LoRaWAN radio and the ultrasonic sensor con-
tribute to the majority of energy consumption – the total energy
consumed per packet can be calculated by adding energy
consumed by LoRaWAN radio and by ultrasonic sensor. We
experimentally measure the energy usage of both components
using a small resistive shunt and an oscilloscope.

As mentioned in §III-B2, our ultrasonic sensors are con-
figured to collect and transmit the distance data at regular
intervals, but each sensor may attempt up to 5 times before
they record a valid measurement. Therefore, the total energy
consumed by the sensor can vary depending on the number
of measurement attempts. The best case scenario is when
the first measurement in a session successfully detects the
queuer and the worst case is when all five measurement
attempts are committed. With the five retries available, we
found the energy consumed by the ultrasonic sensor under
best and worst cases to be 0.04J and 0.29J respectively. The
LoRaWAN radios energy consumption varied depending on
the configured data rate and transmit power. Lower data rates
consume more energy due to longer time on air, and high
transmit power settings (from 17dBm to 36dBm) consume the
maximum amount of energy for a given data rate – it saturates
due to limitations of our radio. The best case for our radio’s
energy consumption is with the highest data rate and lowest
transmit power (0.01J), whereas worst case is lowest data rate
and highest transmit power (0.43J).

Once we calculate the energy consumed per packet, the
total daily energy consumption of a PDU can be obtained by
multiplying this value by the maximum number of packets sent
per day. As a result, battery lifetime (in days) can be computed
by dividing the usable energy available in the battery by the
total daily energy consumed. Fig. 5 represents the estimated
battery life for each combination of LoRaWAN parameters
with the best and worst case scenarios (for ultrasonic detec-
tion) respectively. The trends show that the data rate has a
greater impact on the battery life compared to the transmit
power. Ultrasonic energy dominates for the worst case scenario
leading to a compressed range (i.e., 15 to 38 days in Fig. 5) of
battery life. Our PDU’s energy consumption is dominated by
the ultrasonic sensor due to its retry property when no valid
measurement is returned, suggesting high energy consumption
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Fig. 6. Sensors mounted on the campus fence bordering the bus stop.

arises from an empty queue.
LoRaWAN Parameters Decision: For our deployment

scenario, we have found that: an acceptable packet delivery
ratio (more than 85% on average) can be achieved across
all data rates when transmission power is configured to a
value above 14 dBm (§III-C2); higher data rate setting can
notably enhance battery life, for instance 208-day battery life
can be achieved for DR5 setting while only 28-day life for
DR0 setting when the transmission power is set at 14 dBm
(§III-C3). Furthermore, based on the theoretical time-on-air
calculation per data rate setting shown in Table III, faster data
rate (e.g., DR5) reduces air time for our sensors, which is
limited to 30 seconds per-day according to TNN guidelines.
In summary, data rate DR5 and transmission power of 14dBm
are chosen because of acceptable packet delivery (reliability),
longer battery life, and shorter time-on-air.

D. Queue inference algorithm

Data obtained from each PDU indicates the distance be-
tween the fence and the closest object in front of it. Since
PDUs are deployed along the footpath which also serves as
a pedestrian walkway, there is a chance that the PDUs detect
people who are walking by or standing within proximity but
are not part of the passenger queue. We therefore develop
a queue inference algorithm (Algorithm 1) to convert the
measurement data into queue length information while also
eliminating any false positive or false negative readings.

The algorithm consists of three steps. The first step aims
to address the time synchronization of the PDUs since data
from each PDU is recorded at different time instances as
explained in §III-B2. In order to synchronize the records, we
map the received data into its corresponding time bin of t
minute interval.

For each time interval, the second step decides whether a
PDU detects the existence of a queue or not. If the fraction of
positive measurements (detection within 2-3 m) over the time
interval is greater than a pre-defined threshold percentage (th),
we deem that the PDU detects a queue. Executing this step
yields a vector of 10 binary values (1: queue detected and 0:
not detected), corresponding to the ten PDUs. Since there is
typically no substantial gap in the middle of the queue, the
derived binary vector may contain false negative values which
causes a disjoint sequence of 1’s in the vector. The last step
therefore aims to fix such errors if present by employing the
concept of hamming distance to correct the measured vector
(code) to one of the following valid codes:

Algorithm 1 Queue Inference Algorithm
Input: Sensor Data, valid codes

1: Split sensor data into subsets of t minute intervals
2: for each subset do
3: Initialize array
4: for each sensor do
5: if % of distance between 2-3 m > th then
6: sensor state = ON
7: else
8: sensor state = OFF
9: end if

10: append sensor state to array
11: end for
12: for each v in valid codes do
13: compute Hamming distance between array and v
14: end for
15: Set v with the lowest hamming distance as final array
16: detected = sum of elements in array
17: Queue length = detected * number of people
18: end for
Output: Queue length

valid codes ∈



1
0
0
0

...
0

 ,

1
1
0
0

...
0

 ,

1
1
1
0

...
0

 , . . .

1
1
1
1

...
1




The selected valid code is then used to derive passenger
queue length. Depending on the approximated number of
people standing between any two adjacent PDUs, the queue
length can be deduced by multiplying the number of detected
bits in the vector by the number of people.

IV. SYSTEM DEPLOYMENT

In this section, we first illustrate the deployment of our
PDUs at an on-campus bus stop for queue length detection.
We evaluate the efficacy of our algorithm against ground-truth
data obtained from the field. The experiment shows that our
algorithm can achieve good accuracy with mean absolute error
value of less than 11.

A. Experimental Setup & Challenges

We deployed ten PDUs at the main bus stop of our uni-
versity campus that serves as the first stop for a non-stop bus
service to the city center. There are no intermediate stops,
therefore all passengers head to the same destination. Since
this is one of the busiest bus stops on the campus, waiting
queue may grow to over 100 passengers at a time while the
smallest bus offers a capacity of 68 passengers. Hence, it is
possible for commuters to wait longer than the next service
arrival time in order to board a bus. The sensors were affixed
to the campus fence adjacent to the pedestrian footpath (about
3 meters in width) at a regular spacing of 6-meter, where each
unit was installed 1.2-meter above ground. Fig. 6 shows our
deployment of PDUs. We observed that typically passengers
would form a queue along the footpath at a distance of about
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Fig. 7. Raw sensed distance measurements at each PDU position during a
2-minute interval snapshot (4.10pm-4.12pm on 24 Sep 2019). Green circles
indicate distance where queue is expected and red crosses indicate detection
that is not part of the queue.

2-3 meters from the PDUs. The arrangement of our PDUs in
relative to the queue formation is shown earlier in Fig. 1.

We encountered several challenges during the deployment
of our detection solution. The first challenge is associated
with the installation requirement where each PDU requires a
base object such as fence or a pole to attach it to. Therefore,
the queue length measurement range in our experiment was
limited to the length of the fence, since beyond the fence is an
open area. Another challenge we observed is the inconsistency
of queue formation during inclement weather such as rain,
where passengers tend to crowd together under the shaded
area. Since these areas are only available at certain parts
of the queue, this creates a discontinuous queue formation
which can affect the accuracy of our queue detection system.
Furthermore, occasionally people who are not passengers may
stand within the detection range, preventing the PDU from
producing valid readings and reducing the accuracy of the
queue length output. This issue can be partially solved by our
queue inference algorithm mentioned in §III-D.

In order to evaluate the accuracy of our queue inference
algorithm, we manually collect ground truth data by recording
timestamps when each passenger arrives at the queue and
boards the bus. This data is used to compute the actual queue
length over the measurement period. This data was collected
during peak hours (3-6 pm) on a weekday.

B. Sensed Data

Fig. 7 shows a 2 minute snapshot of collected raw measure-
ments (infinite values as mentioned in §III-B2 are not shown
here), where y-axis shows the distance (in cm) measured
by each PDU and the x-axis denotes the position of each
PDU with 1 and 10 denoting the head and tail of the queue,
respectively. Measurements over 200cm are denoted as green
while those that are lower are marked red. This is because the
former are highly likely to be passengers in the queue, while
the latter are likely passers-by. During the time period of this
snapshot, between 40-58 queuers are observed, this is shown
by a vertical blue line which indicates the approximate end of
queue corresponded to the actual queue length. In the other
word, the first 4 (or possibly 5) PDUs are expected to detect
the queue while the rest are expected to report no detection.
Examining the sensed data, we see that all PDUs at positions
1 to 4 have successfully detected the existence of the queue,
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Fig. 8. Time-trace of measurements from PDUs overlaid by ground-truth
queue information.

though some of the measured distances are not within the
expected range (possibly from people walking pass by on the
footpath). A false positive can also be seen at the position 9,
where an object is detected within the range of the queue.

To further visualize the sensed data, we plot a time trace of
PDU measurements and ground truth queue length in Fig. 8,
where x-axis denotes time at 2 minute resolution and y-axis
represents the position of each deployed PDU. Green cells
indicate detection of the queue by the corresponding PDU at
the corresponding time while red cells indicate detection of
object that is not part of the queue. We can see that PDUs are
able to fairly track the dynamics of the queue, evidenced by
the true position detections (green fills that lies under the blue
ground truth trajectory). Nonetheless, several false detections
can be observed including false positives where a queue is
detected when there is no queue formation (e.g., position 8 at
4.14pm) and false negatives where queue detection is missed
(e.g., positions 5 and 6 between 5:44pm and 5:48pm). These
false detection can be easily fixed using the algorithm we
introduced in Section III-D.

C. Algorithm Evaluation and Tuning

From the aforementioned description of the queue inference
algorithm in Section III-D, there are two tunable parameters,
namely time bin t (in minutes) and detection threshold th (in
percentage), that are needed to be decided upon. In order to
select the optimum parameter values, we apply our algorithm
to the sensor data collected during the 3 hour field experiment
(where ground truth occupancy was obtained) and observe the
impact of varying t and th. Root Mean Square Error (RMSE)
is used as the performance metric. Fig. 9 shows RMSE (y-
axis) as a function of detection threshold (x-axis). Different
line graphs shown the impact of varying the time bin duration.
Note that a time interval of 2 min (solid green line) achieves
the lowest RMSE. Also, choosing the detection threshold at
0.2 gives an acceptable RMSE of 13.25 and MAE of 10.75.
The output queue length calculated by our algorithm, using
the optimal values of t and th, is visualized in Fig 10, where
ground-truth is shown by dotted red lines and the calculated
queue occupancy is shown by solid blue lines. We can see
that our algorithm is able to closely track the real queue with
low error. We note that our solution can only measure the
queue up to the end of fence area (as noted earlier), hence
the calculated queue length is capped at 100 people. Note that
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this is an artifact of our deployment and does not impact the
algorithm accuracy.

D. Deployment results

We deployed our PDUs at the bus stop for a period of five
days, starting from 3pm on Monday (23 Sep 2019) until the
end of Friday (27 Sep 2019). The tuned algorithm described in
§IV-C is applied to the collected data (from our deployment)
to infer the temporal profile of queue length. We compute
the arrival rate (every minute) of passengers by integrating
the queue length (deduced from our sensors data) with a
publicly available (and real-time) data of bus schedules in
the form of General Transit Feed Specification (GTFS) [25].
This GTFS data reports the actual arrival/departure time of
buses to/from transit stops as well as buses type and model,
allowing us to estimate the capacity of each dispatched bus.
The computed rate of passengers arrival is highly fluctuating.
Therefore, we apply moving average (15-minute window) to
smooth the arrival rate data. Fig. 11 illustrates the smoothed
rate of passengers arrival per minute (black line) across the five
days of our deployment. The bus arrival times are depicted in
the same figure as vertical red lines.

It is clearly seen in Fig. 11 that bus arrivals are consistent
across all weekdays (static scheduling) despite variations in the
arrival pattern of passengers. We observe that the passenger
arrival pattern varies across different days especially on Friday
where the peak occurs at 4:30pm as opposed to 5pm for
other weekdays. However, buses are statically scheduled to be
dispatched more frequently around the 5pm mark, suggesting a
mismatch between supply and demand and thus inefficient use
of resources. This observation suggests for a more optimal bus
scheduling to be considered, so that the passengers experience
is improved by reducing their waiting time at the bus stop but
without adding extra bus services.

V. OPTIMIZING BUS SCHEDULES BASED ON DEMAND

We saw in §IV-D that existing static bus schedules are not
particularly efficient. In this section, we develop an optimiza-
tion model that schedules the arrival of buses based on the
actual passenger demand in order to minimize the total wait
time of passengers at the stop. We formulate the problem
with an assumption that the passengers demand is given and
known. Note that the future demand may be predicted by way
of modeling the pattern of historical data, but predicting the
demand is beyond the scope of this paper given the limited
data collected from our deployment.
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Fig. 10. Real-time queue length inferred from sensor data vs. ground-truth.

A. Optimization Formulation

Several research works [26], [27] have developed dynamic
bus scheduling schemes to improve the transit experience
of passengers, with the common objective being minimizing
passenger wait times. However, many existing models estimate
passenger wait time without considering the limited capacity
of buses [28], [29]. During peak hours particularly, certain
passengers (depending on the queue length and their location
in the queue) may need to wait for more than two buses
before they get on board. Our formulation, therefore, aims to
incorporate the additional wait time of those passengers who
may get left behind due to overloaded buses.

For our optimization problem, let there be B buses available
for use in a day. The arrival time and seating capacity of bus
i are respectively denoted by di and Ci where 1 ≤ i ≤ B.
Passengers demand, captured by their rate of arrival to the
stop as shown in Fig. 11, is denoted by λ(t). The total daily
wait time of passengers is obtained by adding the following
components:

(a) Time spent (within a day) by those passengers who board
their first arriving bus since they joined the queue. We borrow
from [30] the model of this factor of wait time for B buses
during a day, which is given by:

W first =

B∑
i=1

∫ di

di−1

(di − t)λ(t) dt (1)

(b) Time spent by waiting passengers who missed to board
previous bus(es) due to capacity limit. For each arriving bus i,
N left

i denotes the number of leftover passengers that arrived
before and missed the previous bus i− 1. The total wait time
of leftover passengers can be formulated as:

W left =

B∑
i=1

N left
i (di − di−1) (2)

Given N left
1 = 0, the number of leftover passengers can be

calculated recursively by:

N left
i = N left

i−1 +

∫ di−1

di−2

λ(t) dt− Ci−1 (3)

The objective of our optimization formulation is to minimize
the total daily wait time of passengers:

min W first +W left (4)

In our optimization model, we assume an ordered set of
buses, each with certain capacity. Our decision variable is the
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Fig. 11. Static schedule of buses dispatch time.

arrival time of these buses. There are a couple of constraints
to be considered:

(a) Time interval between consecutive buses (headway)
need to be less than an hour (Hmax) in order to maintain
a minimum frequency of bus services (as observed in existing
time-tables). We also note that the headway cannot be less
than a minute (Hmin), since the resolution of our computation
is every minute (minimum) and buses are not scheduled
simultaneously. Therefore, our first constraint is given by:

Hmin 6 di − di−1 6 Hmax (5)

(b) The last bus (of a given day) needs to be scheduled at
the end of the daily optimization period (te), consistent with
the current bus schedules (say, 8:30pm).

dB = te (6)

B. Algorithms for Solving Optimization Problem

The scheduling problem we formulated in §V-A is a nonlin-
ear and non-convex combinatorial optimization problem [31],
which makes it difficult to obtain the global optimal solutions.
Therefore, heuristic algorithms and non-heuristic algorithms
such as Genetic algorithm are commonly employed to solve
such problems. In particular, GA is one of the most well-
studied algorithm used in the field of mass transit optimization
[26], [30] and has proven to be effective in solving combina-
torial optimization problems [32]. In this paper, we adopt GA
and Hill Climbing heuristic search to solve our scheduling
problem and compare their performance.

GA is inspired by the process of natural evolution. The
algorithm selects optimal solutions that yield the best fitness
(based on the objective function) for reproduction in the next
generation, hoping to produce better offspring (solutions with
better fitness scores than the parents). We use the optimization
objective in Eq. 4 (minimizing the total daily wait time) as the
fitness function of our genetic algorithm. For our chromosome
design, we let genes within a chromosome represent headways
of a fixed ordered set of buses. Therefore, each chromosome
is expressed as [H1, H2, ...,HB−1] where Hi (a gene) denotes
the headway between bus i − 1 and bus i. Note that the last
available bus on a day needs to be scheduled at the end of daily
window according to the second constraint in Eq. 6, Hence
there are total number of B − 1 genes for the chromosome.
Note that we use bus headways instead of dispatching time in
order to narrow down the search space.
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Fig. 12. Optimal schedule of buses dispatch time.

For cross-over operation where two parent solutions ex-
change genes, we adopt a local arithmetic cross-over [33].
This operator takes weighted sum of the two parents to create
a new gene where weights are randomly selected for each
gene. This method is chosen to increase the diversity in
generated offspring. In other words, the objective is to create
new genes which are not present in parents [34]. Lastly, for
mutation operation, we adopt a uniform random mutation
(for simplicity) where genes are selected randomly from a
uniform distribution over a range [Hmin, Hmax], the lower and
upper bounds in Eq. 5. We use the GA library in R [35] to
implement our genetic algorithm for solving the optimization
problem. The default probability values of 0.8 and 0.2 are
used respectively for cross-over and mutation operations. We
run the algorithm for 1000 generations, each consisting of a
population of 50 individuals. The search halts when the best
solution score remains unchanged for 100 generations.

On the other hand, Hill Climbing is a heuristic search
that uses the greedy approach to progressively select the best
neighboring solutions that optimize the cost function. The
algorithm runs until no further improvement can be yielded
from the neighbors. Using the previously defined set of head
ways as our decision variables, we define neighboring nodes
of the current solution as solutions with 1 minute addition or
subtraction to any one of the headway variable [Hi]. Similarly,
the optimization objective in Eq. 4 is used as an evaluating
function in Hill Climbing.

C. Optimization results

We use the passenger demand data from our deployment
(described in §IV-D) as input to our optimization model.
The optimal bus dispatching times using GA (for each day)
are illustrated in Fig. 12. Comparing the two schedules, i.e.,
static (in Fig. 11) with optimal (in Fig. 12), we observe
that they match to a great extent from Monday to Thursday,
displaying a higher frequency pattern during the peak time
(5:00pm-5:30pm). Also, some minor variations can be ob-
served, specially during times closer to the peak. For example,
an additional peak period is seen between 4pm and 4:30pm on
Tuesday, prompting 40% more buses to be scheduled for that
time compared to other weekdays. The most notable difference
between the two schedules is observed on Friday, where buses
are scheduled more frequently by our optimal policy between
4.30pm and 5pm (as shown in Fig. 12) to fulfill the actual
peak demand. To better visualize the shift in the peak demand,
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TABLE IV
AVERAGE WAIT TIME (MIN) OF PASSENGERS: STATIC VERSUS OPTIMAL (DYNAMIC) SCHEDULING.

All day Peak hour

date static optimal (HC) optimal (GA) reduction (HC) reduction (GA) static optimal (HC) optimal (GA) reduction (HC) reduction (GA)

Mon 4.43 3.52 3.22 20.06% 27.21% 4.52 3.34 3.16 26.10% 30.12%
Tue 6.55 4.62 5.07 29.49% 22.72% 4.75 3.20 3.90 32.68% 17.90%
Wed 10.22 6.88 6.78 32.64% 33.66% 6.57 3.92 5.39 40.34% 17.91%
Thu 6.79 5.06 6.04 25.50% 10.98% 6.84 4.84 5.92 29.18% 13.43%
Fri 7.69 5.44 4.39 29.33% 42.93% 6.80 4.43 3.38 34.82% 50.23%
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Fig. 13. Comparing static schedule with optimal schedule of buses for two
representative days, Thursday and Friday.

we illustrate in Fig. 13 a comparison of static schedule (top)
with the optimal schedule (bottom) for Thursday (left) and
Friday (right) during 3-6pm. It is clearly seen that static and
optimal schedules highly correlate on Thursday with 7 buses
scheduled during the peak (5pm-5:30pm). On the other hand,
on Friday, the optimal schedule has two additional services
during the revised peak period (4:30pm-5pm) but two fewer
buses during 5pm-5:30pm.

We compute average wait-time per passenger to compare
the performance of static and optimal bus schedules obtained
from genetic algorithm (GA) and hill climbing algorithm (HC).
Table IV summarizes the average wait-time across each day
of our 5-day trial. As expected, the optimal approaches yield
lower wait times compared to the initial static bus schedule
across all 5 days. Optimal bus schedule obtained from GA
yields the highest reduction in wait time across three days
(Mon, Wed, and Fri) with the largest improvement of 42.93%
observed on Friday. Focusing on Friday, the average wait-
time from the static bus schedule is 7.69 minutes which
can be reduced to 4.39 minutes and 5.44 with the optimal
bus schedule produced from HC and GA respectively. This
relatively large gap highlights the inefficiency of existing static
bus scheduling which falls short in accommodating the shift
in peak demand. In contrast, lower reductions are observed for
the rest of weekdays due to less variation from the expected
demand wherein a minor peak is expected at 4 pm and a major
peak at 5 pm according to the static schedule. On average, both
optimization algorithms provide a relatively similar wait time
reduction of 25.7% compared to static scheduling averaged
over the 5 days. One of the reasons a heuristic algorithm like
hill climbing performs relatively well compared to genetic
algorithm, despite being a local search algorithm (which is
prone to produce a local optima outcome), is because the
initial solution provided for the algorithm is the existing static
schedule that has been designed with some planning by the
transport authority.
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Fig. 14. CDF of passengers wait-time: Optimal versus Static schedules, from
5-day trial period.

Lastly, we plot in Fig. 14 the cumulative distribution
function (CDF) of the wait-time of individual passengers.
It can be seen that optimal and static curves exhibit very
minor differences on Monday, Tuesday and Thursday, with
the former slightly shifted to the left (slightly lower wait times
overall). In contrast, we observe a more noticeable difference
on Wednesday and Friday. On Friday, the static schedule
requires more than 80% of the passengers to wait up to 12
minutes. Instead, the optimal schedule reduces the wait time
to 7 minutes. On Friday, the longest wait time is 32 minutes
with the static schedule, while this reduces to 17 minutes for
the optimal scheme. The difference between the two curves
on Wednesday can be attributed to the unexpected higher
demand during the non-peak time period 11:30am-1:00pm
(see Fig. 11). The optimal scheme adapts to this variation
by scheduling additional buses during this time period (see
Fig. 12).

The experiments on real world data demonstrate that dy-
namic bus scheduling based on actual demand can reduce
passengers’ wait time by up to ≈43%. This shows that real
world passenger demand information can be used to inform
bus transit scheduling decisions that can significantly improve
passenger experience at transit stops.

VI. CONCLUSION

In this paper, we proposed an end-to-end system for queue
length measurement using ultrasonic sensors and LoRaWAN
for data communications. Our proposed solution can be used in
a variety of outdoor settings (e.g. stadiums, airports) where an
orderly queue is formed. We first described the implementation
of our people sensing devices that are battery-operated, able
to communicate wirelessly, and have water-proof exterior,
allowing the solution to be easily deployed in an outdoor
environment. Next, we developed an algorithm to infer queue
length information from the collected data. Our algorithm
achieved a decent accuracy with MAE of 10.7 people for a
queue size of up to 100 passengers. Finally, we showed how



IEEE SYSTEMS JOURNAL 12

our system and method for estimating the queue length in
real-time can be used to optimize bus scheduling, revealing a
potential wait time reduction of 42.93% over a day by adopting
a demand-driven bus scheduling.
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