Combining Stochastic and Deterministic Modeling

of IPFIX Records to Infer Connected IoT Devices
in Residential ISP Networks

Arman Pashamokhtari, Norihiro Okui, Yutaka Miyake, Masataka Nakahara, and Hassan Habibi Gharakheili

Abstract—Residential Internet service providers (ISPs) today
have limited device-level visibility into subscriber houses, pri-
marily due to network address translation (NAT) technology.
The continuous growth of ‘“unmanaged” consumer Internet of
Things (IoT) devices combined with the rise of work-from-home
makes home networks attractive targets to sophisticated cyber
attackers. Volumetric attacks sourced from a distributed set of
vulnerable IoT devices can impact ISPs by deteriorating the
performance of their network, or even making them liable for
being a carrier of malicious traffic. This paper explains how
ISPs can employ IPFIX (IP Flow Information eXport), a flow-
level telemetry protocol available on their network, to infer
connected IoT devices and ensure their cyber health without
making changes to home networks. Our contributions are three-
fold: (1) We analyze more than nine million IPFIX records of
26 IoT devices collected from a residential testbed over three
months and identify 28 flow features pertinent to their network
activity that characterize the network behavior of IoT devices
— we release our IPFIX records as open data to the public;
(2) We train a multi-class classifier on stochastic attributes of
IPFIX flows to infer the presence of certain IoT device types
in a home network with an average accuracy of 96%. On top
of the machine learning model, we develop a Trust metric to
track network activity of detected devices over time; and (3)
Finally, we develop deterministic models of specific and shared
cloud services consumed by IoTs, yielding an average accuracy
of 92%. We show a combination of stochastic and deterministic
models mitigates false positives in 75% of incidents at the expense
of an average 7% reduction in true positives.

Index Terms—IoT traffic inference, IPFIX flow records,
stochastic behavioral modeling, deterministic cloud service mod-
eling, residential networks

I. INTRODUCTION

OME networks are becoming increasingly complex, yet

neither ISPs nor subscribers have much visibility into
connected devices and their network-level behavior. Technolo-
gies like NAT present only an opaque view of home network
to the global Internet [2], [3]. This makes it surprisingly
challenging for ISPs to even detect and discover connected
devices, as the traffic transmitted by every active device in a
home would have the same IP and MAC address of the home
gateway.

A. Pashamokhtari and H. Habibi Gharakheili are with the School
of Electrical Engineering and Telecommunications, University of New
South Wales, Sydney, NSW 2052, Australia (e-mails: {a.pashamokhtari,
h.habibi } @unsw.edu.au).

N. Okui, Y. Miyake, and M. Nakahara are with KDDI Research, Inc.,
Saitama, Japan (e-mails: {no-okui, miyake, ms-nakahara} @kddi-research.jp).

This submission is an extended and improved version of our paper presented
at the IEEE LCN 2021 conference [1].

Consumer IoT devices have become popular by offering
convenient functionalities to smart homes. It is anticipated that
the number of smart homes will increase to about half a billion
by 2025, which is more than two times larger than the same in
2020 [4]. Consumer IoT devices come in different categories,
including but not limited to smart cameras, speakers, voice
assistants, health devices, power plugs, and air-quality sensors.

IoT devices are believed to be more vulnerable [5] to
cyber attacks than general-purpose information technology
(IT) devices like personal computers and smartphones. This is
mainly due to a lack of sufficient security measures embedded
into resource-constrained IoT devices. Moreover, typical home
users often do not have adequate skills to protect their network
and devices, hence creating risks for the entire Internet ecosys-
tem. Recent reports [5], [6] highlight how a significant portion
of deployed IoT devices, exposed with default passwords [7],
are low-hanging fruits for attackers.

Traditional static tools, used for identifying IT assets, fall
short when employed for agentless IoT devices [5] — not fully
capture the heterogeneous behavior of IoT assets. However,
obtaining continuous visibility into connected networks is
an essential first step for securing these vulnerable devices
[8]. Visibility means profiling the expected behavior of IoT
devices by analyzing their network activity and then using
it to infer device types. Once device types are determined
(classification), their dynamic behavior can be tracked (mon-
itoring), allowing for verification of their health or flagging
any significant deviation from the norm.

IoT devices in homes are able to connect (via the ISP
network) with their intended servers on the Internet. Stable
and fast Internet connections can indulge botnets and malware
in launching coordinated volumetric attacks using millions of
infected I0Ts [9]. This can affect the performance of ISPs’ core
network and potentially make them accountable for carrying
traffic of illegal campaigns [10]. On the other side, residential
subscribers gradually express willingness in paying to ISPs
[11] for improved security of their Internet-connected assets.
Therefore, ISPs seem to be relatively incentivized to play a
role in providing network monitoring and security services to
households [12].

One may argue that IoT manufacturers and/or cloud
providers can also offer these services. We note that the
maturity of IoT manufacturers and/or cloud providers varies
widely, so the entire consumer IoT market is particularly
vulnerable to low-end, low-quality manufacturing and high-
risk data handling practices [13]. Additionally, unlike ISPs,

IoT manufacturers and cloud providers often do not establish
strong and long-term business relationships with end-users.
Lastly, manufacturers and cloud providers can, at best, obtain
visibility into software components embedded in their devices.
However, ISPs are best poised to monitor and analyze the
network behavior of connected devices and hence become
capable of detecting deviations from the norm. Therefore,
from both business and technical viewpoints, ISPs are a better
option than IoT manufacturers and cloud providers. For users,
engaging with one entity (their ISP) becomes easier than with
multiple entities (manufacturers/cloud providers) to receive
security services.

User privacy is an important factor for ISPs. Firstly, we
envision the inference of connected devices in residential
networks to be offered as a subscription service [14] to
manage privacy concerns arising from the amount of personal
information collected by ISPs. Users will provide their consent
(and they may opt out in the future) to activate this service
by accepting the terms and conditions provided by their ISP.
Moreover, the ISP may choose to narrow its focus on a limited
number of well-known vulnerable devices (e.g., obtained from
public resources like CVE or NVD). Therefore, detecting
only high-risk IoT devices would benefit both users and
the ISP. Secondly, the method developed by this paper (in
contrast to some of the prior works [15]-[18]) only utilizes
flow-based metadata (e.g., flow volume and protocol) without
requiring packet payloads that contain more sensitive and
private information.

Given their specific functions, IoT devices (as opposed to
IT devices) often display a distinct set of identifiable patterns
on the network [8], enabling operators to tightly model their
expected (normal) behavior [19].

Network behaviors of connected IoT devices highly depend
on their expected functionality (e.g., security camera, power
switch, or motion sensor) and the implementation of function-
alities by their manufacturer and/or developer. Therefore, one
can describe device behaviors by two categories of features: (a)
stochastic features such as distribution of packet count/inter-
arrival time or total flow volume/duration; and (b) deter-
ministic features such as specific services or domain names
that a device communicates with them. Stochastic features
display patterns in their distribution, making them conducive
to machine learning techniques for modeling purposes. Hence,
they are widely used by both industry and academia for
enhancing network visibility in a variety of domains and use-
cases [20]. On the other hand, deterministic features [8], [21]-
[23] can be distinctly predictive and may not necessarily need
a machine-learning algorithm to generate a model for inferring
connected devices. In fact, machine learning algorithms cannot
be directly applied to some deterministic features like domain
names as there is no finite superset for them.

There exist prior works [3], [15]-[18], [22] on systems
and methods that ISPs can employ to detect IoT devices
in home networks. We will thoroughly discuss in §II their
limitations particularity in terms of practicality at scale. This
paper employs IPFIX data to detect consumer IoT devices
in households. IPFIX is a well-known protocol for collecting
flow-based metadata. IPFIX has been used by industry for

TABLE 1
SUMMARY OF CLOSELY RELEVANT PRIOR WORK.

Work Deployment | Inference Input data Features
[3] post-NAT ML NetFlow activity + identity
[22] post-NAT DT NetFlow/IPFIX domain names
[15] pre-NAT DT packets domain names
[16] pre-NAT ML packets activity + identity
[17] pre-NAT ML packets activity
[18] pre-NAT ML packets activity

this work post-NAT ML + DT IPFIX activity + identity

many years, and hence employing its features at the edge of
ISP networks requires no change to home networks. More
importantly, IPFIX records do not have any payload or other
sensitive (e.g., user-specific) information, so that privacy con-
cerns are minimized.

We make the following contributions: (1) We analyze (§1II)
near three million IPFIX records of 26 IoT devices in our
testbed. Then, we extract 28 flow-level stochastic features
from the IPFIX records. We publicly release our dataset [24],
consisting of more than nine million IPFIX records; (2) We use
these features (§IV) to train and tune a multi-class classifier
model using a decision tree-based machine learning algorithm
to infer the type of IoT devices from IPFIX records. We also
deduce thresholds specific to each device class for reducing
the misclassification rate and develop a trust metric per class,
enabling us to monitor the behavioral health of detected
devices; (3) Finally, we develop two types of deterministic
models (§V), each with differentiated capabilities in predicting
connected IoT devices by analyzing the cloud service informa-
tion (embedded in outgoing IPFIX records) that IoT devices
consume. We evaluate the efficacy of our deterministic models
independently. We also show how deterministic models can
mitigate false positives when combined with our stochastic
(machine learning-based) model.

II. RELATED WORK

Gaining visibility into residential networks can enable
value-add service offerings like quota management, parental
control, and cyber security monitoring [2], [14], benefiting
both ISPs and subscribers.

Inferring from Residential IoT Traffic: Consumer IoTs
are purpose-built devices to perform a finite (and often distin-
guished) set of functions on the network, and therefore create
an opportunity for ISPs to automatically profile their network
behavior.

Recently, several attempts have been made by researchers
[3], [15]-[18], [22] to help ISPs detect IoT devices in home
networks which are summarized in Table I. The third column
(Inference) indicates whether they use a deterministic model
(DT) or a machine learning model (ML). The last column
(Features) shows traffic attributes they employ: activity fea-
tures are like packet/flow size, inter-arrival time, and flow
count, whereas identity features are binary features like IP
protocol (TCP or UDP) and application protocol (HTTP, DNS,
and NTP).

Existing works come with their own limitations: (a) all
(except for [22]) require hardware/software changes to individ-
ual home gateways, making them impractical for deployment
at scale; (b) they [15]-[18] heavily depend on the identity

(MAC/TP address) of devices, making them not applicable for
post-NAT deployment; and, (c) they [15], [22] purely rely on
deterministic signatures like domain names and/or IP blocks
associated with manufacturers, which may not necessarily
capture the behavior of individual devices and hence yield
less reliable inference.

Work in [3] requires installing dedicated hardware called a
“local detector” with NetFlow enabled to identify vulnerable
IoT devices in home networks using public databases like
CVE and NVD. This work uses a combination of activity (like
packet/byte count) and identity (like port numbers) features.
However, it mixes all these features into a single ML model,
which has been shown to have a detrimental effect on the
prediction [8]. The same work shows how models separately
trained on activity and (non-binary) identity features can
improve the overall quality of prediction. In our work, we
apply two different methods, namely, a stochastic model (ML)
to activity features and a deterministic model (DT) to non-
binary identity features, and combine their outputs to obtain
the final inference.

Work in [22] develops a scalable deterministic model to
infer connected IoT devices in home networks by analyzing
domain names they contact. Similar to our work, the authors
collect flow records (IPFIX and NetFlow) but from the core
of ISP networks. Since IPFIX/NetFlow records do not contain
domain names, it is necessary to perform a reverse mapping
from IP addresses to domain names using tools like DNSDB
and Censys, which incur additional processing costs. Another
missing element of this work is that it ignores all available
activity features of the flow records and solely relies on domain
names that are not readily available in the records. In our work,
we use both activity and identity features that are directly
retrieved from the records without additional processing.

Work in [22] develops a deterministic model to infer
connected IoT devices in home networks by analyzing do-
main names they contact. Similar to us, the authors collect
flow records (JPFIX and NetFlow) but from the core of
ISP networks. Since IPFIX/NetFlow records do not contain
domain names, it is needed to perform a reverse mapping
from IP addresses to domain names using tools like DNSDB
and Censys which incur additional processing cost. Another
missing element of this work is that it ignores all available
activity features of the flow records and solely rely on domain
names which are not readily available in the records. In our
work we use both activity and identity features that are directly
retrieved from the records without additional processing.

Works in [15]-[18] need to be deployed pre-NAT as they
need device identity (IP/MAC address) to determine the type
of individual devices. Pre-NAT deployment is not applicable at
scale since it requires software/hardware change on each home
gateway. Also, they analyze packets that incur inspection and
processing costs and may raise privacy concerns. Work in [15]
uses domain names to infer IoT devices. It needs to capture
DNS response packets to create a mapping of IP addresses
and domain names. IoT-Sentinel [16] classifies IoT devices
by analyzing packet-based features collected by SDN-enabled
gateways.

DEFT [17] developed a hierarchically distributed method

for classifying IoT devices in home networks. The authors
proposed to use an SDN-based home gateway in individual
homes, coordinated by a central controller in the ISP cloud.
Each home gateway extracts a mix of (packet and flow)
features and applies a trained classifier (running as a virtual
network function on the gateway) to these traffic features —
when unsure (or a new device is discovered), locally computed
features are sent to the central controller. AuDI [18] inspects
packets to identify periodic flow (autonomous flows like DNS
and NTP) and extracts several activity features over a fixed
period for classifying IoT devices.

Work in [25] developed a technique for detecting home
devices even if their traffic is padded and shaped (sent with a
fixed transmission rate) to avoid detection. Their method can
only detect the count of active devices and identify a subset
of them when deployed post-NAT. To detect the number of
active devices from an aggregated distribution, the inference
model needs to be trained with traffic trace of all possible
combination of devices which is extremely expensive in terms
of computation.

Authors in [26] developed a post-NAT inferencing technique
based on repetitive features occurring in packet bursts. They
use packet-based features like packet size, time-to-live, TCP
flags, and TCP window size. Packets within one second time
window are grouped into a burst. They extract the longest com-
mon features from every two bursts and use them for inference
purposes. This method requires shallow packet inspection and
packet-to-packet comparison; hence, seems computationally
more expensive than our flow-based approach.

Work in [27] used federated learning for training distributed
models for detecting faults in industrial IoT devices. A similar
approach can be applied to home networks where a local
learner on each home gateway collects network traffic of
devices in the network and trains a local model. Similar to
[3], [15]-[18], federated learning approaches require changing
home gateways which are not necessarily desirable by ISPs at
scale.

Inferring from IPFIX Telemetry: IPFIX has been used
for different purposes like flow-based anomaly detection [28]
and application classification [29].

As shown in Table I, papers in [3], [22] are the closest
in the literature to ours in terms of the system architecture
(analyzing post-NAT flow data for classifying IoT devices in
home networks). However, they only rely on a deterministic
or a stochastic model without leveraging their combined capa-
bilities. In §IV-D and §V-C, we will develop and evaluate the
performance of stochastic and deterministic models specific to
our IPFIX data records. These two separate models will serve
as baselines (and proxies of prior work) in our experimental
evaluations in §V-D, where we show how the final inference
can benefit from combining the two models, achieving a 75%
reduction in false positives.

III. INFERENCING CONNECTED IOT DEVICES
FROM IPFIX RECORDS

Identifying the composition of IoT devices in households
can be done either by collecting network telemetry data

(packet-based and/or flow-based) from inside (pre-NAT) or
outside home networks (post-NAT). The pre-NAT telemetry,
indeed, reveals more information about the connected devices,
particularly their unique identifiers (e.g., MAC and/or IP
addresses), enabling network operators to combine various
telemetry records and map them to their unique device iden-
tifier. However, collecting pre-NAT telemetry is a nontrivial
exercise without making changes to legacy home gateways —
prohibitively expensive for ISPs to deploy at scale for millions
of households. On the other hand, the post-NAT approach
provides a limited amount of data, primarily because NAT
hides the entire internal network and identity of active devices
— this makes it infeasible to directly associate flow records with
their respective end-devices. That said, post-NAT inferencing
and monitoring would be practically more attractive for ISPs,
particularly for the ease of deployment at scale.

IPFIX [30] is a standard protocol for transmitting flow-
level metadata from network switches and routers for network
monitoring and traffic analysis. IPFIX uses a 5-tuple key
(source and destination IP address, source and destination
transport-layer port number, and transport-layer protocol) to
uniquely identify and aggregate packets belonging to the
same flow. For connection-oriented flows, IPFIX uses session
termination signals such as TCP FIN to detect the end of flows.
For connection-less flows (e.g., UDP), on the other hand, IPFIX
uses two parameters, namely idle-timeout and active-timeout.
If no packet is exchanged over a flow for the idle-timeout or
if a flow is active for more than the active-timeout, the flow
is terminated and the corresponding IPFIX record is exported.

We choose IPFIX telemetry to infer connected IoT devices
in home networks for the following reasons: (i) the industry
has increasingly adopted IPFIX as a multi-vendor universal
lightweight protocol for performance and security monitoring,
and hence it is perceived less challenging for ISPs to enable
it on their network; (ii) IPFIX telemetry can be employed at
(the edge of) ISP networks without the need to make any
changes to subscriber home networks (gateways), and hence
scalable; and (iii) IPFIX records only contain metadata of
network communications without revealing any payload or
other sensitive information, and hence relatively low risks to
user privacy. Nevertheless, relying on IPFIX comes with its
own challenges: (a) collecting IPFIX telemetry from the (edge
of) ISP networks will provide partial visibility into the activity
of home networks as the identity (MAC/IP) of connected
devices will be hidden by NAT routers, and (b) IPFIX records
provide aggregate information about flows, yielding coarse-
grained data compared to fine-grained packet traces.

Fig. 1 illustrates the architecture of our inference system.
Internet traffic of home networks is exchanged with the ISP
network, where IPFIX-enabled edge routers are configured to
export the respective IPFIX records. The inference can be
made from a single IPFIX record (identifying the correspond-
ing device that generated the flow) or from a collection of IP-
FIX records during a fixed epoch time (say, daily). Details will
be discussed in §IV and §V where we explain our stochastic
and deterministic models. The ISP will progressively construct
a set of IoT devices for each home upon discovering a new
device type. It can be seen in Fig. 1 that how post-NAT

{devi},
Q)

home #1 {dev} » {devi}n sn
N

13
7

home #2

ISP network

o
IPFIX-enabled
edge router

Post-NAT

- i(((Io)

~ ‘ residential
NAT router

broadband link

Fig. 1. System architecture of post-NAT inference from IPFIX records.

inferencing (the scope of this paper) can be employed by the
ISP, capturing only remote flows via which an IoT device
inside a home network communicates with a remote server
on the Internet. We note a pre-NAT approach (practically
challenging for ISPs, and beyond the scope of this paper), in
contrast, may provide richer visibility into all communications,
including both local and remote flows. Obtaining visibility
into local traffic of home networks, however, can raise privacy
concerns for users.

In practice, traffic inference models (particularly for de-
termining the type of connected IoT devices) may encounter
challenges in response to changes in (a) the composition of
IoT devices (users may add or remove one or more devices)
or (b) the network behavior of an existing device can evolve
over time due to firmware upgrades or configuration updates.

Let us start with the first scenario of change. The inference
task is unaffected if a known type of device is added to or
removed from the network. However, connecting an entirely
new type (unknown to the model) will go undetected. We
note that traditional supervised learning algorithms (this paper
included) aim to train a model in the closed-set world, where
training and test samples share the same label space. Open set
learning is a more challenging and realistic problem, where
there exist test samples from the classes that are unseen during
training. Automatic recognition of open set [31] is the sub-task
of detecting test samples that do not come from the training,
which is beyond the scope of this paper. Therefore, in this
paper, it is not unexpected if some devices in a given home
network remain undetected (false negative), but it is important
for the ISP that their model does not detect nonexistent devices
(false positive). This is crucial since inferring the composition
of devices in a home network may lead to subsequent actions
like notifying users about a vulnerable device on their network.
Hence, reducing false positives is one of the primary objectives
of this paper.

Moving to the second scenario which we assume it to
be relatively easier to detect by a Trust metric (will be
discussed in (§IV-C and §IV-D). Again, re-training the model
by incorporating behavioral changes [32] and/or variations
[23] is beyond the scope of this paper.

10
B 05
210
S 4
210
T
= 10
=2
= 10
10'
= 0 O o o 9 : F] : oo O 0®)
Z E2E2EEE8CEEEEEEE2ESEEEEESRED
4 S 5820 a8 S EE&L S E S = | °
s 8 SR 095 H oS5 888,85 08 E 8§ od*s
S oa g = c EEg 382 a=8s529 <38 5=z8=
E2ce2 52888882 sES2888=s=-35cE22
st = 2 e 2 £ 8 s 8 & = 3 Q
S ESYE O T SEEEIEET E2EESEG S
> o & & 20 S = &2 2 SU S © P
23 2 8 = 2 7O B SRR =
5 gV§g<o.§ g ié ® MDA 2
ZE s < S £E £ U3
= = = — A = > £
gf < [= =
[

Fig. 2. Distribution of remote IPFIX records across 26 IoT devices.

A. IPFIX Dataset and Features

Our residential testbed in Japan' comprises 29 consumer
IoT devices ranging from smart cameras, speakers, door
phones, and TV to lightbulbs, sensors, and vacuum cleaners.
We collected PCAP (Packet Capture) traces from our testbed
(pre-NAT) during January, March, and April 2020. Due to
technical issues in our lab, we could not collect the network
traffic during February 2020. It is important to note that we
collected our data in a pre-NAT setup to obtain ground-truth
label (device MAC/IP address) of traffic data; however, we
do not take any advantage of those identities in our inference
process. We exclude the local flows from our raw data col-
lected pre-NAT, and only keep remote flows for developing our
inference models in this paper. In other words, our processed
data truly represent a post-NAT telemetry scenario.

Our IoT network traces constitute: (i) traffic generated due
to human users interacting with the devices at least twice a
week in January and March — for example, asking questions
from smart speakers, checking air quality from smart sensors,
switching the color of smart lightbulbs, and watching a live
stream from cameras; as well as (ii) traffic generated by
the devices autonomously — for example, DNS/NTP activities
that are unaffected by human interactions. During April, due
to the COVID outbreak, devices were operated completely
autonomously. For April 12-13 and 21-22, we have no traffic
trace of the devices due to a power shutdown and the server
outage, respectively. Note that PCAP files were configured to
record up to a size limit of 9.6 MB (meaning time slots with
a duration of 20-30 minutes). Hence extracting IPFIX records
from individual PCAPs may lead to some flows that cross the
boundary of subsequent slots and break into shorter incomplete
flows. We, therefore, stitch PCAPs on a monthly basis, and
then extract IPFIX records from the monthly PCAPs. We use
YAF (Yet Another Flowmeter)? tool [33] to generate IPFIX
binary files from the PCAP files, followed by applying Super
Mediator tool [34] to generate IPFIX JSON (JavaScript Object
Notation) files from the binaries. YAF comes with an option
called flow-stats that allows exporting a richer set of flow-
level information. We use this option to embed all the possible
features into individual IPFIX records. YAF tool defines
default values of idle-timeout and active-timeout parameters
(for UDP flows) equal to 5 and 30 minutes, respectively.

Our IPFIX dataset [24] contains more than nine million

!Cybersecurity lab of KDDI Research in Saitama, Japan.

2YAF was created as a reference implementation of the IPFIX protocol,
providing a platform for experimentation and rapid deployment of new flow
meter capabilities.

10°

= 1001
A Ranl SN
..
GE) B S S N
s ™~
o
& 1002 \
o !
=} X
© 4
S,
!
1003 t
%
0 200 400 600 800 1000 1200 1400
inter-arrival time (min)
Fig. 3. CCDF of (daily) average inter-arrival time of IPFIX records per IoT

device in our dataset.

IPFIX records in which about 70% of them are local flows that
do not leave the NAT gateway (cannot be captured by the ISP
edge routers). We use IPv4 address element of IPFIX records
to filter local flows, including: (i) unicast flows with both
source and destination from private address space (i.e., 10/8,
172.16/12, 192.168/16) reserved by the Internet Assigned
Numbers Authority (IANA) [35], (ii) multicast flows (i.e., with
address in the range of 224/4), (iii) link-local flows (i.e., with
address in the range of 169.254/16), and (iv) broadcast flows.
Three devices, namely Sony camera, Planex one-shot camera,
and LinkJapan eSensor are found with only local flows in the
dataset, hence excluded from our study in this paper. After
excluding the local flows, there are about three million remote
IPFIX records. For the rest of this paper, we will only focus on
remote flows (nearly three million IPFIX records). Note that
IPFIX records are bi-directional, but we can determine the
initiator of each communication flow by checking the source
IP address. In our dataset, 94% of the flows are initiated by
TIoT devices (inside the home network), and the remaining 6%
(traversing NAT) are initiated by remote cloud servers. We will
explain in §V how NAT traversing flows add noise to inputs
of our deterministic model.

Fig. 2 illustrates the number of IPFIX records (remote flows)
per device collected during January, March, and April 2020.
Highly active devices like Sony Bravia TV, Sony speaker,
Panasonic doorphone, Google Home, and Wansview camera
generated over 100K flows. Devices like MCJ room hub, Fredi
camera, JVC Kenwood hub, Philips Hue, and Qrio hub are
moderately active with 10K-100K flows. Lastly, we observe
relatively less-active devices like Nokia body that generated
only 111 flows during these three months.

Considering the frequency of network activities per device
type, we plot in Fig. 3, CCDF (Complementary Cumulative
Distribution Function) of average flow inter-arrival time, on a
daily basis per device during the three months. The average
inter-arrival time across all device types is about 50 minutes,
while 14 device types generate a flow every 10 minutes on
average. We observe that the longest daily average of flow
inter-arrival time belongs to Nokia body with more than 14
hours because this device only becomes active whenever the
user interacts with it.

Different IoT devices display distinct behaviors on the
network. Researchers have shown how network activity (both
in terms of total traffic volume and temporal patterns) of

TABLE 11
“UNIDIRECTIONAL” ACTIVITY FEATURES
EXTRACTED FROM IPFIX RECORDS.

TABLE III
“BINARY” IDENTITY FEATURES OF POPULAR SERVICES
EXTRACTED FROM IPFIX RECORDS.

average time (ms) be-

averagelnterarrivalTime
tween packets

payload size of the first

firstNonEmptyPacketSize non-empty packet

maxPacketSize the largest payload size

standard-deviation of
payload size for up to
the first 10 non-empty
packets

standardDeviationPayloadLength

standard-deviation of
inter-arrival time for up
to the first 10 packets

standardDeviationInterarrivalTime

a smart camera or TV would differ from that of a motion
sensor or air quality monitor [8], or how various manufacturers
tend to embed a (relatively unique) combination of standard
and propriety network services (e.g., TCP/443 for TLS, or
UDP/56700 for cloud control messages) in the firmware of
their devices [23]. In other words, the behavior of IoT devices
can be profiled using a combination of stochastic and deter-
ministic features. Generally, stochastic features are suited for
machine learning models as their patterns can be characterized
by certain distributions. In contrast, deterministic features may
not always be a good fit for machine learning algorithms,
especially when their dimension is high. For example, in the
case of network services, we require over 65K binary features
(total number of possible port numbers [36]). For domain
names, on the other hand, one cannot even define a bounded
set of features. Deterministic features, therefore, need to be
modeled differently.

In this paper, we use cloud services consumed by IoT
devices for our deterministic model. Each cloud service (e.g.,
UDP/10086, TCP/8443) is a pair of transport-layer protocol
and port number on the server-side. One may choose to use
other deterministic features like IP address and/or domain
name of cloud servers. However, cloud IP addresses can be
relatively dynamic [22], hence unreliable over time. Also, do-
main names are not readily available in IPFIX records, though
can be retrieved by way of reactive lookups. Cloud services,
instead, can be directly deduced from IPFIX records and are
more likely to be persistent during the lifetime of IoT devices.
In fact, network services that IoT devices offer and/or consume
along with local/Internet endpoints they communicate with,
constitute a formal description, called Manufacturer Usage
Descriptions [37], that can be used to track IoT devices [23]
or limit their attack surface [38].

Feature Description Network service Protocol | Transport-layer port numbers
packetTotalCount # packets HTTP TCP 80, 8080, 8008, or 8888
octetTotalCount # bytes TLS TCP 443, 1443, 8443, or 55443

packets containing DNS UDP 53, or 5353
smallPacketCount less than 60 bytes pay- NTP UDP 123

i:)ad ” — others TCP any

packets containing at -

largePacketCount Jeast 220 bytes payload others UDP any
nonEmptyPacketCount # packets containing IV. STOCHASTIC MODEL OF I0OT NETWORK BEHAVIOR

non-empty payload
dataByteCount total size of payload A. Baseline model

Our stochastic model (generated by a machine learning
algorithm) characterizes the activity behavior of connected
IoT devices on the network from flow-level statistical features
provided by IPFIX records. We use this as a baseline and
also representative of stochastic models used in prior works
like [3]. Table II summarizes a list of all potential elements
(indicative of flows’ network activity) that will be used as a
part of the features in §IV-D. It is important to note that each
IPFIX record represents a bi-directional flow [30], hence there
are two sets of these features — each specific to a direction
(outbound and inbound). For example, smallPacketCount
(third row in Table II) shows the number of small packets
that an IoT device (the initiator of flow) transmitted to
an Internet-based server (remote endpoint), and accordingly,
reverseSmallPacketCount indicates the number of small
packets that the remote endpoint sent to the IoT device on the
same flow.

In addition to the activity features listed in Table II, we
capture six binary identity features of each flow record (Ta-
ble III), highlighting whether their network service is one
of four popular services (HTTP, TLS, DNS, NTP) or other
TCP/UDP services — specific network services will be analyzed
by a separate deterministic model in §V. Considering popular
services in our dataset, TLS dominates by contributing to 35%
of flows, followed by DNS (20% of flows), HTTP (6% of flows),
and NTP (2% of flows). Also, in terms of other services, UDP
outweighs TCP by contributing to 30% of flows versus 3%.
Note that the remaining 4% of flows use network control
protocols like ICMP and IGMP that are not associated with
either of the dominant transport-layer protocols namely TCP
and UDP.

We found some device types display distinct behav-
iors by certain features in their IPFIX records. For exam-
ple, IPFIX records with reverseSmallPacketCount larger
than 500 would belong to Sony speaker with a probabil-
ity of 95%; also, 97% of the IPFIX records which their
reverseDataByteCount falls between 300 to 400KB, belong
to Sony Bravia TV. That said, we observe some overlap of fea-
tures across device types. This is mainly because each IPFIX
record contains an “aggregate” set of information on the activ-
ity and identity of a single network traffic flow. For example,
we found 16 devices share the averageInterarrivalTime
feature, having a value less than 10 seconds on average; five
devices have this feature valued between 10 and 20 seconds;
and, five other devices have a value greater than 20 seconds
in their IPFIX records.

In another example, we have three categories
of devices in our dataset by only considering the
reversePacketTotalCount feature: (a) Planex UCAOIA
camera with a high count (more than 200) of packets, (b)
Xiaomi LED and iRobot Roomba with medium packet counts
(between 100 and 200), and (c) other 23 device types with
low packet counts (less than 70). Also, in terms of network
services, devices like Fredi camera, JVC Kenwood camera,
Sesame Access Point (AP), Xiaomi LED, and all three Planex
cameras never use TLS. Instead, all IPFIX records of a device
like Qrio hub are TLS.

These examples highlight that determining the device type
from IPFIX records would certainly require a collection of
stochastic features. We, therefore, employ machine learning
techniques that have been widely adopted by researchers
for network traffic inferencing [39] to learn the stochastic
attributes of IPFIX records for inferring their device type.

We choose Random Forest, a powerful machine learning
model that builds a decision tree ensemble, allowing for the
automatic creation of a sequential combination of feature
rules (similar to what we did in the examples above) to
predict device classes. In order to maximize the prediction
performance, we extract every possible feature from the IPFIX
records and let the Random Forest algorithm construct the
optimal decision trees.

B. Confident Classification

As mentioned earlier, analyzing flows in a post-NAT sce-
nario will reveal partial information about actual IoT devices
connected to the home network; therefore, a machine learning-
based model may misclassify some IPFIX records. Note that
the primary objective of our inferencing is to determine
whether an IoT device is present and active in a home network,
or not. Therefore, the quality of each prediction is of top
priority. This objective necessitates a method for discarding
inconfident predictions, made primarily due to a lack of
distinct features in the subject IPFIX flow. Note that one may
attempt to aggregate individual IPFIX records over a time
window in order to increase the amount of data passed into
the inference model. However, this is not applicable in post-
NAT deployment as there is no association between individual
IPFIX records and devices.

Machine learning models often produce a measure of con-
fidence for their prediction. The confidence-level is a number
between 0 and 1. Higher confidence values indicate more
reliable predictions. We, therefore, use the confidence-level of
our Random Forest model to decide whether a prediction is
“accepted” or “discarded” — certain thresholds are determined
and applied to the confidence-level of the model’s prediction.
We note that thresholds can be applied globally [8] across
all classes, or specifically per individual classes. Given the
diversity of network behaviors as well as richness of training
data across various IoT types, we choose to apply class-
specific thresholds that are obtained from the training phase.

C, denotes the model’s confidence for correctly predicting
instances of class L, and the corresponding threshold is
denoted by A, which is calculated for each class separately. To

set the thresholds, we use the distribution (average: pc, and
standard deviation: o,) of confidence per each class during
the training phase as the baseline. In this paper, we consider
two ways of thresholding per each class: (a) greater than
the average confidence: A\ = [uc,,1], and (b) within o¢,
from the average confidence: Ay = [uc, — o¢,, key, + 00,)
Note that A; is only concerned about its lower-bound uc,
without imposing an upper-bound. Instead, A5 aims to conform
to the distribution obtained from training by imposing both
lower and upper bounds to the model’s confidence. Note that
one can choose other thresholds for this purpose. In §IV-D,
we will show how each of these thresholds would improve
the accuracy of the model by discarding the majority of
mispredictions.

C. Behavioral Changes of lIoT Devices

Our primary objective is to identify IoT devices connected
to home networks using IPFIX flow records collected post-
NAT. ISPs may wish to obtain additional insights into the
network behavior of classified devices in each home. For
example, they may want to track the activity pattern of
discovered devices for purposes like ensuring their cyber
health or triggering the model re-training process due to some
behavioral changes. Those follow-up actions (health assurance
and/or model re-training) are beyond the scope of this paper.
We note that tracking the behavior of 10T devices post-NAT
can be relatively challenging as our unit of data (IPFIX flow
record) does not carry the identity (e.g., MAC/IP address) of
their respective end-device. In the absence of a solid meta-
data for associating the IPFIX records with devices, we again
resort to the output of our inference model.

For reasons discussed above, a behavioral change can only
be determined based on a set of observed IPFIX records per
home. As our unit of data is a single IPFIX record, we need to
accumulate a handful of them in order to determine a behavior
change. We, therefore, choose a configurable epoch (e.g., a
day) to construct a collection of model predictions and look
for changes in the time domain. One may choose to employ the
widely-used Jaccard index to compare two sets of categorical
values (predicted devices across successive epochs). This index
quantifies the ratio of the size of the intersection of two sets
to the size of their union. Let us start by formally defining the
baseline Trust metric (Tpqse) as follows:

T o |PZ_1ﬂPZ|
base — |Pi71 UPZ|

where P,_; and P; are the sets of devices classified for
epochs i — 1 and 4, respectively, and |.| operator returns the
size of the given set.

Tyase 1s relatively simple and keeps track of predicted
devices per household over consecutive epochs, making it
a stateful measure. However, there are four caveats where
Tyase falls short of expectations: (1) Tpqse 1S computed across
all devices of a home network for a given period without
giving any Trust indication for individual devices; (2) if a
device is removed from the network (turned off) by the user
following days of being active (and hence correctly predicted),

)

BB misclassification

B correct classification

e
S

confidence level

cam.

Fredi cam.
Philips Hue
Qrio hub
Sesame AP
Sony Bravia TV

Nokia body
Planex UCAOIA cam.

Panasonic doorphone

‘Amazon Echo
Bitfinder sen.
Google Home

JVC Kenwood cam.
Qwatch cam.

Sony speaker
Xiaomi LED
iRobot roomba

Amazon Echo Show
Apple Homepod
JVC Kenwood hub
Line Clova speaker
Planex outdoor cam.
PowerElec plug

z
g
2
%
5
2

=

)

Fig. 4. Average confidence-level of correctly and incorrectly classified
instances per device type for the training dataset.

Tpase Will immediately drop for the next day, which is not
highly desirable; (3) suppose an active device generates less
(or more) records than its normal pattern (captured behavior
during the training phase). In that case, Tp,se Will not detect
such changes as long as the device is inferred by at least
one IPFIX record; and (4) when the number of flows for a
particular device remains consistent but flow features like the
number of packets/bytes changes, Tp,s. Would be unable to
detect those dynamics.

With the shortcomings of the baseline metric discussed
above, we now aim for a more comprehensive metric that
focuses on capturing the state of predictions within an epoch
without directly incorporating temporal dynamics. With re-
spect to the first problem, our Trust metric needs to device-
centric instead of home-centric. For the second problem, we
define Trust in such a way as to be stateless, meaning it is
measured for each epoch purely based on the predictions of
that epoch without looking at the past. In order to address
the third and fourth problems, we incorporate the number of
records being predicted as the target device we aim to measure
Trust for, as any severe deviation in the number of records
and/or flow features will be reflected in the model’s output.
In §IV-D, we evaluate Tj,4. against a more desirable metric
we will develop next and demonstrate how our metric of Trust
can reveal more information about changes in the behavior of
individual devices.

Considering the points highlighted above, we define Trust
for individual devices over each epoch. For a device, the Trust
metric is computed based on the number of predictions for that
type during a given epoch (e.g., a day) while taking into ac-
count class-specific patterns obtained from the training phase.
For a device class L in our model, we measure the expected
(average) number of IPFIX records (denoted by N, 1) and the
expected rate of discarded IPFIX records (denoted by D, 1)
during training. Note that some predictions are discarded due
to a lack of confidence reported by the model. A raw measure
of trust is computed by:

NO,L
Ne,L X De,L

where, N, 1, is the number of “observed” flows predicted as
class L — obviously, those predictions receive an accepted level
of confidence from the model. The intuition behind this raw
measure of trust is to check the number of expected flows from
a device with the number of flows that are indeed classified

T = 2

TABLE IV
IMPACT OF A1 AND A2 THRESHOLDS ON TRAINING INSTANCES.

Accepted Discarded
Correct Incorrect Correct Incorrect
A1 | 1,325,787 924 237,724 100,559
A2 | 1,408,600 28,214 154,911 73,269

as that device type during the epoch. Trust values around one
imply that corresponding devices are behaving as expected.
However, the measure of raw trust can become larger than
one when a device is over-active (e.g., under attack), or its
flows are mispredicted as another device class. Either of these
cases (i.e., having the raw trust value more than one) needs to
be interpreted as misbehavior. Therefore we need to normalize
the raw trust so that it decays in case of deviation from normal
behavior. We define normalized trust (will be referred to as
trust in the rest of this paper) by:
Tnorm,L = exXp <_ (3)
where o7, is the standard-deviation of 17, computed during
the training phase. Use of o, allows for customizing the
change rate of trust across various device types — for a complex
device like smart TV that displays a wide range of network
activities the trust metric changes slower, while for a simple
device like smart sensor it is will change relatively faster.

D. Evaluating Efficacy of Stochastic Modeling

For performance evaluation, we split our data into two
groups: training (1,664,994 IPFIX flows recorded in January
and first half of March), and testing (1,416,479 IPFIX recorded
in the second half of March and full April). We use Scikit-
Learn Python library to train our Random Forest classifier.

1) Stochastic Model Training and Tuning: We tune the
parameters of our Random Forest model to maximize its
performance for the chosen features (Table II and III). We
tune three important parameters, namely the number of de-
cision trees, the maximum number of attributes to consider
at each branch split, and also the maximum depth of each
decision tree. For each combination of parameters, we quantify
the model accuracy by 10-fold cross-validation, whereby the
training dataset is randomly split into training (90% of total in-
stances) and validation (the remaining 10% of total instances)
sets, and the accuracy is averaged over 10 runs to produce a
single performance metric. We compute the model’s accuracy
by averaging the rate of correct predictions (true-positives)
across individual classes of our model. In other words, the
average of all values across the main diagonal of the model’s
confusion matrix, shown in Fig. 5. We found the best tuning
parameters which yield the highest prediction accuracy (88%)
to be 100 decision trees, maximum of five features for finding
the best split, and maximum depth of 20 for each decision
tree.

We next quantify the confidence of the model (on the
training dataset) for correct classifications as well as incorrect
classifications across various classes of device type. As shown
in Fig. 4, green bars indicate the average confidence for

Amazon Echo

Amazon Echo Show-0.11
Apple Homepod- 0
Bitfinder sen.- 0

Fredi cam. 0

Google Home- 0 0 0 0 0 0 0 0 00 0 0 0 00020 0 0

IVC Kenwood cam.- 0
JVC Kenwood hub- 0

Line Clova speaker- 0 0o

MCJroomhub- 0 0 0 0 0 0 0 0
Nature remote- 0 0 0 0 0 0 0 0 06
Nokiabody- 0 0 0 0 0 0 0 0
2 -0 0 0 0 0 0 0 0
£ Panasonic doorphone
H ips -0 0 0 0o 0 0 0 0
E Philips Hue: 0
Planex UCAOlAcam.- 0 0 0 0 0 0 0 001
Planex outdoor cam.- 0 0 0 0 0 0 0 0 Lo
Planex pantiltcam.- 0 0 0 0 0 0 001 0
PowerElecplug- 0 0 0 0 0 0 0 0
Qriohub- 0 0 0 0 0 0 0 o
Qwatchcam.- 0 0 0 0 0 0 0 0
Sesame AP- 0 0 0 0 0 0 0 0 02
Sony BraviaTV- 0 0 0 0 0 0 0 0
Sony speaker- 0 0 0 0 0 0 0 0
Wansviewcam 0 0 0 0 0 0 0 0
Xiaomi LED-0 0 0 0 0 0 0 0
iRobotroomba- 0 0 0 0 0 0 0 0
L ot os s s s s 00
2E3% 555 ¢ets TR
22 & §s 2% 223 5% g s § £
=5 2 S5 5§z &2 £, S s 2§ 82§
s o £ < 8 & 85 B A< x5 s Ef8:% ¢
g2s R 5% g=2 8 ER-- H
S 2 Sz s 2 8% 3E3S 8 £ 25 225 2
g a2 $E2: -2 52<EFE2 32 S éazs 88
E - 2 53203 2 &g 2 & >S5 E K8
“5E 225357 ¢ 35 R el
g < o g H s 2 3
g =23 g g =
< = £ f =
Predicted labels
Fig. 5. Confusion matrix of accepted predictions — Random Forest model

followed by applying class-specific confidence thresholds (A1).

correctly predicted flows and red bars indicate the average
confidence for mispredicted flows. A clear takeaway from this
analysis is that the model is more confident when a flow is
correctly classified and is relatively less confident when a flow
is misclassified.

The second observation is that the two threshold methods
(A1 and Ay we defined in §IV-B) affect our inferencing
differently, as shown in Table IV:)\; is found to be more
conservative by discarding 20% of predictions, compared to
14% discard rate resulted from applying Ag; A; is proven
to discard more of incorrect predictions compared to Ao
(99% versus 72%); considering the accepted predictions, A;
gives a slightly better accuracy than Ay (99.91% compared
to 99.02%). Given the primary objective being the quality
(purity) of predictions, we use the first method of thresholding
(A1) for the testing phase of our evaluation.

2) Stochastic Model Testing: Having tuned the parameters
and obtained the class-specific confidence thresholds, we now
evaluate the efficacy of the stochastic model by applying it
to our testing dataset. Fig. 5 shows the confusion matrix of
our inferencing (the model combined with A; thresholds).
The average accuracy across all classes is 96%, with 20
classes receiving more than 99% accuracy — the rate of
correct predictions across accepted predictions. We found that
applying the thresholds significantly improves the quality of
model prediction. Note that the average accuracy of the model
alone (without A; thresholding) is 82%. Also, only 1% of
the accepted instances are incorrectly predicted. However this
quality of prediction is achieved at the cost of discarding a part
of the correctly predicted flows i.e., 26% of correct predictions
when the model is less confident than expected thresholds.
Discard rate of correct predictions, on average, is about 17%
per class.

accuracy
S _
) =]

o
o

o
=)

[*)
=]

hit time (min)

=

hit flow
8] -

E 0.5 - R
0.0 6 9 3 5 S \ el 6 9 5 ? | \]
NS A s A\ e 2 Ao ’LV\"“ ’LN\N EMISUENRORIN ADS A AYS \ A o’ ApF A ADF B
Time

Fig. 6. Time-trace of average accuracy, trust, hit-time, and hit-flow of our
inferencing across all classes on the testing dataset.

1.0 WMM

Trust
S
3

0.0, -
R R LN NN LN N N T A N

Time

Fig. 7. Time-trace of baseline trust (Tp4s) during the testing period.

Though our stochastic model gives an overall acceptable
performance, we find flow records of the Power Elec plug are
not well predicted. We found that the model mispredicts most
of Power Elec plug instances (relatively confidently) as Planex
outdoor camera. Further investigations revealed that almost
all of those misclassified flows correspond to UDP/10001
service which is the second top service in IPFIX records of
Planex outdoor camera (the mispredicted class). Analyzing the
features of UDP/10001 records from these two classes showed
that the inter-arrival time and the number of outgoing packets
in the flows of Power Elec plug significantly changed from
the training to the testing phase, becoming similar to those
of Planex outdoor camera flows, and hence resulted in the
misprediction. Note that the ISP may choose to re-train the
model [32] after verifying certain legitimate changes, but re-
training is beyond the scope of this paper.

Another takeaway from our evaluation is that the per-
formance of machine learning-based inference model varies
across different network services. The scheme yields a better
accuracy in TCP flows compared to that of UDP flows. Focusing
on TCP, we see the highest true-positive rate in both TLS
and “other” TCP flows with 99%, followed by HTTP flows
with 94%. For UDP flows, “other” UDP services have 100%,
followed by DNS and NTP with 98% and 72% true-positives,
respectively. It is important to note that NTP flows receive
the highest discard rate (99% of the NTP flows are predicted
with fairly low confidence). This is mainly because the vast
majority of the NTP flows have the exact size of 76 bytes
(including payload, UDP and IP headers) across all IoT classes
in our dataset. We note that most of these IoT devices use the

—=— Amazon Echo Show

—e— JVC Kenwood hub

M TN AN e e M\M

—=— iRobot roomba

—— Sony Bravia TV

2

00
n 5 R) 5 1
w0 Y e e e ® e e et AN

Time
Fig. 8. Daily measure of Trust for four representative IoT devices on the
testing dataset.

minimum packet structure defined by the NTP standard without
any extension field, resulting in identical byte count feature for
this specific type of flows.

3) Operational Insights: We track the efficacy of our infer-
ence model in operation on a daily basis, as shown in Fig. 6. In
addition to overall accuracy (top plot), which remains fairly
high during our testing period, we capture two metrics: (a)
hit-time, the time taken for our model to detect a device since
its first-seen on the network, and (b) hit-flow, which indicates
the number of flows generated by a device before the model
correctly detects it. It is seen from the second top plot in Fig. 6
that the average hit-time across all classes varies between 9
seconds and 48 minutes, highlighting the responsiveness of
our inference scheme. Also, we observe that the average hit-
flow mostly equals 2 (with a maximum of 4) — this suggests
that discarding about a third of correctly classified flows does
not incur an excessive delay in our inference.

Moving to the trust metric shown in the bottom plot of
Fig. 6, we see consistently high values during the testing
period on average (highlighting the overall health of devices).
Only on 20" April, we observe a slight drop in the trust due to
the early shutdown of our capturing server in preparation for
a planned power outage on 21°' and 22" April — this resulted
in just 3 hours worth of data captured on 20" April.

Fig. 7 shows the temporal dynamics of baseline Trust
(Tyase)- Based on its definition, T, starts getting value from
the second day of the testing period (17th March). It can be
seen that Ty, displays relatively high and consistent values
across the entire testing period, with a daily average of 95%,
indicating most devices are consistently present and active in
the network. In what follows, we will see certain changes
in the behavior of some devices that will go undetected by
Tyase (mainly because of its aggregate nature). In contrast,
our metric T}, 4., 7, (by incorporating fine-grained contexts) is
able to highlight them.

Dynamics of Trust Metric: To better understand the tem-
poral dynamics of the Trust metric, we plot in Fig. 8 the daily
Trust for a few representative classes which display noticeable
changes in their behavior.

We categorize the behavioral changes by trust metric in two
groups: (i) permanent declines which are probably caused by
a legitimate firmware upgrade, leading to change in traffic
features and/or the number of generated flows, and (ii) tem-
porary declines that can be caused by an intermittent network
condition or device usage/configuration for a short period of
time, leading to generation of significantly different number of
flows without necessarily affecting the traffic features. Fig. 8
illustrates the daily trust of four representative devices from
our testbed: Amazon Echo Show (change in traffic features),
and JVC Kenwood hub (change in the number of flows)
represent a firmware upgrade scenario, while iRobot roomba
and Sony Bravia TV represent temporary behavioral/usage
changes affecting their flow count.

Amazon Echo Show has an average trust of 0.94 before
April 11 on which it starts to decay and remains around
0.61 until the end of April. By further analysis, we found
that the daily flow count was almost expected, but some
significant changes were observed in certain traffic features
(reverseOctetTotalCount and reverseDataByteCount
dropped by about 80%) compared to the training phase. These
changes caused the number of accepted flows to drop by 40%,
compared to the expected value from the training phase.

JVC Kenwood hub starts with a very low trust value on
16" and 17" March, followed by a fluctuating trust measure
averaged at 0.66 from 18" March to 11" April. Next, we
observe a permanent drop, starting from 14" April with
an average trust of 0.54. JVC Kenwood hub generated 983
and 1019 flows during the first two days respectively (16%
and 17" March) — in each day, about 870 flows received
accepted prediction. Moving to the second half of April, the
hub generated on average 218 flows per day, and around 168
of flows (daily) are predicted with an acceptable confidence.
These values are far from the expected behavior of JVC
Kenwood hub based on the training dataset where the expected
number of flows is about 415 per day.

The iRobot Roomba displays a consistently high trust value
over the testing period (about 0.91 on average) except for 20™
April (with trust value of 0.67). This device has an average
of 50 flows per day over the testing period, except on 20"
April, it only had 7 flows. The shutdown of our capture server
in preparation for a planned power outage on the following
days caused this drop. As the expected flow count for iRobot
Roomba is about 43 per day, the significant deviation on 20%
April resulted in a low trust value for this device.

Sony Bravia TV shows a persistent trust measure throughout
the testing phase except for April 14, when it generated a very
high number of flows. On average, it generated 5, 648 flows
per day during those days with a healthy trust metric. However,
the flow count rose to 98,013 on April 14 — of those flows,
~44,000 (about 3.8 times the expected baseline) received an
accepted prediction.

V. DETERMINISTIC MODEL OF IOT CLOUD SERVICES

In the previous section, we trained a multi-class ML model
on stochastic features of IPFIX records. Although ML models
are popular in the literature, they come with some open

3 al
W device-specific

cloud services

=
10 I
17 %]] [
10 % % 7 7 Z)
T o . & 2 & 2 £ & & § : o I
EREI EEZE 2 8 £
B g = s £
5z £ 5 R z g :
5 5 m S 2 s 2 s g =
3 g g gz g
E L3 & 5 £ g 2 s = 3 & %
<5 =] 2 T & 2 £ S 2
5§ 2 o 9 2 2 P
£ > = k4 o
Z = = -
z
o

IoT device typ

cloud services

»»»»»»»

Philips Hu

iRobot roomba

JVC Kenwood cam.
Planex UCAOIA cam. {§

mMCI
Panasonic doorpl

B
IoT device type

Fig. 10. Count of cloud services after filtering NAT traversing flows.

challenges: (a) They do not provide perfect accuracy. The
best model would still result in some false positives [40],
depending on the complexity of patterns across classes and
the amount of training data available. For our problem, a false
positive arises when our model detects an IoT device that is not
present on the network. As explained in §III, false positive is
detrimental for device inference at scale; (b) Activity behaviors
of IoT devices are susceptible to firmware upgrade [32], which
can significantly impact the stochastic features described in
Table II. In that case, the stochastic model may require re-
training with a new dataset to learn certain changes in benign
behaviors of the upgraded device; and (c) Stochastic features
can vary [8] depending on user activities and interactions
with their devices at home. For example, considering a smart
speaker, asking about the weather, or listening to a music track
would result in different amounts of traffic generated on the
network. Therefore, capturing a superset of all IoT behaviors
at scale may not be practical.

On the other hand, IoT cloud services seem promising to
overcome certain limitations of the stochastic model. Cloud
services that certain IoT device types may share can be
detected deterministically, reducing false positives. As cloud
services are maintained on the servers (of manufacturers and/or
application developers) and not on the device side, they are
less likely to change by firmware upgrades or user activities.
We denote a cloud service by a two-tuple information of IP
protocol/port number (e.g., TCP/80, or UDP/53) readily
available in IPFIX records, that is not impacted by NAT
operations. In fact, services that are exposed by IoT devices
may also be helpful in detecting them; however, as they are
overwritten by NAT routers and are not accessible post-NAT,
hence beyond the scope of this paper.

A. Fingerprint of loT Cloud Services

Let us begin by considering two groups of IPFIX records,
namely “outgoing” flows initiated by IoT devices inside the
home network to cloud servers on the Internet and “incom-
ing” flows initiated by remote endpoints (on the Internet) to

TABLE V
DISTRIBUTION OF CLOUD SERVICES ACROSS 10T DEVICE TYPES
AFTER FILTERING NAT TRAVERSING FLOWS.

Generic Mixed Specific Total
services 4 110 410 524
flows 914,157 138,077 233,474 1,285,708

household IoT devices. Cloud services, therefore, are captured
from the source transport-layer port of incoming records and
the destination transport-layer port of outgoing records.

Fig. 9 shows the distribution of cloud services across various
IoT device types in our training dataset (i.e., January and
first half of March). We find a total of 56,561 services under
three groups: (1) genmeric services like TCP/80 and UDP/53
that are found in traffic records of more than half of our IoT
devices; (2) mixed services that are shared across device types
(only less than half of them) in our dataset — for example,
UDP/37038 is only shared between JVC Kenwood camera and
hub; and (3) specific services that are only used by a single
device type — service UDP/41229 is only seen in flow records
of Amazon Echo Show. Note that some device types, such as
Fredi camera, Google Home, and Amazon Echo come with
no specific service (only generic and/or mixed services). In
contrast, device types like Qwatch camera and Panasonic door-
phone display thousands of specific services. Observing such
an undesirable behavior i.e., very wide distribution of cloud
services for some devices like Qwatch camera and Panasonic
doorphone led us to further analyze their corresponding flow
records.

A deeper investigation revealed that NAT traversing flows
are the main cause for wide ranges of cloud services in
the behavior of those IoT device types. Devices like smart
cameras provide live video streams to their users. This feature
requires the camera to be accessible behind NAT, which can be
achieved either by having a relay server or directly traversing
through NAT. In the former case, the server receives feed
from the camera and passes it to users. In the latter case, user
directly connects to the camera from the Internet, streaming
the video feed — direct connections initiated from outside home
networks may not be feasible for all implementations of NAT
gateways [41]. If an IoT device behind NAT is accessible
from outside, there will be communications flows destined to
the device (i.e., incoming flows), likely sourced from random
transport-layer port numbers (cloud services). Therefore, we
need to filter cloud services deduced from incoming flows and
generate our deterministic model only based on cloud services
obtained from outgoing flows (i.e., initiated by IoT devices),
avoiding random cloud services.

Filtering the incoming flows reduced the total number of
cloud services to 5200. However, a device like Qwatch camera
contributes to 4680 of cloud services. We further analyzed
IPFIX records of Qwatch camera and noticed that this device
uses Session Traversal Utilities for NAT (STUN) protocol [42].
STUN provides internal hosts with a set of tools to detect
NAT type when communicating with remote endpoints. Upon
completion of STUN tests, Qwatch camera performs NAT
hairpinning (loopback) — two hosts behind the NAT (on the
local network) communicate with each other via the external

UDP/3481 UDP/3482 UDP/495110 °) (UDP/39360
UDP/3480, (OUDP/3483 UDP/38609) UDP/41048
UDP/3479 OUDP/3484 Py
Q OUDP/3490 TCP/388160)
UDP/3485)
o S Saera, O3
UDP/3486 UDP/3495 o
(@ Apple UDP/15080
UDP/3487 Hgmepod 0
o UDP/40325
UDP/3488 O
o TCp/Baa3 OP/46234
o)
we/3890 L UDP/3493
upp/34g1 UDP/3492
UDP/123
UDP/10122 4
UDP/45216 0 P/370 ’
UDP/10055 Q uop/10001 UDP/10294
ubP/0244 | O
uoP/10245, Q UDP/39691 UDP/34052 pprar2z0
UDP/10242 8816134 UDP/34392
UDP/10279 Q UDP/44756 o)
o o5 UDP/54139
UDP)i024 op/10252_© o UDR/S4113
UDP/37014) vyotee UDP/49032
UDP/41619 @ — UDP/10193 UDP/56526
uugn e 5 o © ubP/g1284
//// “\ IDP/10129 DS UDP/61820
O cpoad carhera o UDP/49653 Sho
upP710099 €7 ¢ I o UDP/10204 0] clio Show ™ op/as1ed
o o 0 UDR/10202~.q @]
UDP/T0201 {1 7oy UpP/I0220 O UDP/10243 UDP/54416C
e s Ubpoiss O 4 O upp/a172
o upP/asere Uppatnze o UDP/10058 UDP/52379 O
UDP/10038 UDP/46727 UDP/59912
UDP/44804 O UDP/10135 UDP/47257
UDP/10137 O

UDP/10196

(a) IoT device types with specific and shared services.

Fig. 11.

Line Clova speaker iRobot roomba Sesame AP

Nokia body

Sony speaker

QP/8883

Google Amazon

Home

Philips Qrio

Bitfinder
Echo Hue hub sen.

Nature
remote

(b) IoT device types with only shared (generic and/or mixed) services.

Fingerprint of IoT cloud services: (a) four representative device types with specific and shared services, and (b) 11 device types with only shared

(generic and/or mixed) but no specific service. Bright nodes highlight specific services and gray nodes highlight shared services.

(public) IP address of the NAT gateway with port forwarding.
We further exclude flows with public IP address of the home
gateway to/from local IP addresses.

Fig. 10 shows the distribution of cloud services after remov-
ing incoming and hairpinning flows. It can be seen that the
number of services (for certain device types) has significantly
reduced by at least an order of magnitude (compared to Fig. 9)
after filtering NAT traversing flows. For instance, the total
count of cloud services for Qwatch camera and Panasonic
doorphone has now become 19 and 8 services, respectively.

Table V summarizes the number of generic, mixed, and
specific services along with their corresponding flow count.
We can see a total of 524 cloud services across device types
in our dataset where about 78% of them are specific to an IoT
type. Four generic services, namely TCP/80 (HTTP), TCP/443
(TLS), UDP/53 (DNS), and UDP/123 (NTP) are shared between
more than half of the device types. Note that generic services
contribute to only 0.7% of discovered cloud services, but they
are found in more than 70% of all flows analyzed.

We visualize in Fig. 11 two representative fingerprints of
IoT cloud services: (a) Four device types (Apple Homepod,
Qwatch camera, JVC Kenwood camera, and Amazon Echo
Show) with over ten specific services; and (b) device types in
our dataset that have no specific cloud service. It can be seen
in Fig. 11(a) that even devices with a set of specific services
(bright nodes) use a number of generic/mixed services (gray
nodes) — no device type in our dataset comes with a pure set
of specific services. Fig. 11(b) illustrates how device inference
can be challenging with shared cloud services across different
device types. For example, we can see that Sony speaker and
Google Home have the exact same set of services. The same
happens to be the case for Line Clova speaker and Amazon
Echo. In another example, we observe that the fingerprint
of Nokia body (i.e, {TCP/80, TCP/443}) is a subset of

five other fingerprints. We will develop a weighted inference
technique (next subsection) that associates a device-specific
weight to each cloud service proportional to its occurrence
frequency to tackle overlapped fingerprints.

We note that the appearance and consistency of the fin-
gerprint set over time can vary across device types in the
training dataset. For example, the fingerprint set of Panasonic
doorphone was fully captured during the first two weeks of
our training dataset and remained consistent until the end of
the training period (about a month and a half). In another
example, Amazon Echo uses three of its four shared services
(it has no specific service) every day it is active. On the other
hand, some devices grow their fingerprint set over time. For
instance, Wansview camera uses new specific services on four
days in March that were not seen during January. While new
services emerged, parts of the fingerprint remained consistent
throughout the training period — for example, the camera
communicated with its specific service UDP/60722 every day
it is active.

B. Inference Techniques

Detecting devices based on their cloud services can be done
in different ways. In this section, we discuss a couple of these
possible methods.

Specific Service: This inference is made on a per-flow
basis. We need to generate a map between individual cloud
services and IoT device types from the training dataset for
this method. For example, mappings (TCP/1111) —{D;} and
(TCP/2222) —{D3, D3} mean that the service TCP/1111
exclusively belongs to the device type D; and the service
TCP/2222 is shared between device types D> and Dj3. Then
we apply the generated map to each of the individual testing
flows. If a given flow matches a one-to-one mapping rule
(corresponding to a specific cloud service), then the unique

Amazon Echo Show

Apple Homepod-

Fredi cam.-

JVC Kenwood cam.- 0 0 0 0 0 0 0

0.22 0 0 0 0

JVC Kenwood hub- 0 0 0 014 014 0 0 029 043 O 0 0 0

MCI room hub- 0 0 0 0 0 0 0 0 0 0 0 0

0.42 0 0 0 0
0.4

Planex pantilt cam.- 0 0 0 0.1 0.1 0 0 03 | 05 0 0 0 0

Panasonic doorphone- 0 0 0

True labels

Planex UCAOIA cam.- 0 0 0 0 0 0 0

Qwatch cam.- 0 0 0 0 0 0 0 0 0

0 02

o
°
=
=
°
=
=
=
o

Sony Bravia TV-

=
=
=
=
=
o
o
=
o
=
=

Wansview cam.-

=
=
=
=
o
=
o
=
=
=

Xiaomi LED-
-0.0

Fredi cam.- o

aQ
=)
ju}
£
H
]
b

Amazon Echo Show-
Apple Homepod-
JVC Kenwood cam.-
JVC Kenwood hub-
MCIJ room hub-
Panasonic doorphone-
anex UCAO1A cam.-
Planex pantilt cam.-
Qwatch cam.-

Sony Bravia TV-
Wansview cam. -

)
Predicted labels

Fig. 12. Confusion matrix of our deterministic model with the specific service
inference method.

type of the associated IoT device is inferred; otherwise if the
cloud service is shared or unseen, no type is inferred.

Fingerprint Set: Inspired by [22], this inference is made
based on a collection of flows observed during a configurable
epoch (say, daily) per household. Therefore, deterministic
fingerprints (each is a set of cloud services obtained from the
training dataset) for individual device types, similar to what
is shown in Fig. 11, are required as inputs to our inference.
For testing during a given epoch, each cloud service (extracted
from an IPFIX record) is checked against the fingerprint of all
device types. If the service is found in a fingerprint set, we
count a match for the corresponding device type (each service
can be counted once per device type during an epoch). Note
that a shared service (generic/mixed) will result in matches
for more than one device type. At the end of the epoch, we
compute the fraction of matched services for each device type.
An IoT device is detected, if its computed fraction is above a
configurable “fingerprint threshold”.

The inference based on fingerprint sets can be employed
in two ways: (a) “unweighted”, whereby the membership of
cloud services to various fingerprint sets is measured as a
binary value so all services have the same contribution in com-
puting the fraction of matched services, and (b) “weighted”,
whereby the service membership is measured by a weight
(between 0 and 1), equal to the fraction of days that the
service was seen in the training dataset over a total number
of days on which the device was active. The final fingerprint
match for each device is a weighted average of its observed
services. That way, frequent services have more contribution
in fingerprint matching. We consider the unweighted method
as a baseline, representing deterministic models used in prior
works like [15], [22].

We note that the specific service inference method would
be faster in detecting devices as it responds to each individ-

=)

|
|
)
iy

True positive
=4
S

I
=

—— fingerprint threshold = 0.3
--#--fingerprint threshold = 0.5
w- fingerprint threshold = 0.7

S
i

0.0
N R LN LN LS A I A AR I LI

day

Fig. 13. Daily trace of true positives from the deterministic model based on
unweighted fingerprint set method.

ual flow record independently (stateless). The fingerprint set
inference, on the other hand, is stateful and needs to analyze
a collection of records observed during the epoch before a set
of devices are detected. The specific service method can only
detect those IoT devices that consume at least one specific
service, which is not the case for 11 IoT device types in our
dataset, as highlighted by purely white bars in Fig. 10.

C. Evaluating Efficacy of Deterministic Modeling

We use the same training dataset (i.e., traces from the
month of January and first half of March) we used for the
stochastic model to generate the deterministic models (i.e.,
map of specific services to device types and a fingerprint set
for each device). Similarly, the traces from the second half of
March and April are used for testing.

Before evaluation, let us briefly look at the composition of
cloud services in the testing set. Overall, about 19% of testing
flows have specific services that can be used to detect their
corresponding IoT devices. A similar observation was made
from the training dataset, reported by Table V. Among all
class types, three cameras, including Fredi camera, Panasonic
doorphone, and Wansview camera, significantly dominate by
having more than 94% of their flows with services specific to
their type. About 10% of the total flows have services shared
between two or three device types. For example, more than
three-quarters of flows for Qwatch camera are dedicated to
the cloud service UDP/3478 which is shared between Qwatch
camera and Apple Homepod. That said, our specific service
method (in what follows) will detect both the camera and
homepod with a perfect accuracy based on their individual
specific services. In another example, TCP/8883 is shared
between Bitfinder sensor (30% of flows), Sesame AP (98%
of flows), and iRobot roomba (95% of flows). We will show
(in what follows) how our fingerprint set method overcomes
the challenge of device types without specific services. Lastly,
about 0.02% of testing flows (i.e., 268 IPFIX records) contain
150 new cloud services — not seen in the training dataset; 97
of them belong to Wansview camera. Such a dynamic in the
fingerprint of Wansview camera was observed in the training
dataset (§V-A), but it does not affect our inference — we will
soon see that this camera type is perfectly detected by its
consistent use of specific cloud services like UDP/60722.

Evaluating the Specific Service Method: As this method
can only predict the device type of those flows that contain
specific services, about 80% of testing flows remain unclas-
sified. Fig. 12 shows the confusion matrix of this method. It

1.0
Q
°
.
‘..\
0.8 B
3
..
e T-e
A N
AL e e -
.2 0.6
3 b
£ Tre—
= .
£ 0.4 !
o \
a !
Q 1
< i
0.2 \
!
\
\
\
0.0 e
0.0 0.2 0.4 0.6 0.8 1.0
average daily fraction of services
Fig. 14. CCDF of average daily faction of services per IoT device during

the testing period.

can be seen that the specific service method yields a perfect
accuracy (100%) for nine device classes and an overall average
of 77% across all classes of devices that have specific services.
Note that the Planex outdoor camera and PowerElec plug do
not use any of their specific services (found in the training
dataset) during the testing phase; therefore, these two classes
are excluded from the confusion matrix. Also, we observe that
devices like the JVC Kenwood camera and hub started using
cloud services that were initially specific to Planex cameras
(UCAO1A and pantilt), and hence noticeable misclassification
rates for them. For instance, during the training phase, JVC
Kenwood camera was found to use 11 specific services, but
none of them were used during the testing phase. Instead,
it communicated with 2 and 7 services specific to Planex
UCAOIA and pantilt cameras, respectively — this may be
attributed to a firmware upgrade. This issue will be solved
to some extent when we combine the two methods, namely
specific service and fingerprint set.

Evaluating the Fingerprint Set Method: This method
is able to cover some of the shortcomings of the previous
method, particularly in predicting device types that only use
shared services. For this method to work, we need to configure
a fingerprint threshold on the fraction of observed cloud
services to determine whether a corresponding device type is
present on a given home network. Note that the fingerprint set
method operates on a collection of records observed during
an epoch (chosen daily, ensuring a quality inference). We,
therefore, demonstrate the efficacy of this method across
epochs during the testing phase.

Fig. 13 shows a daily trace of true positives (i.e., ratio
of correctly detected active devices to all active devices)
obtained from our deterministic model (with the fingerprint
set method in unweighted mode) during the testing period.
For the fingerprint threshold, we tested three values of 0.3,
0.5, and 0.7 that respectively detect 75%, 70%, and 65% of
active devices on average. Conservative operators may choose
a higher value for the fingerprint threshold, providing them
with a quality prediction at the cost of missing some devices
types with weaker (shared) fingerprints. Setting the threshold
value too low can be detrimental to the quality of inferencing,
resulting in a high rate of false positives.

We found that the unweighted fingerprint set method can

|

S
%

o
>

True positive

1N
=

—#— fingerprint threshold = 0.3
0.24 --#*-- fingerprint threshold = 0.5
w- fingerprint threshold = 0.7

M o T B G S g€ 0 e et e e
day

Fig. 15. Daily trace of true positives from the deterministic model based on

weighted fingerprint set method.

L0 e TR ~
ol *7#&7k**,§—:—;--¢—a—fa—f~o»a

R

o
%

e
>

True positive

I
=

—#— fingerprint threshold = 0.3
0.24 ==*-- fingerprint threshold = 0.5
- fingerprint threshold = 0.7

.0
was \6 s 9 Was 7 s 2 s 2% s B ERCLEe ADY \° A\ s e 2 s ?
day
Fig. 16. Daily trace of true positives for the deterministic model based on

the combination of specific service and weighted fingerprint set methods.

solve some of the shortcomings of the specific service method.
For example, devices like the Bitfinder sensor, Sesame AP, and
iRobot roomba which do not have any specific service, are
correctly predicted on those days they are active. However,
the detection rate at best reaches about 80% during the
entire testing period. To better explain the root cause of
such a performance, we measured the daily observed fraction
of cloud services for each device — the fraction becomes
equal to 1 if a subject device consumes all services from
its fingerprint. We plot in Fig. 14 the CCDF of the average
daily fraction of services (per IoT device) during the testing
period. We found that the measure of daily fraction for five
(out of 26) devices, including the JVC Kenwood camera,
JVC Kenwood hub, Planex UCAO1A camera, Planex pantilt
camera, and Wansview camera never exceeded 0.2, and hence
are consistently missed by our model in the unweighted mode.
Interestingly, twelve devices receive an average fraction equal
to 1 — they always get correctly predicted.

The unweighted mode turns out to be discriminating certain
device types that have shared cloud services in their fingerprint
since this method misses an important factor of the usage fre-
quency. For example, a device type like Apple Homepod tends
to use the generic service TCP/80 every day, but the specific
service UDP/3488 only once or twice a week. Assigning a
corresponding frequency weight to each fingerprint service can
help our model better infer connected devices. Fig. 15 shows
the daily trace of true positives obtained from the weighted
method, given the same three fingerprint thresholds. It can be
seen that giving more weight to frequent services can indeed
improve the rate of true positives — on average, the detection
rate is increased by 24%, 19%, and 20% respectively for
threshold values of 0.3, 0.5, and 0.7. Specifically, devices like
the JVC Kenwood camera and hub, with a relatively poor score
(< 0.2) of the fingerprint match from the unweighted method,
now receive about 0.64 and 0.79 match from the weighted
method, and hence correctly predicted. Needless to say, JVC
Kenwood camera consumed none of its specific cloud services,

IPFIX IPFIX IPFIX - IPFIX IPFIX
i record 1 record2 record 3 recordk recordN final inference of
b \\ \\ \\ \\ \\ combined modeling
epoch epochi \
starts} ! ! : | —fends | \
! | | i i
R ¢ v |
{ Vo Vi v [[D
ML i {Dq} i i:{Dz}: :{D4}i :{Ds}i D..D, DD 7,
--'é“};é{};: YT e— 0,0,0:0 %0,
E E E E E E E i E é ! U intersection
e (} ()} (D] | {} | | {Dg}| ne—) (D,D.)
' u _{D1.D2Dg}
union,

Fig. 17.

TABLE VI
POTENTIAL ADVANTAGES OF THE DETERMINISTIC MODEL,
AUGMENTING THE STOCHASTIC MODEL.

Stochastic accepted | Stochastic discarded

correct | incorrect correct incorrect
Total flows 870K 8K 370K 170K
specific-service flows [outgoing] 223K 3 10K 645
unseen-service flows [outgoing] 155 1 74 38

and JVC Kenwood hub contacted one of its specific services
during the testing period.

Specific Service and Fingerprint Set Methods Combined:
We have seen that both methods display certain limitations
for some device types or in some circumstances. The specific
service method offers a narrow coverage by excluding shared
cloud services. On the other hand, the (weighted) fingerprint
set method can fall short in predicting a device, which does
not consume a sufficient number of its expected cloud services
during the inference epoch. To benefit from their respective
differentiated advantages, we combine these two methods.
Note that each operates differently (i.e., the specific service
method infers on a per IPFIX record basis, while the finger-
print set method infers from a collection of IPFIX records
over an epoch). Therefore, we can combine their inferences at
the end of each epoch by applying the union operation to the
lists of predicted devices obtained from individual methods.
That way, the chance of missing a connected IoT device will
be minimized. We show in Fig. 16 the daily trace of true
positives from our deterministic model when the two methods
(specific service and weighted fingerprint set) are combined.
It can be seen that the combined method further improves
(compared to what was obtained in Fig. 15) the quality of
inference, yielding an average true positive of 99%, 94%, and
92% for the three thresholds of 0.3, 0.5, and 0.7, respectively.
The combined model helps detect devices like Planex pantilt
camera which had a relatively low score (=0.39 on average)
of the fingerprint match with the weighted method only.
Importantly, the combined method reduces the average rate
of false positives to relatively low values (i.e., 10%, 9% and
4%) for our chosen thresholds (0.3, 0.5, and 0.7, respectively).

Lo DTfingerprint {D.‘ ,DZ,D3}

High-level architecture of a combined inference by stochastic and deterministic models.

D. Combining Stochastic and Deterministic Models

We saw that the stochastic model gives a reasonable accu-
racy during the testing period (96% on average per class).
However, it discards about 26% of the correctly classified
(testing) flows due to a lack of confidence. Given its dif-
ferentiated capabilities, the deterministic model has the po-
tential to augment the stochastic model and improve the
quality of inference. Table VI highlights, at a high level,
the potential advantage of our deterministic model that can
help the stochastic model. The first row summarizes how
the stochastic model correctly/incorrectly classifies all flows
(incoming and outgoing); some are accepted while others
get discarded. The second row (highlighted in blue) shows a
potential benefit of the deterministic model: (i) 223K (a quarter
of) correctly classified and accepted flows can be verified
as they use cloud services specific to certain types of IoT
devices; (ii) 10K (=3%) of correctly classified but discarded
flows can be “revived”. Note that (as discussed in §V-A) our
deterministic model infers from outgoing flows (=85% of
all flows), those that originate from the home network. The
third row (highlighted in yellow) shows some challenges that
our deterministic model encountered with unseen services, but
these types of flows were fairly negligible (less than 0.02%)
in our dataset.

Fig. 17 shows the architecture of our combined inference
from stochastic (i.e., M L) and deterministic (i.e., DT") models.
We employ both specific service (DTpecific) and weighted
fingerprint set (DT tingerprint) methods for our deterministic
inference. During a given epoch, the ML and DTpecific
models work in parallel on a per-flow basis. Due to low
confidence and/or an unseen/shared cloud service, some flows
may result in no inference (i.e.,, yielding an empty set) by
either or both of the models. At the end of the epoch, the
predicted set of devices is obtained by applying the union
operation to their individual predictions during the epoch. Ad-
ditionally, the third model (DT't;ngerprint) gives its prediction
on all flows observed during the epoch. Next, we obtain a
superset of detected devices by computing the union of outputs
from the two deterministic models. Lastly, we intersect the
two predicted sets yielded by the stochastic and deterministic

061 —— MLTP
—6— MLFP

04{ -~ ML+DTTP
--A-- ML+DTFP

TP/FP rate

0.2

0.0 PESY
s 0 0 P 22 s Py pe? e ® e

TR
day

Fig. 18. Prediction performance of stochastic modeling versus combined

stochastic and deterministic modeling.

TABLE VII
COMPARING PERFORMANCE OF STOCHASTIC AND DETERMINISTIC
BASELINES WITH THAT OF THEIR COMBINATION.

ML (proxy of [3]) | DT (proxy of [22])
TP 97% 92%
FP 0.4% 4%

ML+DT (this work)
90% [—7%]
0.1% [+75%]

models, obtaining the final inference of connected IoT devices.

Fig. 18 illustrates how our combined inference impacts the
performance of prediction by two metrics, namely rates of true
positive (TP) and false positive (FP). TP indicates the correctly
detected fraction of all devices that were active on the network,
and FP indicates the incorrectly detected fraction of all active
devices on the network. For this experiment, a comparison
between two scenarios of stochastic inference (ML) versus
the combined inference (ML + DT) is conducted. Also, we
set the fingerprint threshold to 0.7 (a conservative setting) for
our DT¢ipgerprint model. We can see that the ML model
is able to detect more devices on its own (with an average
TP of 97%) compared to the combined scenario, given the
conservative but confident nature of our deterministic model,
a slightly lower TP (90% on average) is achieved. Instead, the
conservative deterministic modeling helped us mitigate false
positives generated by the ML model during three days (April
5, 6, and 8) of evaluation.

Table VII shows true and false positive rates for ML only
(representing prior work [3]), DT only (representing prior
work [22]), and ML+DT combined models (this work). ML
outperforms DT in terms of true positives by about 5%. Also,
the false positive rate of ML is ten times better than that of DT
(0.4% compared to 4%). Higher false positives from the DT
model are attributed to shared services explained in §V. Even
though DT is less accurate than ML when the two models are
combined (ML+DT), false positives significantly decrease to
an attractive level of 0.1% — this measure is 75% better than
that of ML only (highlighted in the green brackets). However,
this improvement comes at the cost of losing about 7% of true
positives from ML (highlighted in the red brackets).

The combined inference may miss some devices (one out of
ten), but the chance of incorrectly detecting a device that is not
present on the network is fairly low. As discussed throughout
this paper, reducing false positives is more crucial as they
can incur unwanted management costs (taking actions on a
vulnerable device that does not exist in the user premise).
Thus, losing 7% of true positives seems to be a reasonable
trade-off for gaining 75% fewer false positives.

VI. CONCLUSION

Residential networks continue to become richer and more
vulnerable with the widespread adoption of consumer IoT de-
vices. ISPs recognize the need to address concerns associated
with IoT security by obtaining visibility into these connected
devices and their behavior. This paper discussed how an ISP
could leverage IPFIX telemetry to achieve this task post-
NAT, at scale, without making changes to home networks.
We analyzed about three million IPFIX records (released as
open data) from 26 IoT devices. We extracted 28 flow-level
stochastic features for training a machine learning model to
detect device types from IPFIX records with an average accu-
racy of 96%. In addition to the stochastic model, we developed
deterministic models based on cloud services captured from
outgoing IPFIX records, yielding an average accuracy of 92%.
We demonstrated that combining stochastic and deterministic
models can help reduce false-positive incidents by 75% for an
average cost of 7% in true positives.

REFERENCES

[1]1 A. Pashamokhtari er al., “Inferring Connected IoT Devices from IPFIX
Records in Residential ISP Networks,” in Proc. IEEE LCN, Virtual
Event, Canada, Oct 2021.

[2] S. Grover et al., “Peeking behind the NAT: An Empirical Study of Home
Networks,” in Proc. ACM IMC, Barcelona, Spain, Oct 2013.

[3] Y. Meidan et al., “A Novel Approach For Detecting Vulnerable IoT
Devices Connected Behind a Home NAT,” Computers & Security,
vol. 97, pp. 1-23, Oct 2020.

[4] Statista, “Number of Smart Homes Forecast Worldwide from 2017 to
2025, 2020. [Online]. Available: https://bit.ly/3ulFflm

[5] Palo Alto Networks, “Unit 42 IoT Threat Report,” 2020. [Online].
Available: https://start.paloaltonetworks.com/unit-42-iot-threat-report

[6] D. Kumar et al., “All Things Considered: An Analysis of IoT Devices
on Home Networks,” in Proc. USENIX Security, Santa Clara, USA, Aug
2019.

[7]1 J. Anand et al., “PARVP: Passively Assessing Risk of Vulnerable
Passwords for HTTP Authentication in Networked Cameras,” in Proc.
ACM DAI-SNAC, Virtual Event, Germany, Dec 2021.

[8] A. Sivanathan er al., “Classifying IoT Devices in Smart Environments
Using Network Traffic Characteristics,” IEEE TMC, vol. 18, no. 8, pp.
1745-1759, Aug 2019.

[9]1 T. Micro, “Mirai Botnet Exploit Weaponized to Attack IoT Devices via

CVE-2020-5902,” 2020. [Online]. Available: https://bit.ly/2RRLy1X

H. Kumar et al., “Enhancing Security Management at Software-Defined

Exchange Points,” IEEE TNSM, vol. 16, no. 4, pp. 1479-1492, Sep 2019.

J. Blythe et al., “What is Security Worth to Consumers? Investigating

Willingness to Pay for Secure Internet of Things Devices,” Crime

Science, vol. 9, no. 1, pp. 1-9, Jan 2020.

N. Nthala et al., “Rethinking Home Network Security,” in Proc. Eu-

roUSEC, London, England, Apr 2018.

D. Harkin et al., “Consumer IoT and its under-regulation: Findings from

an Australian Study,” Policy & Internet, vol. 14, no. 1, pp. 96-113, 2022.

H. Habibi Gharakheili et al., “Cloud Assisted Home Networks,” in Proc.

ACM CAN, Incheon, Republic of Korea, Dec 2017.

H. Guo et al., “IoTSTEED: Bot-side Defense to IoT-based DDoS

Attacks (Extended),” USC/Information Sciences Institute, Tech. Rep.

ISI-TR-738, Jun. 2020. [Online]. Available: https://bit.ly/3ec9eGS

M. Miettinen et al., “loT SENTINEL: Automated Device-Type Identifi-

cation for Security Enforcement in IoT,” in Proc. IEEE ICDCS, Atlanta,

USA, Jun 2017.

V. Thangavelu et al., “DEFT: A Distributed IoT Fingerprinting Tech-

nique,” IEEE IoTJ, vol. 6, no. 1, pp. 940-952, Feb 2019.

S. Marchal et al., “AuDI: Toward Autonomous IoT Device-Type Iden-

tification Using Periodic Communication,” IEEE JSAC, vol. 37, no. 6,

pp. 1402-1412, Jun 2019.

A. Hamza et al., “Combining MUD Policies with SDN for IoT Intrusion

Detection,” in Proc. ACM IoT S&P, Budapest, Hungary, Aug 2018.

Cyber Edge, “Cyberthreat Defense Report,” 2020. [Online]. Available:

https://bit.ly/3xM11di

(10]

(1]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Sivanathan et al., “Can We Classify an IoT Device using TCP Port
Scan?” in Proc. IEEE ICIAS, Colombo, Sri Lanka, Dec 2018.

S. J. Saidi ef al., “A Haystack Full of Needles: Scalable Detection of
IoT Devices in the Wild,” in Proc. ACM IMC, New York, USA, Oct
2020.

A. Hamza et al., “Verifying and Monitoring IoTs Network Behavior
using MUD Profiles,” IEEE TDSC, vol. 19, no. 1, pp. 1-18, Jan-Feb
2022.

A. Pashamokhtari et al., “IoT IPFIX Records,” 2021. [Online].
Available: https://iotanalytics.unsw.edu.au/iotipfixrecords

A. Engelberg et al., “Classification of Encrypted IoT Traffic Despite
Padding and Shaping,” in arXiv preprint arXiv:2110.11188, 2021.

X. Ma et al., “Inferring Hidden IoT Devices and User Interactions via
Spatial-Temporal Traffic Fingerprinting,” IEEE/ACM ToN, pp. 1-15, Sep
2021.

W. Zhang et al., “Optimizing Federated Learning in Distributed Indus-
trial IoT: A Multi-Agent Approach,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 12, pp. 3688-3703, 2021.

R. Hofstede et al., “Towards Real-time Intrusion Detection for NetFlow
and IPFIX,” in Proc. CNSM, Zurich, Switzerland, Oct 2013.

J. J. Davis, “Machine Learning and Feature Engineering for
Computer Network Security,” Ph.D. dissertation, Queensland University
of Technology, Brisbane, Australia, 2017. [Online]. Available:
https://eprints.qut.edu.au/106914/1/Jonathan_Davis_Thesis.pdf

B. Trammell et al., “Bidirectional Flow Export Using IP Flow
Information Export (IPFIX),” RFC 5103, Jan. 2008. [Online].
Available: https://rfc-editor.org/rfc/rfc5103.txt

D. d. Reis et al., “One-class Quantification,” in Proc. ECML PKDD,
Dublin, Ireland, Sep 2018.

A. Sivanathan et al., “Detecting Behavioral Change of IoT Devices
Using Clustering-Based Network Traffic Modeling,” IEEE IoTJ, vol. 7,
no. 8, pp. 7295-7309, Aug 2020.

NetSA CERT, “YAF,” 2006. [Online]. Available:
https://tools.netsa.cert.org/yaf/yaf.html

_ “Super Mediator,” 2012. [Online]. Available:
https://tools.netsa.cert.org/super_mediator

R. Moskowitz et al., “Address Allocation for Private
Internets,” RFC 1918, Feb. 1996. [Online]. Available: https://rfc-
editor.org/rfc/rfc1918.txt

M. Cotton et al., “Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and Transport
Protocol Port Number Registry,” RFC 6335, Aug. 2011. [Online].
Available: https://rfc-editor.org/rfc/rfc6335.txt

E. Lior et al., “Manufacturer Usage Description Specification,”
RFC 8520, Mar. 2019. [Online]. Available: https://rfc-
editor.org/rfc/rfc8520.txt

A. Hamza et al., “Detecting Volumetric Attacks on IoT Devices via
SDN-Based Monitoring of MUD Activity,” in Proc. ACM SOSR, San
Jose, USA, Apr 2019.

M. S. Mahdavinejad et al., “Machine Learning for Internet of Things
Data Analysis: a Survey,” DCN, vol. 4, no. 3, pp. 161-175, Aug 2018.
M. A. Al-Garadi et al., “A Survey of Machine and Deep Learning
Methods for Internet of Things (I0T) Security,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 3, pp. 1646-1685, Apr 2020.

M. Westerlund et al, “Comparison of Different NAT Traversal
Techniques for Media Controlled by the Real-Time Streaming Protocol
(RTSP),” RFC 7604, Sep. 2015. [Online]. Available: https://rfc-
editor.org/rfc/rfc7604.txt

P. Matthews et al., “Session Traversal Utilities for NAT (STUN),” RFC
5389, Oct. 2008. [Online]. Available: https://rfc-editor.org/rfc/rfc5389.txt

Arman Pashamokhtari received his B.Sc. degree
of Computer Engineering from the Amirkabir Uni-
versity of Technology in Tehran, Iran in 2019. He
is currently pursuing Ph.D. degree in the area of
computer networks from the University of New
South Wales (UNSW) in Sydney, Australia. His
research interests include programmable networks,
IoT network traffic analytics and applied machine
learning.

Norihiro Okui received the B.E. and M.E. degrees
of Computer Science and Engineering from Waseda
University, Japan, in 2010 and 2012, respectively. He
joined KDDI in 2012. He is currently a research en-
gineer of the Cyber Security Lab. in KDDI Research,
Inc. His research interest includes cyber security for
IoT.

Yutaka Miyake received the B.E. and ML.E. de-
grees of Electrical Engineering from Keio Univer-
sity, Japan, in 1988 and 1990, respectively. He joined
KDD (now KDDI) in 1990, and has been engaged in
the research on high-speed communication protocols
and secure communication systems. He received the
Ph.D. degree in engineering from the University
of Electro-Communications, Japan, in 2009. He is
currently a research manager of Cyber Security
Laboratory and a director of Information System and
Security Department at KDDI Research, Inc.

Masataka Nakahara received the B.Eng. degree of
Electrical Engineering and the M. Informatics de-
gree of Graduate School of Informatics from Kyoto
University, Japan in 2014 and 2016, respectively. He
joined KDDI in 2016, and joined KDDI Research,
Inc. in 2019. His current research interest includes
cyber security for IoT.

Hassan Habibi Gharakheili received his B.Sc. and
M.Sc. degrees of Electrical Engineering from the
Sharif University of Technology in Tehran, Iran in
2001 and 2004 respectively, and his Ph.D. in Elec-
trical Engineering and Telecommunications from the
University of New South Wales (UNSW) in Sydney,
Australia in 2015. He is currently a Senior Lecturer
at UNSW Sydney. His research interests include
programmable networks, learning-based networked
systems, and data analytics in computer systems.

