
1

PEDDA: Practical and Effective Detection of
Distributed Attacks on Enterprise Networks via

Progressive Multi-Stage Inference
Minzhao Lyu, Hassan Habibi Gharakheili, and Vijay Sivaraman

Abstract—Network attacks on enterprises are distributed in
sources and versatile in patterns. However, practical solutions
(firewalls) often focus on potential enterprise victims by way
of coarse-grained monitoring due to their limited compute
resources; thus, ineffective in detecting distributed sources and
flows of network attacks. In contrast, fine-grained flow-level
detection methods are impractical in handling millions of flows
for large enterprises. We present PEDDA, a progressive multi-
stage inference method to detect distributed attacks by lever-
aging dynamic controls of programmable networks. It flexibly
applies inference stages, each with an orchestratable granularity,
whereby packet streams are either proactively or reactively
partitioned and analysed by specialised functions depending on
the evolution of attacks. The granularity of each stage/function is
dynamically determined by an optimisation framework subject to
computing resource constraints. We prototype a proof-of-concept
system consisting of three inference stages that monitors active
enterprise hosts, detects and isolates those victims under attacks,
and differentiates distributed sources and flows from benign ones,
respectively. We evaluate the efficacy of our prototype by applying
it to real traffic traces from a large enterprise network injected
by DDoS attacks from a public dataset.

Index Terms—DDoS detection; progressive inference; resource
orchestration; programmable networks; network security

I. INTRODUCTION

Distributed network attacks (e.g., DDoS), attributed to IoT
[1], botnet [2], DNS [3], and amplification [4], continue to
target enterprises by large volumes of aggregate traffic, con-
gesting their networks or paralyzing individual hosts [5]. These
attacks have reached an alarming rate with high frequency in
occurrence, diversity in patterns, and well-distributed sources
to bypass countermeasures available on security appliances, as
highlighted by academic research [6] and industry reports from
Akamai [7], Black Hat Community [8], and Forcepoint reports
[9]. A distributed attack may exploit different protocols (e.g.,
DNS [4], HTTPS [10]) and use large-scale botnet devices, each
with specific attack strategies such as low packet rate [11],
relatively infrequent HTTP requests [12], and temporal shifts
[13]. Fig. 1(a) illustrates how malicious flows sourced from
distributed external attackers are mixed (and possibly share
subnets) with legitimate traffic from benign external hosts.
Therefore, effectively detecting a distributed attack entails
determining the victim among enterprise hosts, identifying

M. Lyu, H. Habibi Gharakheili and V. Sivaraman are with the School of
Electrical Engineering and Telecommunications, University of New South
Wales, Sydney, NSW 2052, Australia (e-mails: minzhao.lyu@unsw.edu.au,
h.habibi@unsw.edu.au, vijay@unsw.edu.au).

distributed sources from a large set of external hosts, and
detecting malicious flows from numerous concurrent flows,
annotated as red entities in Fig. 1(a).

Furthermore, large and federated enterprise networks like
universities often allow their sub-departments and users to
set up their networked assets (e.g., servers). Some assets
can be relatively dynamic and hence hard to manage in
practice. For example, a research group may set up/reconfigure
their websites and databases without notifying the central IT
department. Therefore, continuously monitoring active hosts
and dynamically isolating those that may be under distributed
attacks are necessary for a robust network operation.

To detect distributed network attacks1 at the entrance of the
enterprise network border (i.e., “at-destination”), commercial
solutions like firewall appliances and network intrusion de-
tection systems (e.g., Sophos [14], Fortinet [15], Cisco [16],
and Palo Alto [17]) employ relatively static policies (e.g.,
thresholds on the aggregate traffic rate) applied to a pre-
defined list of hosts or subnets. In addition, they demand
custom configurations by IT operators given their domain
knowledge of the connected hosts and security risks. Such
approaches have practically proven to scale to large throughput
with the ability to detect typical network attacks on their
critical assets (as potential victims) specified by organisational
policies. However, they are unable to identify external attack-
ers and malicious flows from benign ones as collecting and
maintaining network telemetry for external hosts and flows can
be expensive at scale. Thus, attack mitigation often introduces
collateral damage to normal communications.

Prior research works like BLINC [18], SpotLight [19], and
AGM [20] developed methods to detect distributed attacks. An
effective distributed attack detection often requires visibility
into activity patterns to the finest flow levels (i.e., a graph of
the entire network flows) so that not only victims but also
distributed sources and flows could be precisely differentiated
from the benign ones. However, such methods consume (com-
putationally) expensive network telemetry for communications
between every pair of hosts, allowing for effective detection
but at high computing costs. Therefore, they often fall short
in practice when employed for real-time detection in large
networks of high traffic rates (e.g., with millions of concurrent

1Methods for detecting distributed network attacks often rely on identifying
abnormal volumetric activities (e.g., total packet rates or count of concurrent
flows of a target host) instead of inspecting payloads/contents carried by
individual packets. Deep packet inspections are often used for information-
based attacks or for detecting malware.

!"#$%&%'($)"$#*+%, !-#$%"./)"$#*+%,(

!"#

$%&'%(

!")

!"*

!"!

!

!

!

+,#

+,)

+,*

+,"

-"#

#$%&'(')*&

+,*%*

-")

-"*

-"-

.)*%')/0%&12

3%%345&'*

6&$)7$2&8%&'$392

+,*%*

0$"'1"23./'4'+5()6/+*(

#$%&'(')*&2

0/$&%

!

!.#

$%&'%(

!.!

:,3'*&;7'3)$&12

0/$&%

!

,.#

,.)

-.*

(a) Anatomy of distributed attacks.

!"#$%&%'($)

"$#*+%,

!-#$%"./)

"$#*+%,(

! !

!"#$%&%'($)

"$#*+%,)#%-..'/)

0+"'#+%'"1

!"#"$"%&'

()*$+#%,-#"*

.%/0".

!

!"#$%&' !"#$%&(!"#$%&)!

2".$%$"/$).3"/#'+"()-#)034#'&4$)(#-1$(*#+,-,#$,&

./#/0,-&/#1&

2-$3,45-/52-

12)"&"23"*&".+#%.

4'2/$,3*3(2%&(#*

,2.%&+3%,(2.

!"#$%&%'#

(b) Our concept of progressive multi-stage inference.

Figure 1: Motivating our work: (a) anatomy of distributed attacks and (b) conceptualised design of our progressive multi-stage
inference via dynamic control of programmable networks.

flows and thousands of active enterprise hosts). This is one of
the key issues that this paper aims to solve optimally.

In short, proprietary security middleboxes are practical but
ineffective for recognising distributed attack sources and flows
from benign counterparts; and detection based on flow graphs
is effective but impractical for high-throughput enterprise envi-
ronments. We note that the proven capability of programmable
networking techniques can fill this performance gap, as it
offers immense potential in making network defence functions
elastic and packet routing flexible at run-time. Existing solu-
tions [21]–[23], while demonstrating promises in flexible de-
tection and mitigation of distributed attacks, have inspired our
design to address the dilemma of balancing effective detection
against practicality in operational enterprise networks.

This paper presents PEDDA, visually conceptualised in
Fig. 1(b), a practical and effective system that detects dis-
tributed network attacks progressively through multiple in-
ference stages, all dynamically instructed by reactive con-
trols of programmable networks. Each inference stage comes
with a certain specialty (e.g., victims, sources, and flows),
orchestratable granularity (i.e., from fine-grained host-level to
coarse-grained subnet-level), and manageable compute cost.
In operation, network traffic is proactively processed by low-
cost inference stages. A high-cost stage is reactively employed
only for those packet streams partitioned by the prior low-
cost stages. In addition, the granularity of each stage is
dynamically orchestrated by a real-time optimisation frame-
work subject to computing resource constraints and traffic
status. We acknowledge that there exist solutions for detecting
DDoS, each with specific objectives, ranging from scalable
cloud-based deployment to high-performance P4 hardware to
precisely detecting bots. Our paper, instead, focuses on how
to optimally use/orchestrate various detection resources (could
be standalone, distributed, cloud-based, or via a P4 data plane)
available to an enterprise so that the real-time detection power
could be maximised with a limited computing budget. We
make three key contributions.

First, to motivate our PEDDA design, we model the traf-
fic processing of legacy network security systems by four
modules, namely packet dispatching, packet parsing, informa-
tion gathering, and inferencing. We mathematically formulate
per-packet CPU time consumption to highlight computing
bottlenecks that hinder the current systems to achieve both
operational practicality and detection efficacy.

Second, to combat bottlenecks and robustly handle high
rates of data streaming in general, particularly during DDoS

attack events, we develop PEDDA, our progressive multi-
stage inference. It detects distributed attacks through multiple
inference stages (e.g., victims, sources, and flows) progres-
sively – higher stages will incur more computing costs as they
need finer-grained network telemetry and more complex data
structures. At run-time, network traffic is by default processed
by the low-cost inference stage (proactively). Depending on
the output of this stage, a selected portion of packets (mostly
a minor fraction of total traffic) will be inspected by high-
cost inference stages for attack detection (e.g., distributed
sources and flows). An appropriate programmable networking
technology (e.g., NFV, OpenFlow, or P4) can be employed
to orchestrate dynamic controls. An orchestrator is devel-
oped to dynamically apply an optimal algorithm to protect
PEDDA from being overwhelmed by complex, heavy, and
unpredictable traffic mixes, especially for high-cost stages. The
algorithm maximises the granularity (the finest host IP level
versus aggregate subnet levels) of inference stages subject to
available computing resources.

Third, we realise PEDDA as a proof-of-concept prototype
using a commodity server and an OpenFlow SDN switch
(given its relative ease of use by the current industry) ready
to be deployed in a large enterprise for real-time detection.
Driven by the insights obtained from an empirical analysis of
traffic for a representative enterprise network, we implement
three practical inference stages to detect active enterprise
hosts, victims, and distributed attackers with flows in a pro-
gressive and reactive manner. We evaluate the efficacy of
our system by replaying traffic traces of a large university
network injected by DDoS attack instances (obtained from a
public dataset) and comparing it with state-of-the-art systems.
We highlight the superiority of PEDDA in efficient real-time
detection and operational practicality under high traffic rates.

The rest of this paper is organised as follows. In §II,
we discuss the background technologies and prior work on
various detection scenarios with a special focus on detection
techniques applied at the destination, which is the primary
objective of our work in this paper. §III models the complexity
and highlights bottlenecks of legacy solutions for detecting
DDoS attacks at the destination, motivating the design of
our progressive multi-stage inference method in §IV. We
implement and evaluate a proof-of-concept prototype of our
proposed method with three inference stages in §V. The paper
is concluded in §VI.

2

II. BACKGROUND AND RELATED WORK

In this section, we begin by discussing three categories
of distributed network attack detection, namely “at-source”,
“in-network”, and “at-destination” (§II-A). Focusing on the
“at-destination” detection techniques, we highlight their key
requirements when deployed in enterprise networks as sug-
gested by both industrial and research communities (§II-B)
and discuss related works (§II-C).

A. Categories of Distributed Network Attack Detection

Methods for detecting distributed network attacks can
be categorised into three classes, namely “at-source”, “in-
network”, and “at-destination”, based on where on the net-
work they are applied [5]. Methods at the source end detect
outbound attack traffic generated by hosts inside a subject
network. Internet service providers adopt in-network mecha-
nisms to filter malicious traffic before reaching the destination
networks. At-destination solutions are often employed close to
the border routers of a destination network (e.g., an enterprise),
protecting internal hosts and infrastructure from outside attack-
ers. This paper focuses on the latter class of detection (i.e.,
at-destination), intending to balance the granular detection in
real-time against computation costs optimally.

B. Key Requirements of Attack Detection At-Destination

The network security community (both academia and in-
dustry) states certain key requirements for an ideal detection
of distributed attacks on enterprise networks. These cover a
range of factors (will be explained soon in §II-B1 and §II-B2)
from telemetry visibility and inference precision to scalability
and automaticity to deployability in practical operation in an
enterprise environment.

1) Effective Detection: Distributed network attacks such as
service probing (i.e., host/port scans [24]–[26]) and denial-
of-service (i.e., DDoS [7]) on enterprise internal assets have
evolved from a single source and protocol to more sophis-
ticated and complicated forms. An attack may initiate from
distributed malicious hosts (e.g., compromised PCs and IoT
devices [27]) and use various protocols (e.g., SYN flood via
HTTPS protocol or UDP reflection via Memcached port).
Therefore, to recognise diversified patterns in malicious net-
work activities, an ideal security solution would need rich vis-
ibility into the behavioral characteristics of all involved hosts
and their network flows [28]. Importantly, malicious traffic
generated by attackers is likely to be mixed with legitimate
flows from benign external hosts, particularly when traffic is
measured closer to victim hosts [29]. To sufficiently elimi-
nate malicious traffic without interrupting benign activities,
detection systems are expected to be precise in differentiating
malicious external hosts and flows of an attack from benign
ones.

2) Practical Operation: An attack detection system be-
comes practically attractive to enteprise network operators if
it can cost-effectively scale to high rates of network traffic
(e.g., tens gigabits per second throughput and millions of
concurrent flows). Besides, operators of large enterprises (e.g.,
universities) may not always have a complete and up-to-date

asset register (full list of hosts/devices connected to their net-
work) [30], [31]. Thus, configuring and enforcing appropriate
security policies for individual IP addresses is rather chal-
lenging (sometimes impractical). A detection system would be
operationally desirable if it could automatically discover the
enterprise hosts that need to be protected – we refer to this
feature as automaticity. Lastly, perimeter security systems are
vital to the operation of every enterprise network, especially
large ones, protecting them from the outside world. These
systems are often deployed on a single (aggregate) Internet
link and their configurations infrequently change. We note that
operators of large networks often tend to minimise changes to
their network topology, network policies, or existing hosts,
mainly due to high cost of operations (e.g., offline time, error
rate, and labor effort) [32]. Therefore, ease of deployment is
another impacting factor of attack detection solution.

C. Current Solutions for Detection At-Destination

To the best of our knowledge, there exist three broad groups
of solutions2 for detecting distributed network attacks at the
destination end: (i) commercial security middle-boxes, (ii)
flow-level attack detection methods, and (iii) experimental
prototypes based on programmable networks. In what follows,
we describe their individual merits and gaps regarding the key
requirements articulated in §II-B.

Practical Security Middleboxes: They are mature products
in the market, including next-generation firewalls (NGFW) and
intrusion detection systems (IDS). Such systems are built as
either proprietary appliances from established vendors [15]–
[17] or software tools [33]–[35]. They apply attack detection
signatures [36], such as thresholds on packet arrival rate
for a specified list of hosts or subnets. These middleboxes
primarily aim at scalability and deployability [37], [38] for
high-throughput enterprise networks. Thus, they seldom incor-
porate computationally expensive flow-level telemetry during
practice, essential for identifying attackers and their malicious
flows mixed with benign traffic. As a result, collateral dam-
ages (e.g., unintentionally dropping benign packets [39]) are
unavoidable during attack mitigation [22], [29].

Statistical Inference from Flow-level Telemetry: Re-
searchers develop statistical and/or deterministic methods to
effectively detect distributed attacks from fine-grained flow-
level network telemetry. For example, graph structures that
profile network flows exchanged between hosts are widely
used in the literature [18]–[20]. Obtaining real-time visibility
into every traffic flow between hosts enables operators to
precisely detect distributed attackers and malicious flows.
However, due to the high computing overheads [40] of flow-
level telemetry, such methods can only be employed for
relatively low-throughput networks [18] or limited types of
traffic such as DNS [41] and HTTP [12] protocols.

Systems leveraging Programmable Networks: Pro-
grammable networks (e.g., SDN, NFV, P4) make flexible
and elastic traffic management possible by dynamically re-
configuring network functions at run-time. Researchers have

2This paper primarily focuses on “network-level” security systems (e.g.,
border firewalls at the edge of enterprise networks) instead of software tools
(“host-level”) installed on the individual servers and terminal devices.

3

!"#$$%& '!#!%&

!"#$%&'

("&#)*+,

!"#$%&'()!*
+,&-*#&.)%/#

!"#$%&

!"#$%&'()*+"&#,)-.

!"-.%-'/

!"#$%'

!"#$%&'!"/*)-.

0&"&%123'4%3%5%&-6'/

!"#$%(

0-12/3"&)2-'4"&,%/)-.
!"#$%)

0-1%/%-#%'5"$)-.

(
0

!"-.%-'7

!"-.%-'8

0&"&%123'4%3%5%&-6'7

0&"&%123'4%3%5%&-6'8

9+1%-%+#%':2+#&*;+'/

9+1%-%+#%':2+#&*;+'7

9+1%-%+#%':2+#&*;+'8

0

)1&.%'&)!*
+,&-*"234-

(

'4/$5&)!*
3)%&5.)#

(0

!"#$%&'%(#)*
+,'# -

!"#$%&'%(#)
+,'# .

!"#$%&'%(#)
+,'# /

Figure 2: Traffic processing pipelines, responsible for processing received packet streams, in legacy solutions.

developed prototypes leveraging these techniques to achieve
security and attack detection objectives [21]–[23], [42]–[44].
These works aimed to address the limitation of proprietary
security systems with static detection capability by dynamic
and reactive control that programmable networks offer. They
inspired the design of our PEDDA, which primarily aims to
balance the effectiveness against the practicality of detecting
distributed attacks for large enterprise networks.

III. MODELLING COMPLEXITY OF LEGACY
AT-DESTINATION SOLUTIONS

In this section, to motivate our design, we analyse legacy
detection solutions to highlight computing bottlenecks, hin-
dering them from being effective in attack detection and
practical in operation. These highlights and insights motivate
our system design in §IV. Specifically, we first model the
traffic processing pipeline of legacy at-destination systems (in
§III-A), followed by a mathematical formulation of their per-
packet CPU consumption (in §III-B) to identify performance
bottlenecks that could be optimised in our design.

A. Modelling Traffic Processing Pipelines

Traffic processing of existing attack detection solutions can
be modelled as a collection of independent pipelines shown
in Fig. 2. Each pipeline is responsible for a specific detection
task (e.g., a firewall policy configured by network operators)
and consists of four steps to process packet streams, including
Dispatching, Parsing, Gathering, and Inference.

1) Four Traffic Processing Steps: Dispatching is the first
step that directs packets (based on their metadata) towards a
pipeline for further processing. The second step (i.e., Parsing)
extracts specific information records (e.g., source and destina-
tion IP addresses, transport-layer port number, and protocol)
from each packet forwarded to the corresponding pipeline. We
note that each parser has its own programmed (and fixed)
functionality, such as extracting information from IP header,
UDP/TCP header, or certain application-layer headers, thus,
in practice, one matching rule may require multiple parsers.
In the third step (i.e., Gathering), those extracted records will
form the stateful network telemetry each pipeline needs for
an intended detection task. In the final step, a corresponding
inference is made based on attributes computed from the
specific network telemetry of each pipeline.

2) Walkthrough Examples: Let us analyse a couple of
walkthrough examples that help us better understand the
detection pipelines. Assuming an enterprise network operator
plans to protect their main website server (with the IP address
a.b.c.d) against TCP-SYN DDoS attacks.

A practical detection approach: The network operator
may configure a policy on their enterprise border firewall
[15], [16], [39] to raise alarms when the target IP address
a.b.c.d receives more than N TCP-SYN packets during a
time interval of T seconds [45]. After installing this rule, all
packets received by the firewall will be inspected (i.e., step 1
in Fig. 2) for a SYN flag in their transport-layer header and
the destination IPs address of a.b.c.d. The matched packet
streams are sent to the parser (i.e., step 2) for computing packet
count as required for the network telemetry. The telemetry
(i.e., step 3) maintains a total number of packets destined to
a.b.c.d during the current time interval. A corresponding
inference function (i.e., step 4) checks packet count (exported
by telemetry data every T seconds) and raises alarms if the
current value is greater than N.

An effective detection approach: If this task is performed
by a flow-level detection method [18]–[20], the inference
results can be more precise but demand more complex and
expensive processing. In the parsing step, instead of only
tracking “aggregate” packet count for the stateful telemetry,
a collection of metadata fields, including the transport-layer
protocol, TCP flags, IP addresses and source/destination port
numbers) are extracted on a “per-flow” basis. In step 3, the
extracted information is used to update flow graphs (a rela-
tively complex telemetry) capturing communications between
the target IP a.b.c.d and external hosts. We note that an
operator may set up the granularity of the monitored IP
a.b.c.d to an aggregated subnet-level (i.e., adding more bits
in subnet masks) to reduce the number of monitored entries
such as in [41]. In step 4, an external host will be labeled
as an attacker if its flow(s) profile is found malicious (e.g.,
sending an excessive number of flows, most of which are TCP-
SYN packets). Although this method can identify individual
sources and flows in volumetric (distributed) attacks, as will
be discussed next, per-packet costs of computing for such
an effective method is too high to be employed for high-
throughput enterprise networks.

B. Formulating Per-Packet CPU Consumption

We now mathematically formulate the traffic processing
cost, namely CPU consumption per individual packets, which

4

was identified by prior work like NitroSketch [46] as the
most critical metric impacting the performance of hardware-
based middle-box appliances. Specifically, we model the CPU
time spent to process an arriving packet across a four-stage
pipeline to quantify its computational complexity (our primary
objective). Note that our cost model is agnostic to statistical
attributes of traffic. Later in §V (prototype evaluation), we
will incorporate representative traffic features such as the
number of concurrent flows and packet rate to build simple
thresholding models for detection purposes in our proof-of-
concept prototype.

Let us use t to denote the CPU time consumption of a
packet processed by the entire pipeline. Intuitively, t can be
expressed as the sum of time consumption in each of the four
steps, given by Eq. 1.

t = td + tp + tg + ti (1)

where td, tp, tg , and ti are the time consumed at packet dis-
patching, parsing, information gathering, and inference making
steps, respectively.

We note that the last step (i.e., inference) is executed peri-
odically (e.g., every 10 seconds in commercial firewalls [39])
for distributed attack detection – not triggered by individual
packets. It is often treated as an independent process and
placed outside the packet processing pipeline. Therefore, we
omit ti from our analysis and focus on td, tp, tg .

1) Dispatching: Let us start with td, the time consumed
by each packet in the first step. The detection system has its
network interfaces that receive packet streams. An arriving
packet is checked against a set of matching rules (or policies)
to decide which parser(s) should process it. We assume that
there are nd packet matching rules and np parsers in the next
step. The best case (i.e., shortest time consumed) td,min is
realised when a packet is matched by the first policy and sent
only to one parser in the next step. The worst case td,max, on
the other hand, occurs when the packet is checked against all
nd policies and sent to all np parsers. Let us denote the time
required to: (a) check a packet against a policy by kd,c, and
(b) direct the packet to a parser by kd,p. Therefore, the best
and worst cases can be stated as follows in Eq. 2.

td,min = kd,c + kd,p

td,max = kd,cnd + kd,pnp
(2)

Assuming pd,i is the hit probability of the ith matching
policy, and pp,j is the probability of a packet sent to the jth

parser, the average time consumption td,avg for each arrived
packet in this step can be formulated as Eq. 3 below.

td,avg = kd,c

nd∑
i=1

pd,i + kd,p

np∑
j=1

pp,j (3)

2) Parsing: In this step, parsers extract the required packet
metadata (e.g., network layer, transport layer, and application
layer) [47]. A simple parser may only processes the network
layer, while an expensive one may need to extract data from
all header layers of the packet. Therefore, the CPU time
consumption for a packet in this step tp depends on the number
of parsers involved (up to np) and the number of packet layers

to be processed by each parser. Assuming that the ith packet-
parser extracts data from a total of nl,i header layers and the
time consumption to process each layer is kl, the total time
consumption by the ith parser is expressed as nl,ikl. The best
case tp,min is achieved when only the simplest parser is used,
while the worst case tp,max occurs when all parsers are applied
to a packet. The two cases can be formulated as follows by
Eq. 4.

tp,min = kl
np

min
i=1

(nl,i)

tp,max = kl

np∑
i=1

(nl,i)
(4)

The average time consumption tp,avg for each packet is
obtained by weighting each parser by its hit probabilities (pp,i
for the ith parser), which can be mathematically stated below
by Eq. 5.

tp,avg = kl

np∑
i=1

(pp,inl,i) (5)

3) Gathering: In this step, stateful network telemetry of
each detection task may get updated by packet information
obtained from parsers. Telemetry is stored in the data structure
of each monitored entity (i.e., host or flow). The data structure
can be a simple list of key (e.g., target IP addresses) and value
(e.g., packet counts) pairs, or a complex attributed graph [20]
tracking statistics of individual flows [48]. Therefore, the CPU
time needed for updating a telemetry record depends on its
structure type and current size. We use ng and Ng,i to denote
the total number of telemetry in this step and current size
of the ith telemetry, respectively. The CPU consumption of
updating the ith telemetry can be expressed as a fixed function
θi(Ng,i) of time complexity3. The best case tg,min is realised
when only the simplest telemetry is updated by a processed
packet, while the worst case tg,max occurs when all ng data
structures are updated, as given by Eq. 6 below.

tg,min =
ng

min
i=1

(θi(Ng,i))

tg,max =

ng∑
i=1

(θi(Ng,i))
(6)

The average time consumption tg,avg by an arrived packet
in this step is obtained by weighting all data structures by their
probability and expressed by Eq. 7.

tg,avg =

ng∑
i=1

(pt,iθi(Ng,i)); (7)

where pt,i is the hit probability of the ith telemetry.
4) The entire pipeline: We now summarise the best (tmin),

worst (tmax), and average (tavg) CPU time consumption
per packet by aggregating individual components (discussed
above) by Equations 8, 9, and 10 below.

tmin = kd,c + kd,p + kl
np

min
j=1

(nl,j) +
ng

min
z=1

(θz(Ng,z)) (8)

3For instance, if the ith telemetry is stored in a binary search tree, then
the complexity of average and worst-case estimate of θi(Ng,i) will be
O(log(Ng,i)) and O(Ng,i), respectively.

5

!"#"$"!%&'(%)*+#)%,!&

-&*)$,.'
!"#$%&'

("&#)*+,

!%)//,.

!"-.%-'/

!"-.%-'0

!"-.%-'1

!

!"#$%&'()!*

+,&-*#&.)%/#

2&"&%345'6%5%7%&-8'/

!

)0&.%'&)!

+,&-*"123-

9+3%-%+#%':4+#&*;+'/

!

!"#$%$"&$'()")*$% ,*/"%"*."'%"0+#!0

'3/$4&)!*

2)%&4.)#

.1*/,(+%,*('
2%1(%"00,3"',*/"%"*."

%"01+%."'+0)(" %"01+%."'+0)("

+%)",-)%./0'1%&2$3/%)/4%

!!" "#$%&

'#$ "#$%&

("% "#$%&

!

!"#$$%&'(")&*++%,-

.")-"*++%/*'%,$*"*,&*

0"#,12#"%34')"&5*+3"#3%),

!

"

#

9+3%-%+#%':4+#&*;+'0

9+3%-%+#%':4+#&*;+'1

2&"&%345'6%5%7%&-8'0

2&"&%345'6%5%7%&-8'1

Figure 3: System architecture of PEDDA, our progressive multi-stage inference method.

tmax = kd,cnd + kd,pnp + kl

np∑
j=1

(nl,j) +

ng∑
z=1

(θz(Ng,z)) (9)

tavg = kd,c

nd∑
i=1

(pd,i) +

np∑
j=1

((kd,p + klnl,j)pp,j)

+

ng∑
z=1

(pt,zθz(Ng,z))

(10)

A detection system reaches its maximum scalability if all of
its processed packets are mapped to the best case (i.e., tmin),
while it becomes impractical if most of packets have their
processing time as the worst case (i.e., tmax).

Summary: Let us revisit the three broad methods (i.e., prac-
tical solutions, effective solutions, and PEDDA) we consider in
this paper. We now compare their average performance metric
(tavg), which is essentially affected by the hit probability of
processing steps discussed above.

With practical solutions, a hardware middlebox or appliance
is employed to collect relatively lightweight telemetries (often
header focused) from a few intended subnets and/or critical
IP addresses (those that contribute to the majority of the
traffic of interest). We note that updating stateful telemetries
(the Gathering step, which is modelled by the third term
in Eq. 10) is the main contributor to tavg . Administrators
often statically configure their security appliance with com-
putationally inexpensive policies for practical reasons applied
to most of their network segments. This means pt,z for the
simplest telemetry becomes close to 1, while that of other
telemetries (more expensive) tends to 0. This will lead the term∑ng

z=1(pt,zθz(Ng,z)) in Eq. 10 tends to min
ng

z=1(θz(Ng,z)) in
Eq. 8. A similar argument can be made for other terms (i.e.,
packet dispatching and parsing) in Eq. 10, whereby lighter
options are often chosen (by administrators) by essentially
configuring probabilities pd,i and pp,j for a practical solution
– leading tavg to approach tmin.

For an effective solution, on the other hand, all supported
policies and corresponding telemetries need to be activated
for the entire address space (as opposed to certain subnets
and/or selected hosts) of the enterprise network. This entails
an arriving packet to be processed by a number of parsers,
meaning all the probabilities pd,i, pp,j , and pt,z in Eq. 10
will need to be configured to values close to 1 that lead
tavg to approach tmax for effective detection. We will see in
evaluation results (§V-C) from our prototype applied to real

enterprise traffic that the effective detection will result in a
tavg , which is 20 times more than that for a practical solution.

Our PEDDA, as opposed to existing static solutions, op-
erates dynamically and hence performs better at scale given
constrained computing resources. PEDDA offers this superior
performance by dynamically adjusting pipeline modules and
their respective hit probabilities. As a result, tavg navigates
judiciously between tmin and tmax, subject to dynamics of
inference and available computing resources. We make the
following objectives that drive the design of our PEDDA
system in §IV: (i) minimising the number of active parallel
modules for a received packet in each step (i.e., reducing nd,
np, and ng in Eq. 10); (ii) reducing hit probabilities (i.e.,
pd,i, pp,j , and pt,z) for expensive modules; and, (iii) selecting
stateful telemetry with lighter time complexity θz() in Eq. 10,
and maintaining a small number of entries Ng,z in the high-
cost data structures to reduce the time consumption introduced
by the Gathering module (step 3).

Given the above considerations, a detection system is sug-
gested to have complex data structures for effective detection,
which are only used to process the necessary fraction of
traffic. At the same time, most packet streams are expected
to be handled by light modules so that the hit probability and
complexity of expensive modules will be significantly reduced
for practical uses. Next, we discuss our design of a multi-stage
inference architecture based on this idea that progressively
detects distributed attacks, whereby only a small but necessary
fraction of packet streams are processed by high-cost modules,
and low-cost processes handle most traffic.

IV. THE PROGRESSIVE MULTI-STAGE
INFERENCE ARCHITECTURE

Motivated by insights from the previous section, we present
our PEDDA system (§IV-A) that employs multiple low-cost
and high-cost inference stages to progressively detect a dis-
tributed attack. The majority of traffic is proactively processed
by low-cost stages, while only a small fraction of traffic (when
necessary) will be reactively processed by high-cost stages.
High-cost stages are dynamically employed by controls of
programmable networks (§IV-B). Depending upon the mix of
traffic analysed, high-cost stages may still get overwhelmed if
the finest granular telemetry (IP-level) is maintained during
the progressive detection. To overcome this challenge, we
design an orchestrator that dynamically selects the granularity

6

(IP-level or certain subnet-level) of each stage by solving a
run-time optimisation problem subject to computing resources
available at run-time (§IV-C).

A. System Architecture of PEDDA
We now describe the architecture of our progressive multi-

stage inference system, including design rationale and choices,
schematic of the architecture, and workflows.

1) Rationale and Choices: As discussed earlier in §I and
shown in Fig. 1(a), effective detection of a distributed attack
can only be achieved by comprehensively monitoring the
behavior of potential victims (internal hosts) and potential
attackers (external hosts) while considering all network flows,
which is practically challenging as the number of external
hosts can be very large and the set of flows is unbounded.
Therefore, legacy solutions either focus only on victims for
practicality at scale or attempt to detect distributed sources
and flows that become prohibitively expensive and do not
scale cost-effectively. We note that effective detection can
be better balanced against practicality at scale by employing
multiple inference stages (each activated progressively). Main-
taining complex states and telemetry data can be dynamically
managed for a certain fraction of traffic analysed at each
stage. An early-stage inference monitors a simple aspect of the
network activity (e.g., focusing on internal hosts in Fig. 1(a))
via low-cost telemetry, while following stages (with higher-
cost telemetry) processes only a manageable fraction of traffic
partitioned based on the inference results from the prior
stage(s). This process is progressively executed (from high-
cost to low-cost stages) till an attack is fully detected by all
aspects (i.e., victims, sources, and flows).

Following what was discussed above, three key design
choices are made. First, we use multiple inference stages,
each offers a specialisation (e.g., victims, sources, or flows)
in attack detection. They depend on each other and come
in logical orders. Second, an inference stage only processes
packet streams partitioned by its prior stage. Therefore, the
first stage processes all received packet streams by default,
whereas stages with higher costs analyse only a selected
(configurable) fraction of traffic determined by their prior
cohorts. Third, each stage is expected to make an inference at
the finest granularity. However, subject to available computing
resources, the granularity of each stage may get reduced (by
aggregating into certain subnet levels) to guarantee operational
robustness.

Our three key design choices collectively guarantee the
practicality and detection capability of PEDDA, particularly
at the scale of tens of Gbps traffic rates with millions of
concurrent flows (demonstrated in §V-C2).

2) Schematic and Workflows: Driven by our design choices,
the PEDDA architecture has three key modules, each high-
lighted by a colored box in Fig. 3. As shown by the grey
region, PEDDA contains collaborative inference stages (a
pipeline of packet matching, parser, telemetry, and inference
functions) logically ordered with costs from low to high.

The fundamental difference between our collaborative in-
ference stages (shown in Fig. 3) and the legacy traffic pro-
cessing pipelines (shown in Fig. 2) lies in how packets are

processed. The packet matching module is often statically
configured (by the network administrator) in legacy solutions
pre-deployment. In contrast, the packet matching in PEDDA
is dynamically configured at runtime based on factors like
network traffic, attack type, and computing resources. Also,
note that each processing pipeline in Fig. 2 operates inde-
pendently for a special rule, whereas PEDDA pipelines in
Fig. 3 collaboratively serve detection objectives. An inference
manager (blue box) is designed to collect detection results
from all stages and dynamically instructs them to expand or
reduce the scope/fraction of traffic they process. A granularity
orchestrator (green box) takes run-time statistics of system
resources as input and gives the granularity of each stage as
output. Its specifications and mechanisms will be discussed
in §IV-C. Fig. 3 illustrates three workflows, namely packet
processing (highlighted by solid arrows), progressive inference
(highlighted by dashed arrows), and granularity orchestration
(highlighted by dotted arrows).

Progressive traffic processing and inference in real-time:
In real-time operation, the packet matching module receives
traffic and proactively forwards all packet streams to the first
stage, which employs the simplest (low-cost) telemetry. For
example, let us assume that the first stage detects only victims
by tracking the packet count of each enterprise host. Once a
victim is identified, the first stage will notify the inference
manager. The second stage will then be instructed to start
processing traffic associated with that specific victim for a
further inference (e.g., detect distributed attackers). This pro-
cedure is progressively executed till all aspects (e.g., victims,
attackers, and flows) of a distributed attack are determined.
With this approach, only the necessary portion of the network
traffic is dynamically and selectively processed by high-cost
stages, effectively detecting attacks while ensuring operational
practicality. We will discuss in §V-C2 that our approach may
still not fully capture all aspects (e.g., missing some attack
sources and malicious flows) of certain attacks, especially
those that are short-lived and complete rapidly without giving
the detection system sufficient time for progressive inference.

Orchestrating granularity of real-time telemetry: We
note that network traffic, in general, and especially during
DDoS attack events, is dynamic and relatively unpredictable.
Therefore, our inference system may face challenges in pro-
cessing a large volume of data streams in real-time, given
the fixed amount of measurement and computing resources.
The granularity orchestrator is developed to address this op-
erational challenge. It is continuously fed by run-time load
statistics and system utilisation metrics (traffic rate, CPU
consumption, memory usage, and the number of monitored
entities) across all pipelines. The orchestrator determines how
to adjust each stage’s granularity (i.e., fine-grained IP levels
versus coarse-grained subnet levels) by solving an optimisation
problem (in §IV-C). This adjustment is made periodically at
a configurable frequency (e.g., near real-time). Following an
optimal solution is obtained, instructions are dynamically sent
to the inference manager to configure each processing stage
at run-time.

7

B. Reactive Traffic Control via Programmable Networks

The key enabler of our progressive inference method is
reactive control of packet forwarding and processing, naturally
matched with the paradigm of programmable networking and
technology options like NFV, SDN, or P4. In what follows,
we discuss three possible choices for reactive controls.

First, our architecture can be fully implemented with vir-
tual network functions (VNF). The packet matching module
and packet parser bank in Fig. 3 can be operated within a
software switch (e.g., vSwtich) interacting with other com-
ponents configured as modular services running on general-
purpose servers. This choice sounds practical to small enter-
prise operators who are tasked to manage low traffic rates
and may not have hardware programmable switches (e.g.,
OpenFlow or P4 switch) available in operation. However,
fully software-based packet processing pipelines do not seem
practical in handling high-rate traffic (e.g., tens of Gbps) of
large enterprise networks [23]. Second, one may consider pro-
grammable control-plane hardware switches (e.g., OpenFlow)
as its packet processing modules, which can handle traffic
streams at line rates. Other components, including maintaining
telemetry states, can be done in software modules and micro-
services. Third, one may choose to embed stateful telemetry
into programmable data-plane switches (e.g., P4) for reasons
like improving responsiveness and/or reducing loads from
generic servers. However, this technology option (while at
its early stages of adoption by industry) comes with a key
limitation, namely, the voluminosity of its code [49], becoming
challenging to develop, debug, and maintain [50].

In operation, each of the choices discussed above will
come with certain resource limitations either for software
modules running on the generic servers (i.e., available CPU
and RAM) or hardware switch resources (e.g., DRAM in
OpenFlow switches, SRAM in P4 switches). Exhausting avail-
able resources under extreme conditions (e.g., when the most
expensive stage processes the majority of packets) can lead
to system failure. In what follows, we discuss how the opera-
tional robustness of our method is dynamically maintained by
optimally tuning the granularity of stages with respect to the
available system resources.

C. Optimal Orchestration of Granularity

Intuitively, our PEDDA architecture aims to perform an
effective detection while satisfying practicality requirements
via progressive inference across multiple stages (described
in §IV-A1). However, inference stages, especially those that
demand expensive telemetry, may get overwhelmed by heavy
traffic load. For example, suppose most of the network traffic
is found suspicious and sourced from well-distributed sources
with a massive number of concurrent flows. In that case,
inferring attackers and their malicious flows at the finest
granularity (i.e., host level) can be challenging depending upon
available resources and the complexity/intensity of the attack.

The orchestrator module in PEDDA (shown in Fig. 3) is
responsible for dynamically choosing the granularity of stages.
Ideally, all stages would aim to infer by their finest granularity
(i.e., subnet mask “/32” for IPv4 or “/128” for IPv6), where

statistics of network activities are tracked and maintained at the
host level. Given total computing resources, network operators
may be willing to sacrifice (de-prioritise) the granularity of
certain stages that they deem less important. Priority can be
specified by configuring a numerical weight (say, between 1
and 100) for each stage, where 1 indicates the lowest priority
and 100 indicates the highest priority. For example, suppose
an operator wishes to detect victims at the host level (setting
the priority of the corresponding stage equal to 100) but is
happy to identify external attackers at a subnet level (setting
the priority of the corresponding stage equal to 1). The impact
of priorities is expected to be relative.

At run-time, with the pre-configured priorities, the orches-
trator periodically adjusts the granularity of each stage based
on available computing resources. For example, an increase
in memory utilisation may lead the orchestrator to replace
the granularity “/32” in IPv4 scheme with something coarse-
grained (say, “/28”) for stages with low priorities (reducing
the granularity by four bits), sustaining the inference but at
a lower granularity. Note that the lowest granularity “/0”
yields a fixed cost regardless of the number of hosts (inter-
nal/external) involved since it requires monitoring of one entry
(i.e., 0.0.0.0/0). We note that subnet-based aggregation is
often feasible where enterprise subnets are relatively utilised
by internal active hosts. Also, distributed attackers often source
traffic from compromised (sub)networks (botnet devices) [41]
instead of sparsely distributed across the Internet address
space.

In order to develop a systematic logic for the orchestrator
module, let us mathematically formulate the above logic as a
constrained optimisation problem as follows.

Objective function: Our primary objective is to maximise
the granularity of individual stages with respect to their
priorities configured by the operator. Suppose there are Ns
stages, where the ith stage has priority Wi (given as input)
that infers at the granularity of subnet mask Si. Our objective
function can be formally stated by Eq. 11.

max

Ns∑
i=1

(Wi · Si) (11)

where, weighted granularities are maximised.
Constraints: The constraints are threefold: range of gran-

ularity, switch memory, and server computing resources.
Granularity: Considering the IPv4 addressing scheme, sub-

net masks can (theoretically) take integer values between 0 to
32, as given by Eq. 12 below.

0 ≤ Si ≤ 32 : ∀i ∈ [[1, Ns]] (12)

The network operator may wish to configure some custom
ranges for each stage.

We note that though this paper focuses on the IPv4 ad-
dressing scheme, one can consider our optimisation for IPv6
addressing by slightly changing the upper bound of Si to 128.
This would expand the search space by a factor of four (128
bits IPV6 addresses versus 32 bits IPv4 addresses). That said,
an expanded search space may not necessarily elongate the

8

convergence time (in sequential search) with the same factor.
One can choose to improve the search time by employing
non-linear search algorithms. We leave it for future work
to quantify and manage the impact of IPv6 addressing on
computing resources.

Switch: The packet matching module in Fig. 3 that re-
ceives packet streams and dispatches them towards inference
stages sees its flow rules updated at run-time by reactive
configurations. This module is realised by virtual or hardware
programmable switches with limited table sizes (memory).

A programmable control-plane (e.g., OpenFlow) switch has
a capacity of accommodating F flow rules along with an upper
bound limit on the changing rate of δF rules. The operator
may further introduce additional constraints to each inference
stage denoted by Fi and δFi. In our prototype implementation
(will be discussed in §V), we will use a commercial OpenFlow
switch (i.e., NoviSwitch 2122 [51]) with F equal to 6 million
wildcard matches and δF equal to 40K per second. Also, we
will partition the switch memory tables, each dedicated to a
specific inference stage – stages will monitor their target flows
available in their respective table. One may choose a different
strategy for allocating resources to various stages.

We use Hi to denote the number of hosts (IPv4 addresses)
whose network activity is required to be monitored by the
ith stage operating at granularity Si. We estimate the number
of flow rules that can be available to the stage as Hi

γ(Si)
,

where γ() is a scaling factor indicating the sparsity of IP
addresses at a given subnet. Theoretically speaking, γ(Si) can
take a value within the range [1, 232−Si]. A scaling factor
232−Si is when subnet Si is fully utilised and hence the
aggregation well reduces the number of monitored entries (best
case). In contrast, a scaling factor 1 is when the aggregation
does not reduce the number of monitored entries (worst case)
since IP addresses are sparsely distributed (unlikely in typical
enterprise settings and distributed attacks). Note that this factor
is configured by the operator based on empirical insights into
their managed network. Later in prototype implementation for
our university network (§V), we will use empirical values such
as γ(31) = 1.4 or γ(16) = 216.

Therefore, Fi and δFi will impose two constraints on the
number of entries monitored by each stage, as formally stated
by Eq. 13.

Hi

γ(Si)
< Fi : ∀i ∈ [[1, Ns]];

δ
Hi

γ(Si)
< δFi : ∀i ∈ [[1, Ns]]

(13)

Suppose a programmable data-plane switch empowered by
the P4 technology (i.e., Intel Tofino 2 [52]) is used for
the packet matching module. In that case, two additional
constraints are introduced for each stage, including maximum
SRAM Ri and stateful ALU Ai allocated to the ith stage. We
use ri and ai to denote the utilisation of SRAM and ALU
per each monitored entity. The two additional constraints are
expressed by Eq. 14.

ri ·
Hi

γ(Si)
< Ri : ∀i ∈ [[1, Ns]];

ai ·
Hi

γ(Si)
< Ai : ∀i ∈ [[1, Ns]];

(14)

Server: The performance of modules running on commod-
ity servers is constrained by total CPU and memory units
allocated to the system, represented by C and M . We use
Cparser,i, Ctelemetry,i, Cinference,i to denote the units of CPU
available to the parser, telemetry, and inference modules at the
ith stage, respectively.

For the ith stage, we assume that packets arrive at rate λi,
estimated based on the latest measurements. In our implemen-
tation (§V), we use the average packet rate during the last
minute (our optimisation runs every minute). One may choose
to estimate λi over a more extended period (say, daily).

The server takes (on average) cp,i and cf,i of the avail-
able CPU units to process a packet by parser and inference
modules, respectively4. Since the telemetry module is stateful,
its CPU consumption is estimated as θt,i(n) units to process
a packet when there are n monitored entities in the data
structure. For our prototype (§V), we use θt,i(n) = k · n,
estimating the worst-case time complexity of our telemetry
module, which is built based on a hash table5. Note that k is a
constant coefficient. We empirically measured k by replaying
recorded packets onto our server and compute the CPU time
consumed per packet in updating the respective entry in the
telemetry structure.

Note that unlike parser and telemetry modules that op-
erate on a per-packet basis, the inference module needs to
activate periodically, at frequency fi defined by the network
administrator. Therefore, the CPU time consumption of each
packet across the three modules can be expressed as λicp,i,
θt,i

(
Hi

γ(Si)

)
λi, and cf,i

(
Hi

γ(Si)

)
fi, respectively. Constraints

on the units of CPU available to packet parser, telemetry, and
inference are expressed by equations 15, 16, and 17 below.

λicp,i < Cp,i : ∀i ∈ [[1, Ns]] (15)

θt,i

(
Hi

γ(Si)

)
λi < Ct,i : ∀i ∈ [[1, Ns]] (16)

cf,i

(
Hi

γ(Si)

)
fi < Cf,i : ∀i ∈ [[1, Ns]] (17)

Now we look at the memory consumption. Both parser
and inference modules are stateless functions that consume
a roughly constant and negligible amount of server memory.
For the stateful telemetry module, we use mt,i to denote the
run-time memory usage per monitored entity (host or subnet)
of the ith stage. This static coefficient could be benchmarked
in the same way we discussed above for coefficients of CPU

4We measured these two constant parameters by replaying recorded packets
onto our server.

5Other data structures like binary search tree would come with their own
time complexity function.

9

Table I: A summary of our optimisation parameters.

Para. Description Type Value in our prototype
Wi stage priority input configs W1 = 100

W2 = 10

W3 = 1

Ns # stages input configs 3

fi infer. frequency input configs 0.1

Fi max. # entries system constraint F1 = 3e4

F2 = 3e4

F2 = 5e4

δFi max. # δ entries system constraint δF1 = 1e3

δF2 = 1e3

δF3 = 1e3

Ri max. SRAM system constraint admin-defined

Ai max. ALU system constraint admin-defined

Cp,i max. CPU system constraint admin-defined

Ct,i max. CPU system constraint admin-defined

Cf,i max. CPU system constraint admin-defined

Mt,i max. RAM system constraint admin-defined

Hi # hosts network stats runtime measure

λi packet rate network stats runtime measure

γ() address sparsity static coefficient [1.4, 1.8, ..., 216]

cp,i CPU usage static coefficient cp,1 = 2e(−8)

cp,2 = 2e(−8)

cp,3 = 2e(−8)

θt,i CPU usage static coefficient θt,1 = 1e(−4)

θt,2 = 1e(−4)

θt,3 = 2e(−4)

cf,i CPU usage static coefficient cf,1 = 2e(−8)

cf,2 = 2e(−7)

cf,3 = 2e(−6)

mt,i RAM usage static coefficient mt,1 = 50

mt,2 = 1e3

mt,3 = 1e4

Si subnet mask optimal output algorithm-generated

usage. Therefore, the constraint for the memory consumption
of the telemetry module can be expressed as Eq. 18.

mt,i

(
Hi

γ(Si)

)
< Mt,i : ∀i ∈ [[1, Ns]] (18)

Table I summarises all parameters we use in our opti-
misation. Three parameters (Wi, Ns, fi) are configurations
provided as input by the network administrator. There are eight
parameters that specify constraints of switch (Fi, δFi, Ri, Ai)
and server (Cp,i, Ct,i, Cf,i, Mt,i). Two parameters (Hi, λi),
pertinent to network statistics, are dynamically measured at
runtime. We have static coefficients, namely γ(), cp,i, θt,i,
cf,i, mt,i) that are obtained via bench-marking with the target
environment and/or compute resources. Finally, Si will be
computed as optimal output. We will demonstrate in §V-C2
how the run-time optimisation orchestrates the granularity of
each stage to achieve system robustness under various resource
constraints.

V. PROTOTYPE IMPLEMENTATION AND EVALUATION

This section presents and evaluates a practical prototype
of our PEDDA architecture designed in §IV. We demonstrate

Figure 4: Time-trace of throughput in our enterprise dataset.

how PEDDA is ready for deployment in a large enterprise
network for real-time DDoS detection. Inspired by the insights
from an empirical traffic analysis of a large representative
enterprise (§V-A), we will consider three intuitive inference
stages. The prototype implementation details are discussed in
§V-B. We will evaluate the efficacy of our method (§V-C)
using a one-day worth of enterprise traffic injected by DDoS
attack traces with ground-truth labels, demonstrating how our
prototype outperforms its counterparts in telemetry visibility,
detection effectiveness, and operational robustness.

A. Three Practical Progressive Inference Stages

Choosing suitable inference stages for enterprise networks is
an important task to realise the PEDDA architecture (discussed
in §IV) as a practical system. To motivate the selection of
our inference stages, let us begin by performing an empirical
analysis on traffic traces captured from the network edge of
a large enterprise for one day to understand traffic flows and
host behavioral profiles.

1) Analysing Traffic from a Representative Enterprise:
In our conceptual design (§IV), most of packet streams are
expected to be processed by low-cost stages for early in-
ference, while high-cost stages reactively inspect a minority
of traffic. To this end, understanding the traffic profile of
a typical enterprise is the prerequisite step to choosing a
practical and effective approach to progressive inference. In
what follows, we draw insights into profiles of traffic flows
and host behaviours in an enterprise network that motivate the
design of inference stages.

Enterprise dataset: The IT department of our university
campus network provisioned a full mirror of its Internet traffic
to our data collection system (both inbound and outbound via
two separate 10 Gbps fibre links)6. We collected a “dataset”
on a working day (from 12pm on 31 May 2019 to 12pm on
1 June 2019) with negligible (< 0.05%) drop rates, recording
the first 96 bytes of all packets received on mirrored links.
Our dataset contains 13.8 billion inbound packets and 21.5
billion outbound packets. The real-time traffic throughput of
our dataset is shown in Fig. 4. During busy hours 1-4pm,
the inbound link carried about 9 Gbps traffic with a peak
packet rate equal to 700K pps, and the outbound link had its
throughput as high as about 2 Gbps with 600K pps. For our
evaluation experiments in §V-C2, we will replay this dataset

6We obtained appropriate ethics clearance (UNSW Human Research Ethics
Advisory Panel approval number HC17499) for this study.

10

Figure 5: A CDDF plot illustrating how representative internal
subnets are utilised in our enterprise dataset.

(injected by public DDoS traces with ground-truth labels) onto
our detection system.

Network flows: We now analyse the profile of traffic flows
crossing the border of our enterprise network. We capture two-
sided communications per each flow. The direction of a flow
(inbound or outbound) is determined by its first packet. In our
dataset, we found 60.8M outbound flows and 559.2M inbound
flows. Surprisingly, the majority of (i.e., 73% of outbound and
70% of inbound) flows are one-sided (the other side does not
respond). Further investigations revealed that more than a third
(36%) of the one-sided flows contain only one packet, while
the rest mostly contain repetitive packets. These patterns are
found in malicious events like scans [41]. Needless to mention
that one-sided flows carry a small fraction of all packets (≈4%
of outbound and ≈6% of inbound) in our dataset.

Network hosts: A total of 196K enterprise unique IP
addresses appeared in our dataset during the day – this total
equals the size of the entire public IPv4 space (i.e., three “/16”
subnets) of our university network. We first analyse their
packet distribution. The majority (92.4%) of those addresses
are only found in the destination of inbound packets – no
outbound packet originated by those IP addresses. They could
be either inactive hosts during the day of our packet capture
or completely unassigned IP addresses of the enterprise –
probably targets of inbound scans. On the other hand, we find
no enterprise IP address that “purely” sends outbound packets
without receiving inbound traffic. In other words, internal hosts
in our dataset may have one-sided outbound flows but they all
have at least one two-sided outbound flow.

Focusing on active hosts (those that send outbound packets),
we expect to see a higher variation in the utilisation of smaller
subnets (i.e., fine-grained) compared with larger subnets (i.e.,
coarse-grained). Fig. 5 shows the CCDF of utilisation (active
fraction of the subnet block) for three representative subnet
sizes, namely “/20”, “/24”, and “/28” in our enterprise
dataset. Unsurprisingly, more than half of “/28” subnets
(solid red line) are completely idle, about a tenth of them
see a utilisation of more than 60%, and certain subnets are
fully utilised. This translates to fine-grained subnets being
more sparse, demanding specific entries (higher monitoring
costs). Reducing the subnet size to “/24”, the distribution gets
slightly smoother – idle portion is reduced (by about 20%)
and so does the fraction of highly utilised subnets. It can be

Figure 6: Prototype implementation of PEDDA.

seen that the utilisation of “/20” subnets is always less than
40% but none of them are idle. This highlights that coarse-
grained subnets are less sparse, creating an opportunity to use
aggregate entries (reducing monitoring costs).

Now, let us analyse the distribution of flows across en-
terprise hosts. Unsurprisingly, the majority (84.5%) of one-
sided inbound flows target unassigned IP addresses or inactive
enterprise hosts – they seem to be network scans randomly
selecting their targets. Considering one-sided outbound flows,
they are all primarily sourced from a negligible fraction (0.4%)
of enterprise hosts. We manually investigated those cases and
found some exhibit abnormal behaviours like performing port
scans on Internet hosts. For example, some of these hosts
sweep a relatively large range of port numbers (e.g., more
than 2000 TCP ports) on an external host within a short time
interval (e.g., 10 seconds).

Focusing on external hosts, we found 751K unique IPv4
addresses were source of inbound packets and of those less
than 60% are responded by enterprise internal hosts. Also,
we observe that 15K external IP addresses (in our dataset)
only received packets from enterprise hosts without sending a
response back.

Highlights: We now summarise two key insights obtained
from dataset analysis that inspire the design of our practical
inference stages. First, unsolicited inbound packets, though
they contribute to a small fraction of total traffic, result in
a large number of one-sided flows (particularly inbound).
Therefore, determining active enterprise hosts (which demand
protection against external distributed attacks) is paramount
for a detection system since the complexity of expensive
telemetry can be significantly reduced. Second, we note that
the count of external hosts (750K) and network flows (≈600M)
is orders of magnitude larger than that of internal enterprise
hosts (≈25K). This means maintaining real-time states for
all external hosts and flows is almost impractical. Therefore,
for practical reasons, detection of distributed attackers and
their malicious flows needs to be progressively achieved by
dynamically processing a small fraction of the network traffic.

2) Specifications of Three Inference Stages: Let us now
discuss the specifications of three inference stages that collec-
tively detect active enterprise hosts, victims, and distributed
attackers with malicious flows.

Stage-1 (active hosts): Our first stage is designed to detect
active enterprise hosts. The packet matching module sends all
outbound packet streams to this stage by default. The parser
of this stage extracts source IP addresses of outbound packets,

11

(a) Packet rates of a web server under attack. (b) Dynamics of detecting a distributed attack (ground-truth) on the web server.

(c) Inference from Stage-1. (d) Dynamics of detecting victims and corresponding distributed attacks.

Figure 7: Illustrating how PEDDA detects distributed attacks during a short interval: (a) traffic rates of a web server under
a distributed attack, (b) dynamics of detecting a distributed attack on the web server, (c) inference from Stage-1, and (d)
dynamics of detecting victims and corresponding distributed attacks.

which are used to update a list of active enterprise IP addresses
(or subnets if the granularity is reduced). An IP address will be
removed from this telemetry if it has not an outbound packet
for a user-defined period. Changes in the list are reported to the
inference manager periodically, so that corresponding reactive
configurations will be generated for the successive stages.

Stage-2 (victim hosts): Our second stage detects those
enterprise hosts that are victims of distributed attacks. Reac-
tively instructed by the inference manager, this stage receives
inbound and outbound traffic of only active enterprise hosts
determined by Stage-1. The telemetry maintained for this
stage monitors traffic statistics of each active enterprise host
to detect victims from others. In our prototype, inspired by
state-of-the-art detection systems [17], we track inbound and
outbound packet rates for each monitored entity (IP address
or subnet). If the delta of inbound and outbound rates (i.e.,
∆ = |Ratein − Rateout|) of a monitored entity exceeds a
user-defined threshold (500 pps in our implementation), the
inference module will report it as a victim7. As a result of this
detection, the inference manager will instruct the following
stage accordingly.

Stage-3 (attack sources and flows): Our third inference
stage maintains an expensive telemetry for detecting dis-
tributed attackers and malicious flows in a network attack.
This stage only analyses traffic of identified victims. For each
packet, the parser of this stage extracts its size, protocol,
source and destination IP addresses and port numbers. A
streaming graph is used to track the activity of each network
flow exchanged between individual (detected) victims and
external hosts. Attributes of each external host and flow are
computed periodically, so that external sources and malicious
flows can be precisely detected at this final stage. In our

7One may employ a more sophisticated method to detect victims of
distributed attacks.

prototype, we use a threshold on the number of active flows
(10 active concurrent flows in our implementation) between an
external host and the victim as our detection criteria, which is
commonly used by practical security middleboxes [16], [45].

3) Discussion: This paper primarily aimed at setting a
foundation to develop practical and effective methods for
detecting distributed network attacks. Our work can be im-
proved and built upon in certain ways. First, the inference
function could be enhanced by employing more attributes
and applying more sophisticated (deterministic and/or machine
learning-based) algorithms [41], [53]. Second, we focused on
DDoS detection (as an illustrative use-case) to demonstrate
the efficacy of our method. Other network attacks like recon-
naissance or brute-forcing can be detected by changing the
inference criteria. Third, we employed a 3-stage architecture
to demonstrate the efficacy of our method when considered
a representative loosely-managed enterprise network. One can
design a different architecture for further optimisation. Fourth,
inference models may require certain tuning to cater for
different network settings and traffic characteristics. The above
listed improvements and extensions are beyond the scope of
this paper.

B. Prototype Implementation

In §IV-B, we discussed technology options, such as pure
VNF, OpenFlow, or P4, that can be employed to implement the
PEDDA system. In this work, we choose to use an OpenFlow-
enabled switch for our prototype. Though OpenFlow capabil-
ities may seem less advanced compared to options like P4,
current industry practices find it more intuitive and relatively
easier to employ for certain use cases. Also, OpenFlow is
currently supported by enterprise-grade switches/routers from
top vendors [54], including Cisco [55], Juniper [56], Dell
[57], Huawei [58], and HP [59]. It has also been deployed
by leading content providers such as Google for managing

12

Table II: A summary of comparative evaluations: our PEDDA versus state-of-the-art solutions.

Runtime Visibility Detection Performance Computing Cost
Host Victim Attacker Flow Victim Attacker Flow CPU (avg | peak) RAM (avg | peak)

NGFW Partial Partial None None 100% None None 20% | 42% immeasurable

IDS Partial Partial None None 100% None None 35% | 62% 21% | 34%

Flow Graph Complete Complete Complete Complete 100% 95.4% 94.1% >700% | Full Full | Full

PEDDA Complete Complete Complete Complete 100% 93.4% 91.7% 24% | 57% 8% | 11%

WAN [60], Internet peering [61], and datacenter networks
[62]. Moreover, the dynamic measurement and control re-
quirements of the PEDDA design are sufficiently fulfilled by
programmable control-plane functions offered by OpenFlow.
That said, one may improve our implementation by offloading
certain telemetry computations from generic servers to a P4
switch, saving costs and/or improving responsiveness.

We realise our PEDDA architecture with the three practi-
cal stages by implementing a prototype using an OpenFlow
programmable switch and software modules running on a
commodity server. Fig. 6 shows functional blocks and their
interactions in our prototype. The entire Internet traffic of
the enterprise is mirrored to two separate 10 Gbps network
interfaces (one for inbound direction and one for outbound
direction) of the OpenFlow switch (NoviFlow 2122 [51]).

The programmable switch inserts a specific tag (via the
action field of flow entries in the corresponding flow tables) to
each arriving packet indicating the stage by which the packet
needs to be inferred. Packet parsers (employing the DPDK
framework and NFF-Go library), telemetry, and inference
modules of our three stages are written in Golang and deployed
on a blade server. The server has sixteen 2.10GHz CPUs and
64GB RAM. A publish-subscribe messaging system (NATS)
is used to exchange inference results, reactive configurations,
available switch and computing resources, and the granularity
of each inference stage. The granularity orchestrator (written
in Golang) updates the subnet masks of each stage by solving
an optimisation problem using the received system statistics,
as discussed in §IV-C. The inference manager (written in
Python3) publishes run-time flow rules and the granularity
of inference stages based on detection results and granularity
orchestrating instructions received from the messaging chan-
nel. Lastly, our prototype employs two SDN controllers: one
is responsible for inserting proactive flow rules (Faucet), and
another is responsible for inserting reactive flow rules at run-
time (Ryu) to the switch.

C. System Evaluation

In this section, three experiments are conducted. We start
by demonstrating how our solution detects distributed attacks
on representative hosts by three-stage progressive inference
(small-scale evaluation in §V-C1). We then experimentally
compare the performance of our method with that of state-
of-the-art solutions in terms of telemetry visibility, detection
performance, and computing cost when more than 400 hosts
become target of attacks during different times of day (large-
scale evaluation §V-C2). Finally, we demonstrate how the
granularity of stages is optimally adjusted with the utilisation
of constrained resources (§V-C3).

1) Small-Scale Detection of Representative Attacks: We
demonstrate the dynamics of attack detection by replaying a
demo PCAP trace (a subset of our enterprise dataset injected
by a short trace of DDoS attacks with ground-truth informa-
tion) onto our prototype.

Demo trace: We obtained a public traffic trace from [63]
containing 10 minutes’ worth of DDoS attacks with ground-
truth labels (attack dataset). Next, we modified the destination
IPv4 addresses (victims) in the attack dataset to emulate
attacks on three representative servers (i.e., a website server,
a VPN gateway, and a student portal) in the enterprise dataset
(discussed in §V-A1). Lastly, we injected the modified attack
trace into a subset (15 minutes’ worth) of our enterprise
dataset, resulting in our demo trace.

Detection thresholds: As mentioned earlier, we employ a
threshold-based method for inference across our three stages.
Our threshold values are inspired by the security industry
guidelines and best practices [15], [16], [45]. For Stage-1, a
detected active enterprise host will get removed if no outbound
packet is sent for 10 seconds. Our Stage-2 flags an enterprise
host as a victim when the difference of inbound and outbound
traffic rates of that host exceeds 500 packets per second. Stage-
3 distinguishes malicious external entities and their flows from
benign ones that contact enterprise victims. If an external host
contacts a victim with more than 10 active flows, the host and
its flows will be flagged as malicious.

We note that one may use an extensive set of traffic features,
such as statistical measures of packet sizes, contents of certain
packets, or temporal activities, to obtain more sophisticated
detection models (e.g., machine learning-based). Developing
and optimising detection models are beyond the scope of this
paper.

Demo evaluation results: We replayed the demo trace onto
our prototype. Fig. 7 illustrates how PEDDA progressively de-
tects distributed attacks (victims, attackers, and flows) during
a short interval.

As a case study, let us first focus on a web server that is one
of the three victims (with ground-truth data). It can be seen
in Fig. 7(a) that this server’s inbound and outbound packet
rates are typically less than 1 Kpps. However, this expected
rate is exceeded between 2:04pm and 2:08pm during which
we introduced attack traffic of about 10K concurrent flows
sourced from 100 distributed sources. Fig. 7(b) shows how
the stage make their respective inference. Stage-1 consistently
labels (highlighted by solid blue line) this server as an active
host for its outbound activity. Stage-2 detects this server as a
victim (highlighted by dashed black line) when packets rates
exceed a configured threshold due to inbound attacks. Inbound
and outbound packet streams of this victim are reactively
analysed by Stage-3 (highlighted by solid green and yellow

13

(a) Stage 1 (active enterprise hosts). (b) Stage 2 (victims). (c) Stage 3 (attack sources and flows).

Figure 8: Optimal adjustment of the inference granularity (distances from the ideal subnet mask) at: (a) stage 1 (active enterprise
hosts), (b) stage 2 (victims), and (c) stage 3 (attack sources and flows), during peak network load in our one-day enterprise
traffic trace, when 36 scenarios of computing resource constraints are imposed.

lines) to identify external sources and malicious flows. We
can observe that the majority of external hosts and flows
contacting the victim are flagged as malicious (highlighted by
dashed light-green and red lines) – less than 5 of external hosts
(look negligible in the plot) are found benign and continue
communicating with the server.

Following this initial case study, we analyse the perfor-
mance of our system across the entire demo trace. Fig. 7(c)
illustrates how our Stage-1 detects about 18K active enterprise
hosts (highlighted by solid blue line) while close to 170K of
IP addresses of our university IP block (highlighted by dashed
grey line) are the destination of inbound traffic. Therefore,
Stage-2 focuses on traffic of active enterprise hosts aiming
for victim detection. The dashed black line in Fig. 7(d)
highlights the number of hosts detected as victims by Stage-
2. We note that in addition to our three victims (ground-
truth), 13 other hosts are detected as victims of distributed
attacks. Our manual investigation revealed that they are indeed
under (relatively small-scale) distributed attacks. For example,
a victim consistently received TCP packets of size 60 to
70 bytes from 32 distributed attackers – 11 of them belong
to a subnet“/24” subnet, while the other 21 belong to 9
different subnets. Consequently, inbound and outbound traffic
of detected victims are processed by Stage-3. This stage
correctly detects all ground-truth attackers and their malicious
flows. On average, about 1K external hosts, shown by the
solid green line in Fig. 7(d)), are monitored at run-time, and
only about 1% of them are actual attackers, as shown by the
blue dashed line. Furthermore, we observe that the majority
(≥90%) of monitored flows are identified as malicious (solid
yellow and dashed red lines in Fig. 7(d)). This is not surprising
as each external attacker tends to overwhelm the victim by
establishing many flows. At the same time, benign users do not
often maintain many concurrent connections with an enterprise
host.

Lastly, it is important to note that there are about 260K
external hosts and 600K concurrent flows in our demo dataset.
Of these, less than 4K external hosts and only 1K flows are
tracked by the expensive Stage-3 for a fine-grained detection,
highlighting the practicality and effectiveness of our detection
system.

2) Large-Scale Comparative Evaluations: We now experi-
mentally compare the performance of our system with that of
widely-adopted industry solutions and prior academic meth-
ods, namely a commercial next-generation firewall (NGFW)
appliance Palo-Alto PA-3020 [17] and an open-source intru-
sion detection system (IDS) Zeek [33] version 3.1.0-dev.280,
and a flow graph structure (identical to what we use in our
Stage-3 but analyses the entire traffic). The NGFW is evaluated
as a standalone hardware appliance, while other systems (our
prototype, IDS, and the flow graph) are tested as software tools
on the server described in §V-B. All systems are configured by
the same set of detection thresholds. Therefore, the inference
mechanism is the only variable in our comparative evaluations.

For this large-scale experiment, we repeatedly injected the
DDoS attack traces (discussed in §V-C1) into our enterprise
dataset (the full-day trace discussed in §V-A), obtaining an
evaluation dataset. Our evaluation dataset contains a total of
432 DDoS attacks targeting 432 enterprise hosts of various
roles ranging from a website server and DNS server to
NAT gateways, VPN proxy, and even end-hosts. Each attack
instance is sourced from 100 external attackers generating
10000 malicious flows. Table II summarises our compara-
tive evaluations (qualitative and quantitative) under three key
pillars, namely runtime visibility, detection performance, and
computing cost.

Runtime visibility: Due to their static capabilities, the
NGFW appliances are often configured to obtain telemetry
only for key enterprise servers. IT engineers manually specify
the IP addresses or subnets [64] that require monitoring. In
other words, NGFW appliances do not provide visibility into
external hosts and traffic flows for DDoS detection. Therefore,
in order to keep up with high traffic rates during peak hours,
they may cause collateral damage when they protect a victim
by mitigating inbound volumetric attacks [29]. Software IDS
tools come with signatures of known attacks. Zeek also allows
users to specify their detection logic or add custom signatures.
However, running on generic CPUs, such tools cannot handle
high throughput traffic for complex logic [23]. Therefore, it is
recommended by the community [65] to reduce the monitoring
scope to only those enterprise hosts that are essential (e.g.,
corporate services). Our PEDDA provides more flexible and
fine-grained visibility than its counterparts. It monitors all ac-

14

tive enterprise hosts without the need for inputs from network
administrators. PEDDA reactively obtains/provides visibility
into “selected” external hosts and traffic flows, communicating
with identified victims of a distributed network attack. Such a
level of visibility can only be achieved by flow graph-based
solutions, which are computationally expensive (given their
static structure and stateful inference) for real-time operation.

Detection performance: We next analyse the performance
(i.e., accuracy) of detecting victims, external attackers, and
malicious flows. Table II highlights how PEDDA achieved
decent rates of detection across victims, sources, and malicious
flows (100%, 93.4%, and 91.7% respectively). On the other
side, state-of-the-art solutions like NGFW and IDS equipped
with detection rules and signature scripts can only raise alarms
for all victims (with 100% accuracy) but are unable (pro-
tecting themselves from being overwhelmed) to differentiate
distributed attackers and malicious flows. The fine-grained
detection method based on flow graphs achieved the best
results (100%, 95.4%, and 94.1% for victims, attackers, and
flows, respectively). We observe that the flow graph method is
able to detect distributed sources and malicious flows that are
missed by PEDDA but not in real-time. It will need more than
seven days to process our enterprise dataset (one day’s worth
of traffic), given the total computing resources in our server.
This is because the flow graph-based method (as opposed
to PEDDA) maintains states for more than a half million
flow records, hence requiring a significantly large amount of
computing resources.

We found that some of the enterprise victims sent more
outbound than inbound packets during certain periods, thus,
going undetected by our simple thresholding method. As a
result, less than a tenth of (ground-truth) external attackers
(6.4%) and malicious flows (8.3%) are missed. As discussed
in §V-A3, an enhanced inference method more sophisticated
[41], [53] than thresholding can improve detection rates but
developing those methods is beyond the scope of this paper.

Computing cost: As shown in the rightmost region of
Table II, our PEDDA displays a reasonable behavior in terms
of computing cost (CPU/RAM consumption), yielding a better
(or equivalent) ranking with respect to runtime visibility and
detection performance aspects. As mentioned earlier, the flow
graph requires seven times more computing resources in order
to keep up with our traffic in real-time – that’s why the average
CPU usage is marked as “>700%”. To guarantee operational
robustness given any traffic rates and compositions as well
as total computing resources available, our PEDDA uses an
orchestrator (described in §IV-C) that adjusts the granularity
of each inference stage to regulate its resource consumption.
In what follows next, we unpack this aspect with numerical
metrics in Figures 8 and 9.

3) Optimal Resource Utilisation: In order to demonstrate
the dynamics of optimal granularity adjustment across in-
ference stages, we evaluate the impact of various resource
constraints. When replaying the enterprise dataset, we imposed
36 scenarios (six choices of available CPU units and six
choices of available RAM units) to our prototype.

Fig. 8 shows how the three stages operate (in terms of
granularity) across these constraint scenarios. Note that each

cell shows the distance from the ideal subnet mask (/32).
We observe in Fig. 8(a) that Stage-1 always realises its ideal
granularity (distance 0 in all scenarios). This means active
enterprise hosts is determined at granularity /32. Note that we
set the highest priority (W1) to this stage in our prototype.
Stage-2 performs perfectly when the available CPU is more
than 60 units, but it loses one bit of granularity when the
available unit of CPU drops to 40, as shown in Fig. 8(b).
The loss of granularity is doubled when only 20 units of
CPUs are available. In the worst-case scenario (10 units of
CPU available), victims cannot be inferred better than /28
(distance of 4 for Stage-2). Note that the performance of
Stage-1 and Stage-2 does not change by varying RAM units
at a given value of available CPU value. Moving to Stage-3,
the most expensive inference, we see more dynamics in the
impact of available resources on the inference granularity, as
shown in Fig. 8(c). Attackers and their malicious flows can
be determined by the finest granularity /32 when at least 20
units of RAM and 80 units of CPU are available. Reducing
the available RAM and/or CPU will gradually decrease the
inference granularity. The lowest granularity /25 (distance of
7 for Stage-3) is obtained when only 10 units of CPU are
available. Overall, it can be seen that all stages of our prototype
performed well without experiencing a compromise in their
inference granularity (i.e., no reduction in the subnet mask)
when we had at least 20 units of RAM and 80 units of CPU.

Finally, we highlight the real-time utilisation of computing
resources for three representative scenarios, namely “high
resource” with 25 units of RAM and 80 units of CPU (top-left
cells with solid green borders in Fig. 8), “medium resources”
with 15 units of RAM and 40 units of CPU (near-center
cells with dashed orange borders in Fig. 8), “low resource”
with 3 units of RAM and 10 units of CPU (bottom-right
cells with dotted red borders in Fig. 8). These constrains are
imposed by employing certain caps (on resource utilisation)
applied in real-time by applications we run for our prototype.
Fig. 9(a) shows that with a sufficient amount of computing
resources available (80 units of CPU and 25 units of RAM), all
stages yield their inference with an ideal granularity while the
resource utilisation of our system is fairly healthy (well below
the total capacity). Moving to medium resources available in
Fig. 9(b), we see times when the CPU utilisation reaches
its limit (40 units), but the RAM utilisation is still healthy
(consistently below ten units when the total RAM available
is 15 units). Lastly, Fig. 9(b) shows how the utilisation
of both CPU and RAM consistently aims to consume all
resources available (10 units of CPU and 3 units of RAM) in a
scenario when low resources are available. For this very tight
situation, as we saw in Fig. 8, Stage-2 and Stage-3 found their
granularity slightly dropped, but the system remains robust.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed PEDDA, a progressive inference
method that achieves both effective detection and operational
practicality via multiple stages orchestrated by the dynamic
control of programmable networks. We first highlighted the
performance bottlenecks of traffic processing in legacy solu-
tions by mathematically formulating their time complexity. We

15

(a) 80 CPU units and 25 RAM units. (b) 40 CPU units and 15 RAM units. (c) 10 CPU units and 3 RAM units.

Figure 9: Real-time utilisation of computing resources when: (a) 80 CPU units and 25 RAM units (top-left cells with solid
green borders in Fig. 8), (b) 40 CPU units and 15 RAM units (near-center cells with dashed orange borders in Fig. 8), and
(c) 10 CPU units and 3 RAM units (bottom-right cells with dotted red borders in Fig. 8) are available for detecting attacks in
our one-day enterprise traffic dataset.

then developed our progressive method that detects distributed
attacks through multiple inference stages, each with a certain
cost subject to an adjustable granularity. With our system,
packet streams are dynamically partitioned and processed by
stages where their granularity is optimally determined and
orchestrated in real-time, depending upon the progression and
scale of attacks as well as available computing resources.
Lastly, we implemented a prototype of our proposed solution
that progressively detects active enterprise hosts, victims,
and attack sources/flows. We evaluated and demonstrated the
efficacy of our solution by applying it to high data rates traffic
of a real enterprise network mixed with publicly available
DDoS traces. Our results showed how PEEDA outperforms
legacy solutions by robustness and correctly detecting victims
and sources of distributed attack at reasonable granularity.

We envisage two specific directions for future work. First,
one may want to adapt the PEDDA architecture for other
network management and monitoring use-cases, including
inferring the health of networked assets/applications (e.g.,
works in [53], [66]), as well as detecting distributed network
attacks beyond DDoS and reconnaissance (e.g., works in [67],
[68]). Second, for PEDDA implementation, there is scope
for quantifying the advantages of using other programmable
networking technologies, such as VNF and/or P4, compared
to the OpenFlow-based system we studied in this paper.

REFERENCES

[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and Other Botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[2] A. Wang, W. Chang, S. Chen, and A. Mohaisen, “Delving Into Internet
DDoS Attacks by Botnets: Characterization and Analysis,” IEEE/ACM
Trans. Netw., vol. 26, no. 6, Dec 2018.

[3] A. Abhishta, R. van Rijswijk-Deij, and L. J. M. Nieuwenhuis, “Measur-
ing the Impact of a Successful DDoS Attack on the Customer Behaviour
of Managed DNS Service Providers,” SIGCOMM Comput. Commun.
Rev., vol. 48, no. 5, Jan 2019.

[4] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Exit from Hell?
Reducing the Impact of Amplification DDoS Attacks,” in Proc. USENIX
Security, San Diego, CA, USA, Aug 2014.

[5] S. T. Zargar, J. Joshi, and D. Tipper, “A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 4, 2013.

[6] S. Haas and M. Fischer, “GAC: Graph-Based Alert Correlation for the
Detection of Distributed Multi-Step Attacks,” in Proc. ACM SAC, Pau,
France, Apr 2018.

[7] Akamai Technologies, “2019 State of the Internet Security: DDoS and
Application Attacks,” https://bit.ly/3nLaohl, 2019, accessed: 2019-10-
08.

[8] Blackhat, “DDoS Protection Bypass Techniques,” https://bit.ly/2ZkZzJs,
2019, accessed: 2019-10-08.

[9] Forcepoint, “Attacking the Internal Network from the Public Internet
using a Browser as a Proxy,” https://bit.ly/3CQoBh8, 2019, accessed:
2019-10-08.

[10] K. Singh, P. Singh, and K. Kumar, “Application Layer HTTP-GET
Flood DDoS Attacks: Research Landscape and Challenges,” Computers
& Security, vol. 65, pp. 344 – 372, 2017.

[11] M. H. Bhuyan, D. Bhattacharyya, and J. Kalita, “An Empirical Evalua-
tion of Information Metrics for Low-Rate and High-Rate DDoS Attack
Detection,” Pattern Recognition Letters, vol. 51, p. 7, 2015.

[12] K. Hong, Y. Kim, H. Choi, and J. Park, “SDN-Assisted Slow HTTP
DDoS Attack Defense Method,” IEEE Communications Letters, vol. 22,
no. 4, pp. 688–691, 2018.

[13] A. Wang, W. Chang, S. Chen, and A. Mohaisen, “A Data-Driven
Study of DDoS Attacks and Their Dynamics,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 03, pp. 648–661, May
2020.

[14] Sophos Group, “Sophos XG Firewall: How to prevent DoS and DDoS
attacks,” https://bit.ly/2tcOPZY, 2018, accessed: 2018-02-11.

[15] Fortinet, “FortiDDoS and Verisign DDoS Protection Service,” https://
bit.ly/2DsDObH, 2018, accessed: 2018-02-11.

[16] Cisco Systems, “Protection Against Distributed Denial of Service At-
tacks,” https://bit.ly/2WUbvvK, 2018, accessed: 2018-11-2.

[17] Palo Alto Networks, “DoS and Zone Protection Best Practices,” https:
//bit.ly/2HQOMwU, 2018, accessed: 2018-28-1.

[18] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
Traffic Classification in the Dark,” in Proc. ACM SIGCOMM, Oct 2005.

[19] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra, “SpotLight: De-
tecting Anomalies in Streaming Graphs,” in Proc. ACM KDD, London,
United Kingdom, Aug 2018.

[20] J. J. Pfeiffer III et al., “Attributed Graph Models: Modeling Network
Structure with Correlated Attributes,” in Proc. ACM WWW, Seoul,
Korea, Apr 2014.

[21] S. K. Fayaz et al., “Bohatei: Flexible and Elastic DDoS Defense,” in
Proc. USENIX Security, Washington, D.C., USA, Aug 2015.

[22] T. Yu et al., “PSI: Precise Security Instrumentation for Enterprise
Networks,” in Proc. NDSS, San Diego, CA, USA, Feb 2017.

[23] M. Zhang et al., “Poseidon: Mitigating Volumetric DDoS Attacks with
Programmable Switches,” in Proc. NDSS, San Diego, CA, USA, Feb
2020.

[24] Q. Hu, M. R. Asghar, and N. Brownlee, “Measuring IPv6 DNS Recon-
naissance Attacks and Preventing Them Using DNS Guard,” in Proc.
IEEE/IFIP DSN, Luxembourg City, Luxembourg, Jun 2018.

[25] F. Yarochkin, Y. Huang, Y. Hu, and S. Kuo, “Mining Large Network
Reconnaissance Data,” in Proc. IEEE PRDC, Vancouver, BC, Canada,
Dec 2013.

[26] Z. Durumeric, M. Bailey, and J. A. Halderman, “An Internet-Wide View
of Internet-Wide Scanning,” in Proc. USENIX Security, San Diego, CA,
USA, Aug 2014.

[27] M. Antonakakis et al., “Understanding the Mirai Botnet,” in Proc.
USENIX Security, Vancouver, BC, USA, Aug 2017.

16

[28] S. Ramanathan, J. Mirkovic, M. Yu, and Y. Zhang, “SENSS Against
Volumetric DDoS Attacks,” in Proc. ACSAC, San Juan, PR, USA, Dec
2018.

[29] C. Dietzel, M. Wichtlhuber, G. Smaragdakis, and A. Feldmann, “Stellar:
Network Attack Mitigation Using Advanced Blackholing,” in Proc. ACM
CoNEXT, Dec 2018.

[30] M. Lyu, H. Habibi Gharakheili, C. Russell, and V. Sivaraman, “Mapping
an Enterprise Network by Analyzing DNS Traffic,” in Proc. Springer
PAM, Puerto Varas, Chile, Mar 2019.

[31] A. Sivanathan, H. Habibi Gharakheili, F. Loi, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Classifying IoT Devices
in Smart Environments Using Network Traffic Characteristics,” IEEE
Transactions on Mobile Computing, vol. 18, no. 8, Aug 2019.

[32] Z. Liu, H. Jin, Y.-C. Hu, and M. Bailey, “MiddlePolice: Toward
Enforcing Destination-Defined Policies in the Middle of the Internet,”
in Proc. ACM CCS, Vienna, Austria, Oct 2016.

[33] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-
Time,” Computer Networks, vol. 31, no. 23-24, pp. 2435–2463, Dec.
1999.

[34] B. Caswell, J. C. Foster, R. Russell, J. Beale, and J. Posluns, Snort 2.0
Intrusion Detection. Syngress Publishing, 2003.

[35] Suricata, “Community Driven. Always Alert.” https://suricata.io/, 2022,
accessed: 2022-04-06.

[36] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of Intrusion Detection Systems: Techniques, Datasets and Challenges,”
Cybersecur., vol. 2, p. 20, 2019.

[37] J. Konstantas, “Enterprise Firewalls’ Top Requirement: Scalability,”
https://bit.ly/3DNLRha, 2012, accessed: 2020-8-9.

[38] E. Damon, J. Mache, R. Weiss, K. Ganz, C. Humbeutel, and M. Cra-
bill, “Chapter 31 - Cyber Security Education: The Merits of Firewall
Exercises,” in Emerging Trends in ICT Security, B. Akhgar and H. R.
Arabnia, Eds. Boston: Morgan Kaufmann, 2014, pp. 507 – 516.

[39] Palo Alto Networks, “DoS Protection Profiles,” https://bit.ly/3zsMRVW,
2020, accessed: 2020-09-09.

[40] N. Agrawal and S. Tapaswi, “Defense Mechanisms Against DDoS At-
tacks in a Cloud Computing Environment: State-of-the-Art and Research
Challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4,
pp. 3769–3795, 2019.

[41] M. Lyu, H. Habibi Gharakheili, C. Russell, and V. Sivaraman, “Hi-
erarchical Anomaly-Based Detection of Distributed DNS Attacks on
Enterprise Networks,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 1031–1048, 2021.

[42] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven Streaming Network Telemetry,” in
Proc. ACM SIGCOMM, Budapest, Hungary, Aug 2018.

[43] C. Liu, A. Raghuramu, C.-N. Chuah, and B. Krishnamurthy, “Piggy-
backing Network Functions on SDN Reactive Routing: A Feasibility
Study,” in Proc. ACM SOSR, Santa Clara, CA, USA, Apr 2017.

[44] H. Li, H. Hu, G. Gu, G.-J. Ahn, and F. Zhang, “vNIDS: Towards Elastic
Security with Safe and Efficient Virtualization of Network Intrusion
Detection Systems,” in Proc. ACM CCS, Toronto, Canada, Oct 2018.

[45] Palo Alto Networks, “Reconnaissance Protection,” https://bit.ly/
3zo1A47, 2020, accessed: 2020-4-2.

[46] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and General Sketch-Based
Monitoring in Software Switches,” in Proc. ACM SIGCOMM, Beijing,
China, Aug 2019.

[47] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” in Proc. USENIX OSDI,
Savannah, GA, USA, Nov 2016.

[48] A. Sivanathan, H. Habibi Gharakheili, and V. Sivaraman, “Managing IoT
Cyber-Security Using Programmable Telemetry and Machine Learning,”
IEEE Transactions on Network and Service Management, vol. 17, no. 1,
pp. 60–74, 2020.

[49] A. G. Alcoz, C. Busse-Grawitz, E. Marty, and L. Vanbever, “Reducing
P4 Language’s Voluminosity Using Higher-Level Constructs,” in Proc.
EuroP4, Rome, Italy, Dec 2022.

[50] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu,
“Debugging P4 Programs with Vera,” in Proc. ACM Sigcomm, Budapest,
Hungary, Aug 2018.

[51] NoviFlow, “NoviSwitch 2122 High Performance Open-
Flow Switch,” https://noviflow.com/wp-content/uploads/
NoviSwitch-2122-Datasheet-1.pdf, 2018, accessed: 2018-01-28.

[52] Intel, “Intel Tofino 2,” https://www.intel.com.au/content/www/au/en/
products/network-io/programmable-ethernet-switch/tofino-2-series.
html, 2023, accessed: 2023-03-08.

[53] M. Lyu, H. Habibi Gharakheili, and V. Sivaraman, “Classifying and
Tracking Enterprise Assets via Dual-Grained Network Behavioral Anal-
ysis,” Computer Networks, 2022.

[54] Mordor Intelligence, “Enterprise Routers Market – Growth, Trends,
Covid-19 Impact, and Forcasts (2023 - 2028),” https://www.
mordorintelligence.com/industry-reports/enterprise-routers-market,
2023, accessed: 2023-03-08.

[55] Cisco Systems, “Understand the OpenFlow on Cat-
alyst 9000 Series Switches,” https://www.cisco.com/c/
en/us/support/docs/switches/catalyst-9300-series-switches/
217210-understand-openflow-on-catalyst-9000-ser.html, 2021,
accessed: 2023-03-08.

[56] Juniper Networks, “OpenFlow Support on Juniper Networks
Devices,” https://www.juniper.net/documentation/us/en/software/junos/
sdn-openflow/topics/concept/junos-sdn-openflow-supported-platforms.
html, 2020, accessed: 2023-03-08.

[57] Dell Technologies, “Hybrid OpenFlow for Dell
Networking N-Series Using OpenDaylight,” https:
//www.dell.com/support/kbdoc/en-au/000146824/
hybrid-openflow-for-dell-networking-n-series-using-opendaylight,
2016, accessed: 2023-03-08.

[58] Huawei Technologies, “CloudEngine 8800, 7800, 6800, and 5800
V200R019C10 Configuration Guide - Network Management
and Monitoring,” https://support.huawei.com/enterprise/en/doc/
EDOC1100137943/c824b277/openflow-working-mechanism, 2021,
accessed: 2023-03-08.

[59] Hewlett Packard Enterprise, “HP ProCurve Switches - SDN/OpenFlow
Support,” https://support.hpe.com/hpesc/public/docDisplay?docId=
mmr_kc-0127767, 2023, accessed: 2023-03-08.

[60] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” SIGCOMM Comput. Commun. Rev., Aug 2013.

[61] K.-K. Yap et al., “Taking the Edge off with Espresso: Scale, Reliabil-
ity and Programmability for Global Internet Peering,” in Proc. ACM
SIGCOMM, Los Angeles, CA, USA, 2017.

[62] L. Poutievski et al., “Jupiter Evolving: Transforming Google’s Dat-
acenter Network via Optical Circuit Switches and Software-Defined
Networking,” in Proc. ACM SIGCOMM, Amsterdam, Netherlands, Aug
2022.

[63] Imapct Cyber Trust, “DARPA 2009 Intrusion Detection Dataset,” http:
//www.darpa2009.netsec.colostate.edu/, 2020, accessed: 2020-8-9.

[64] Palo Alto Networks, “Flood Protection,” https://bit.ly/3gEEAqj, 2020,
accessed: 2020-09-09.

[65] M. Rahouti, K. Xiong, N. Ghani, and F. Shaikh, “SYNGuard: Dy-
namic Threshold-based SYN Flood Attack Detection and Mitigation in
Software-Defined Networks,” IET Networks, vol. 10, 01 2021.

[66] M. Lyu, H. Habibi Gharakheili, C. Russell, and V. Sivaraman, “Enter-
prise DNS Asset Mapping and Cyber-Health Tracking via Passive Traffic
Analysis,” IEEE Transactions on Network and Service Management,
2022.

[67] J. Ahmed, H. Habibi Gharakheili, Q. Raza, C. Russell, and V. Sivaraman,
“Monitoring Enterprise DNS Queries for Detecting Data Exfiltration
From Internal Hosts,” IEEE Transactions on Network and Service
Management, vol. 17, no. 1, pp. 265–279, 2020.

[68] J. Ahmed, H. Habibi Gharakheili, C. Russell, and V. Sivaraman, “Au-
tomatic Detection of DGA-Enabled Malware Using SDN and Traffic
Behavioral Modeling,” IEEE Transactions on Network Science and
Engineering, vol. 9, no. 4, pp. 2922–2939, May 2022.

17

