
Efficient IoT Traffic Inference:
from Multi-View Classification to Progressive Monitoring

ARMAN PASHAMOKHTARI, UNSW Sydney, Australia
GUSTAVO BATISTA, UNSW Sydney, Australia
HASSAN HABIBI GHARAKHEILI, UNSW Sydney, Australia

Machine learning-based techniques have proven to be effective in IoT network behavioral inference. Existing
works developed data-driven models based on features from network packets and/or flows, but mainly in a
static and ad-hoc manner, without adequately quantifying their gains versus costs. In this paper, we develop a
generic architecture that comprises two distinct inference modules in tandem, which begins with IoT network
behavior classification followed by continuous monitoring. In contrast to prior relevant works, our generic
architecture flexibly accounts for various traffic features, modeling algorithms, and inference strategies. We
argue quantitative metrics are required to systematically compare and efficiently select various traffic features
for IoT traffic inference.

This paper1 makes three contributions. (1) For IoT behavior classification, we identify four metrics, namely
cost, accuracy, availability, and frequency, that allow us to characterize and quantify the efficacy of seven
sets of packet-based and flow-based traffic features, each resulting in a specialized model. By experimenting
with traffic traces of 25 IoT devices collected from our testbed, we demonstrate that specialized-view models
can be superior to a single combined-view model trained on a plurality of features by accuracy and cost.
We also develop an optimization problem that selects the best set of specialized models for a multi-view
classification; (2) For monitoring the expected IoT behaviors, we develop a progressive system consisting
of one-class clustering models (per IoT class) at three levels of granularity. We develop an outlier detection
technique on top of the convex hull algorithm to form custom-shape boundaries for the one-class models.
We show how progression helps with computing costs and the explainability of detecting anomalies; and, (3)
We evaluate the efficacy of our optimally-selected classifiers versus the superset of specialized classifiers by
applying them to our IoT traffic traces. We demonstrate how the optimal set can reduce the processing cost
by a factor of six with insignificant impacts on the classification accuracy. Also, we apply our monitoring
models to a public IoT dataset of benign and attack traces and show they yield an average true positive rate
of 94% and a false positive rate of 5%. Finally, we publicly release our data (training and testing instances of
classification and monitoring tasks) and code for convex hull-based one-class models.

CCS Concepts: • Security and privacy → Network security; • Computing methodologies → Machine
learning.

Additional Key Words and Phrases: IoT traffic classification, behavior monitoring, anomaly detection, opti-
mization.

1This submission is an extended and improved version of our paper presented at the ACM ETSec IoT workshop [54].

Authors’ addresses: Arman Pashamokhtari, UNSW Sydney, Australia, a.pashamokhtari@unsw.edu.au; Gustavo Batista,
UNSW Sydney, Australia, g.batista@unsw.edu.au; Hassan Habibi Gharakheili, UNSW Sydney, Australia, h.habibi@unsw.
edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

ACM Reference Format:
Arman Pashamokhtari, Gustavo Batista, and Hassan Habibi Gharakheili. 2023. Efficient IoT Traffic Inference:
from Multi-View Classification to Progressive Monitoring. 1, 1 (September 2023), 29 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
New IoT devices are emerging each week in the market and are increasingly being deployed
in a variety of smart environments like homes, buildings, enterprises, and cities. Many of these
networked assets often lack in-built security measures and are ridden with security holes, as amply
demonstrated by prior research work [38, 70], posing grave risks to the security and privacy of
personal and organizational data gleaned from sensors [72], but also provides a launching pad
for attacks to systems within [71] and outside [40] the organization – witness the attacks by a
University’s vending machines on its own campus network [8], and IoT botnets DDoS-attacking
DynDNS [58]. In fact, 57% of IoT devices can become targets of medium to high impact cyber-attacks
[53]. A survey [19] revealed that about two-thirds of enterprises do not have adequate visibility
over IoT devices connected to their network, leading to at least five security incidents per year.

Obtaining visibility into IoT network activities is essential [53] to securing these networks. IoT
devices often perform a limited set of tasks. They come with power and computing constraints,
and their network activity is relatively less but more distinct than traditional IT devices [69]. This
creates an opportunity to develop models [7, 15, 18, 25, 26, 30, 42, 47, 51, 62, 67, 69, 75, 76, 79] that
learn IoT benign behavior relatively well. About 85% of organizations [13] are planning to utilize
artificial intelligence or machine learning models to develop monitoring systems for their assets.

Automatic IoT traffic inference is often achieved in three distinct phases: (1) discovery where the
identity (e.g.,MAC and/or IP address) of connected devices is determined (via passive analysis or
importing an asset inventory list from active scans), (2) classification or identification that maps
device identities to their types/roles (e.g., device D ↦−→ Camera), and (3) monitoring where their
network behavior is continuously measured and checked against expected patterns, ensuring their
cyber health or flagging any anomalous behaviors. Device discovery has been long studied in
computer networks (especially using active scans for IT asset management), and there are tools
like Nmap [39] for this purpose. Given the overheads and disruption risks introduced by active
scanners [5], non-invasive or passive2 inference methods sound more appropriate for IoT asset
management. Some works like [7, 18, 42, 47, 62, 69, 75, 76, 79] focused on traffic classification while
others like [15, 25, 26, 30, 51, 67] developed methods for traffic monitoring. A recent work [74]
attempted to dynamically leverage the combined capabilities offered by these two approaches (i.e.,
active and passive) to characterize IoT asset behaviors.

Machine learning algorithms have been widely applied to packet/flow-based traffic features for
capturing recurring patterns of IoT devices. Most existing works used a single-combined-view
approach (training a single model on a plurality of traffic features). Single-combined-view models
have some drawbacks, like dealing with missing features [16], demanding more data [54], and
overfitting [80]. On the other hand, a multi-view approach employs a collection of models (“views”),
each specializing in certain aspects of data. For example, in image recognition, views can be images
captured with varying angles, texture data, or color information of an object [80]. In the context
of IoT traffic inference, the single-combined-view approach is dominantly used for developing
inference models [7, 15, 25, 42, 47, 51, 67, 75, 79].

Prior research work developed IoT traffic inference models based on various traffic features, some
are packet-based, and others are flow-based. The existing literature tends to incorporate traffic
features solely based on their prediction accuracy for modeling purposes. We argue that more
2Analytical techniques are applied to network traffic from a SPAN (Switched Port Analyzer) port.

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 3

!!!"#$%&"'

(&#))*+',)'

-".*+"'!
!"#$$%&%'#(%)*

""

"#

"$

%

+)*%(),%*-

!! !" !#
%/$'! +0#$$*)*"-1 !"

#
$
%

Fig. 1. A high-level overview of our system architecture for IoT traffic inference.

factors, like how prevalent is a feature in the network traffic across device classes, how frequently
certain features emerge to measure, or how expensive it would be to compute features, should
also be considered for developing inference models for IoT devices. For IoT behavioral monitoring
specifically, models are applied in a static manner – all required network traffic telemetries are
collected and checked in one shot for anomalies. Static approaches do not scale cost-effectively.
We instead consider a dynamic approach that progresses in multiple stages, ranging from coarse-
grained to fine-grained. Progressive monitoring assists IoT network operators in finding the cause
of anomalies (explainable inference), particularly at scale with a large number of connected devices.
In our previous work [54], we experimented with the multi-view approach combined with a

progressive inference only for classification. This paper builds upon and improves our previous
conference paper [54] by focusing on both classification and monitoring objectives, performed
in tandem as shown in Fig. 1. We enhance our multi-view approach for classification in two
ways: (a) systematically quantifying and balancing the overall gains versus costs of each view
(corresponding to traffic features) by four specific metrics, and (b) optimally selecting the best
set of views. Moreover, we develop a novel architecture and set of models at varying granularity
for progressively monitoring IoT behaviors on the network. Also, the methods and metrics we
develop are extensively evaluated with larger and more diverse datasets (publicly released [56]).
Our specific contributions are as follows.

• The first contribution (§3) focuses on IoT traffic classification. Unlike existing works that
merely used the accuracy metric, we identify four metrics (including accuracy, cost, avail-
ability, and frequency) that help us systematically compare the characteristics of specific
traffic (packet/flow) features. In §3, we will demonstrate how the accuracy metric can over-
shadow the importance of other key metrics for quantifying the impact of traffic features. By
experimenting with traffic traces of 25 IoT devices collected from our testbed, we develop a
specialized model for each traffic feature and demonstrate how specialized models outperform
a single-combined-view model (trained on a plurality of features) in prediction accuracy and
overall computing costs. We also develop a method to select an optimal set of specialized
models for multi-view classification.

• The second contribution (§4) focuses on IoT behavioral monitoring. We develop a progressive
architecture of one-class models at three levels of granularity, improving computing costs as
well as the explainability of detecting anomalous traffic patterns. We employ the convex hull
algorithm and develop an outlier detection technique on top of it for tightening the benign
boundaries in our one-class models.

• Finally, the third contribution (§5) begins by evaluating the efficacy of our optimally-selected
classifiers versus the superset of specialized classifiers by applying them to our IoT traffic
traces. Our results show how the optimal set of models can reduce the processing cost by
a factor of six with insignificant impacts on the prediction accuracy. We also apply our
monitoring models to a public IoT dataset of benign and attack traces and show they yield an

, Vol. 1, No. 1, Article . Publication date: September 2023.

4 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

average true positive rate of 94% and a false positive rate of 5%. Our data (training and testing
instances of classification and monitoring tasks) and enhancement code for the convex hull
algorithm are publicly released [56] to the research community.

The next section (§2) summarizes prior relevant work and highlights our novelty, and §6 concludes
our paper and presents directions for future work.

2 RELATEDWORK
Prior works on IoT traffic inference, by the type of network telemetry, can be categorized into two
groups: (1) packet-based telemetries are extracted from packet contents – examples are domain
names from DNS packets, TCP options from SYN packets, and User-Agent header from HTTP
packets; and, (2) flow-based telemetries are statistical features computed from specific or collection
of flows e.g., number of TCP packets, the byte count of NTP traffic, or average inter-arrival time of
DNS queries. Authors of [15, 47, 51] employed purely packet-based features, while work in [25, 67]
used purely flow-based features, and works in [42, 69, 75] combined packet-based and flow-based
features. Though they may supply some unique signatures (enabling a more accurate inference),
packet-based features typically require more processing power as they need (deep/shallow) packet
inspection. In contrast, flow-based features can be obtained using cost-effective programmable
switches or flow extraction tools like NetFlow [12] or IPFIX [34]. We will have a detailed discussion
about these two types of telemetry in §3.1.

For IoT traffic inference, we view a general system architecture, as illustrated in Fig. 1, consisting
of two distinct modules: classification of device behaviors and monitoring expected behaviors. In
what follows, we review how existing works realize these two objectives.

2.1 Classifying IoT Behaviors
Behavioral classification (also known as identification) essentially aims to create a mapping between
device identities and their class (e.g., type, or make/model). Device identity is referred to an identifier
like MAC or IP address that is unique for each device on the network. In some cases where the
network traffic is collected after crossing a middlebox (e.g., a NAT-enabled router), device identities
may be overwritten and obscured. A body of works [21, 46, 55, 62] addressed the classification
of IoT device behaviors using obscured traffic (e.g., post-NAT measurement and inference). This
paper assumes no middlebox obscures network traffic, and we obtain device identities like MAC or
IP addresses directly from the measured traffic. Next, we summarize some seminal works in the
literature and their fundamental contributions to IoT traffic classification.
IoT Sentinel [47] identified more than twenty packet-based features; most are binary features

representing well-known protocols, while others include packet size, IP options, and transport-
player port numbers. Upon detection of a device type, it queries public vulnerability repositories
like CVE [49] to find vulnerabilities associated with the detected device types and then isolates
the vulnerable devices in the network. DEFT [75] used both packet-based and flow-based features
to train a supervised and an unsupervised model to determine IoT devices connected to home
networks from an Internet service provider’s perspective. The supervised model is distributed
across home routers, performing the classification process. Suppose the supervised model is not
confident about a device type. In that case, it sends the corresponding telemetries to a centralized
cloud-based controller, where the unsupervised model distinguishes the device type by clustering
techniques, re-trains, and redistributes the supervised model to the home routers.

Similar to DEFT, AuDI [42] performs IoT traffic clustering using both supervised and unsupervised
learning methods. AuDI uses flow-based time-series features to generate fingerprints of IoT devices
by relying only on periodic autonomous traffic (like NTP and DNS) that is likely unaffected by

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 5

human interactions. The authors used Fourier transform and signal auto-correlation to filter periodic
flows. Authors in [69] used a combination of packet-based and flow-based features to classify IoT
behaviors on the network. Their packet-based features include server port numbers, domain names,
and TLS cipher suites. The flow-based features were the statistical measure of volume, duration,
and rate of flows, inactivity period, and frequency of DNS and NTP queries. They (similar to us)
used a multi-view approach by developing a separate model for packet-based and a model for
flow-based features. However, no systematic attempt is made on how a subset of these features
could be considered given certain objectives and constraints (efficient/optimal selection of different
views).

2.2 Monitoring Expected IoT Behaviors
Monitoring is another pillar of IoT traffic inference that looks for deviations from expected behav-
iors due to firmware/software updates, service outages, or cyber-attacks. Works in [25, 26] used
Manufacturer Usage Description (MUD) [35] to profile benign network activities of a given IoT
device type. MUD profiles are expected to be supplied by device manufacture res, but they can be
automatically generated [27] at run-time by analyzing IoT traffic traces. MUD profiles essentially
specify network metadata (i.e., a list of access control entries, each indicating transport-layer
protocol and port numbers as well as the endpoint IP address or domain name) – no specification of
traffic contents, rates, and/or volumes. Thus, they are vulnerable to data exfiltration and volumetric
attacks. Work in [57] attempts to develop a baseline (expected patterns) for the information content
of packet payloads (whether unencrypted, encoded, or encrypted) in each MUD flow of an IoT
device. Authors in [25] demonstrated how machine learning models augment foundational MUD
profiles (given as input [26]) to flag deviations from expected activities of individual flows (detecting
network-based volumetric attacks that still conform to MUD profiles).
Some existing works used purely benign traffic [51, 67], and others used a mixture of benign

and attack traffic [15] to train machine learning models. Using attack traffic to train models is
proven [73] to limit the detection capability to those known attacks, making models vulnerable to
zero-day attacks (similar to signature-based anomaly detectors). Authors of [67] developed one-
class clustering models, one for each device type, purely trained on benign traffic instances of each
device type. Trained models were used for both classification and change detection (monitoring)
purposes. We will train a collection of one-class models per each IoT type only for monitoring
(after the device class is determined).

Our novelty: Prior works developed classifiers and anomaly/change detectors to passively
analyze IoT network traffic. However, there are some missing pieces. First, the majority of existing
works [6, 9, 29, 33, 42–45, 47, 50, 65, 66, 69, 75, 76, 78] just focused on one of the two tasks
(classification or monitoring). Though some works [22, 27, 52, 67] developed a system that addresses
both tasks, they used the same inference model for both of these purposes. This paper argues that
classification and monitoring are different in nature but somewhat dependent. Hence, we best
achieve them separately but in tandem. Second, to our knowledge, there is no work highlighting
and quantifying various characteristics of traffic features except for their prediction accuracy.
This paper quantitatively shows how features are unequal in prediction power, computation costs,
availability, and frequency. Third, no existing work compared the efficacy of specialized models
against that of a single combined model for IoT traffic inference. This paper demonstrates that
specialized models (each trained on specific features) can outperform a single model that uses
the union of those features and then develops an optimization technique to find the best set of
specialized models for a multi-view inference. Fourth, existing works used a single-combined-
view model with a static granularity level for the monitoring task. This paper develops a novel
architecture that dynamically increases granularity utilizing a collection of models per device class.

, Vol. 1, No. 1, Article . Publication date: September 2023.

6 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

!

!"#$%&#'()*+(
!"#$%"$#

,-.(/-0

&$'()*$%

+

! " #! $ % & ' & (

1-22*)(30#4(-256*"7#
"(./%68#.6-99*+#

!!

!"

!#

!!

!"#$%"&" $'&()**"+&

,-&)&%.)''&#!

1

)*!+

)*"+

)*#+

!

:(-.56(2#(;.6-+.('<#
=-6.*.*%"('<#-"'#

'*2=-.+>('

&6-99*+#%9#'()*+(#?

!"#$$%&%'#(%)*

Fig. 2. Architecture of multi-view classification of IoT behaviors.

3 MULTI-VIEW CLASSIFICATION OF IOT TRAFFIC
Discovering the IoT devices connected to a network is the first step for traffic inference. Asset
discovery can be made actively (a response from connected devices to probing packets [39]) or
passively (the first packet sent by each connected device on the network). Let us assume a list of
identities (e.g., MAC/IP addresses) for the connected devices in the network is available.
As we saw earlier in Fig. 1, the inference begins with classification (determining the type of

individual networked devices), followed by monitoring their network behavior which will be
discussed in §4. Fig. 2 illustrates a zoomed-in version of the classification module. It is the system
architecture we develop to infer the mapping between devices and their class. The input of the
classification task is {𝑇𝐷 }, which is the network traffic of an IoT device 𝐷 that we aim to predict
its type. In the literature, various architectures, namely inline (actively processing original data)
or out-of-band (passively analyzing copies of data), have been employed to measure device traffic
{𝑇𝐷 }. Inline solutions are often used for critical use cases like firewalls and/or intrusion prevention,
where an embedded module makes (security or management) inferences. On the other hand, out-
of-band measurement is often employed for use cases like forensics or security information/event
management, whereby inferences are typically made by a machine (on-prem or cloud-based)
that runs corresponding software modules consuming measured traffic. For passive out-of-band
measurement, traffic mirrors can be supplied by employing programmable switches [25–27], SPAN3

ports, or TAP4 devices [21, 42, 51]. In this paper, we configure the network gateway to mirror
network packets to an on-premmachine with software modules to passively classify (in this section)
and monitor (in §4) the traffic of IoT devices connected to the network. Our architecture is designed
to be generic, catering to a variety of traffic features and behavioral modeling algorithms. Though
we use representative features and models in this paper for evaluation, one may choose a subset of
them or extend them with additional features.
For classification, we consider a multi-view approach. This means that a collection of models

(𝑀𝑖 : 1 ≤ 𝑖 ≤ 𝑁), each specializing in a certain aspect (view) of network traffic. Examples of views
can be (but are not limited to) domain names, TCP SYN/SYN-ACK signatures, or packet/byte count

3Switched Port Analyzer
4Traffic Access Point

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 7

of flows at different resolutions (e.g., 3-tuple, 4-tuple, or 5-tuple). Multi-view learning comes with
some benefits compared to a single-combined-view approach: (a) Having multiple distinct models
helps with reducing the number of features needed to train each model and decreases the chance
of overfitting [2]; and (b) In network traffic, certain features may not always be available or appear
less frequently for some devices. For example, one IoT device may never use HTTP (unavailable) for
network communications, or a device may generate TCP packets every minute (frequent) while it
sends UDP packets once an hour (less frequent). Thus, combining features with diverse availability
across heterogeneous classes of IoT assets (single-combined-view) can cause features to be missing
in some of the traffic instances measured from the network, which is not desirable for machine
learning algorithms [16].

We note that various modeling algorithms (multi-class, binary, one-class) come with their pros
and cons in terms of training, re-training (updating), and application. For example, an advantage
of multi-class models is that they can learn the patterns of different classes with a single training
dataset relatively easier. However, training reliable binary (one-vs-rest) models can be practically
challenging [11, 67], especially when dealing with the class-imbalanced datasets that this strategy
often generates. A disadvantage of multi-class models is that when new device classes are added to
the network, the entire model must be updated, perhaps with additional processing to balance the
dataset. On the other hand, binary and one-class models (particularly when all intended features
are embodied in one model) may seem more attractive at scale [36] as they can be updated or added
independently on a per-class basis. That said, device-specific (binary or one-class) models may
suffer from prediction conflicts among themselves since they are independent models. Thus, they
may demand an extra processing step to unify or normalize prediction scores (confidence levels).
All things considered, this work uses multi-class models for the classification phase. It is important
to note that we take a different approach by employing specialized multi-class classifiers, whereby
individual models do not know all traffic patterns. In other words, each multi-class classifier
specializes in a unique traffic attribute that may not necessarily be present in the behavior of
all device classes. We, therefore, may not always need to update all multi-class models when a
new device class emerges on the network. Lastly, one may choose to implement these specialized
classifiers using binary or one-class models, which is beyond the scope of this paper.
Given predictions provided by 𝑁 models (a multi-view approach), we need a mechanism to

consolidate results of (or perhaps, resolve conflicts among) models – we call it a “resolver” module.
In this paper, we use multi-class models to minimize conflict resolution, but one may use one-class
models [67] at this stage too. Different strategies, like majority voting, weighted voting, and average
weighted voting, can be employed to resolve predictions obtained from 𝑁 models. We will evaluate
the impact and efficacy of several resolution strategies in §5. The classification phase ultimately
maps each networked device 𝐷 to one of 𝐾 known classes 𝑑 𝑗 . We note that classical supervised
learning algorithms (this paper included) aim to train a model in the closed-set world, where
training and test samples share the same class space (i.e., 𝐾 IoT devices classes). Open-set learning
is a more challenging and realistic problem, where test samples from the IoT classes are unseen
during training. Automatic recognition of open sets [59] is the sub-task of detecting test samples
that do not come from the training, which is beyond the scope of this paper.
Needless to say that our classification architecture does not require or make any assumptions

for traffic features, the type of models, or resolver techniques. For instance, one may choose a
Random Forest model for TCP SYN signatures, a neural network model for domain names, and a
Naïve Bayes model for TLS cipher suites. Additionally, views are extensible to incorporate other
necessary or desired features.
Let us begin by identifying metrics to characterize traffic features leading to specialized views.

These metrics can help us better understand the difference and quantify the efficacy of various

, Vol. 1, No. 1, Article . Publication date: September 2023.

8 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

traffic features. Following that, we compare specialized IoT traffic classifiers against a single
combined-view one. Finally, we develop an optimization problem for selecting the best set of views.

3.1 Characterization Metrics and Traffic Features
In order to assess various traffic features, we need quantitative metrics. Existing works mainly
used the notion of accuracy to characterize and compare different types of features. Though it is
an important factor, the accuracy metric is insufficient for a comprehensive assessment. In what
follows, we identify four metrics that enable us to compare traffic features.

Cost: Measuring network traffic and extracting the required features incur processing and com-
puting costs. Packet-based features demand packet inspection (by hardware or software). For
a packet-based feature, we define cost as the average amount of CPU time required to extract
it per packet. Flow-based features, on the other hand, can be obtained from programmable or
software-defined networking (SDN) switches [25, 54, 68] without a need for packet inspection.
Programmable/SDN switches (when programmed appropriately [24]) can provide inference
engines with flow-level telemetries (packet/byte counters) at configurable granularities. Note
that programmable switches come with a certain capacity of TCAM (Ternary Content Ad-
dressable Memory) which could be a limiting factor (cost) for flow-based features. Therefore,
we use an approximation for the required TCAM size in bytes for flow-based features.

Accuracy: Traffic features differ in terms of the amount of information they carry. For example,
some DNS domain names can be unique to a device type, whereas NTP packets typically
have a size of 90 bytes (48 bytes of payload plus 42 bytes of UDP, IP, and Ethernet headers)
according to the NTP standard specifications [48] as long as the optional authenticator field
is not used. The amount of information can affect the quality of the predictions, which can
be measured using various metrics like accuracy, precision, recall, and F1-score. This paper
uses the average of correct predictions across device classes for our accuracy metric.

Availability: The heterogeneity of IoT devices makes it challenging to presume what network
protocols they use. Therefore, certain traffic features may not be available for some IoT device
types (classes). For example, the August doorbell cameras do not send any HTTP traffic, and
Samsung smart cameras never send a User-Agent header in their HTTP requests. For a given
traffic feature, we define availability as the fraction of total 𝐾 device classes that we can find
that feature from their network traffic.

Frequency: Although some traffic features are available for certain device classes, they may not
be present all the time (appear infrequently). For instance, JA3 signature is extracted from
TLS handshake, which occurs once per TLS session [54] whereas, Ethernet packet and byte
counts are always present for measurement as long as the device is active on the network.
Relying on less frequent features can increase the response time of the inference model – due
to waiting time before they emerge in the traffic. For a given feature, we define frequency as
the fraction of all time epochs across 𝐾 classes it is present in training instances. Note that
epoch is a configurable parameter. In our experimental evaluations, we use 1-min epochs for
classification and 5-min epochs for monitoring.

To make our discussion more tangible, we next focus on a representative set of network teleme-
tries, including four packet-based and three flow-based feature sets (for classifying IoT behaviors)
to showcase how characterization metrics work. We also look at how specialized-view models
(each trained on a set of features) perform versus a single-combined-view model (trained on a
combination of all features).

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 9

Largely inspired by prior works [54, 62, 67, 68], we consider four packet-based traffic features as
follows.
Domain Name: The name of cloud servers that IoT devices communicate with can be used to

identify device types [62, 69]. Domain names (e.g., “chat.hpeprint.com” for HP printers or
“broker.lifx.co” for LiFX lightbulbs) are extracted from DNS requests sent by IoT devices,
and they are less likely (compared with IP addresses) to change over time [23].

SYN signature: TCP standard [17] defines an optional field at the end of TCP packets called TCP
Options. TCP options include a list of fields, some of which may have a value assigned to
them. For example, the Maximum Segment Size option must have a value, while the SACK
Permitted option (selective acknowledgment) has no value. Our recent work [54] showed
that IoT devices often display unique and consistent SYN signatures, revealing their type.

HTTP User-Agent: HTTP packets may contain a User-Agent header that allows clients to intro-
duce themselves to the servers they connect. The User-Agent header can highlight the browser
and/or operating system so the server can customize its response to clients accordingly. Work
in [33] employed the User-Agent header to distinguish IoT device types.

JA3 signature: TLS connections are initiated by a Client Hello handshake packet. This packet
contains information about the client’s capabilities and preferences for the TLS connection,
including the TLS version, cipher suites, a list of extensions, elliptic curves, and elliptic curve
formats. Work in [63] developed a signature format based on these values to detect malware
activities in TLS traffic. For the first time (to our knowledge), this paper uses JA3 signatures
to determine the class of IoT devices.

To automate the process of computing packet-based features (identified above), we employed port
and protocol numbers to filter DNS (IP proto=17, UDP/53), SYN signature (IP proto=6), HTTP
(IP proto=6, TCP/80), and TLS (IP proto=6, TCP/443) packets from a mix of traffic. Packets
that match an intended port/protocol number (e.g., IP proto=6, TCP/443) but do not supply the
expected feature (e.g., TLS JA3 signature in this example) are discarded. Note that port and protocol
numbers are not among the features we use for IoT traffic inference (classification or monitoring)
in this paper—our classifiers are not trained on port/protocol numbers since they cannot be used as
reliable features for traffic classification [36].
In what follows, we explain three sets of flow-based features (some employed by prior works

[67, 68]) that capture distinct patterns of IoT behaviors on the network. Note that “↓” and “↑”
signs, respectively, refer to the incoming direction of traffic “to” the networked IoT device and the
outgoing direction of traffic “from” the networked IoT device.
Datalink: This set captures statistical measures of total network activities per each device unit

(discovered on the network), including four specific features: ↓total packet count, ↓total byte
count, ↑total packet count, ↑total byte count. These coarse-grained features are obtained
from statistics of two flow entries (one matching source MAC address and one matching
destination MAC address of packets against a given device MAC address), covering all traffic
of layer-2 and above, including (but not limited to) ARP, IPv4, IPv6, UDP, and TCP.

Transport: This set increases the granularity of statistics by extending its focus to transport-layer
protocols. For this set, four flow entries are needed that match: (a) source/destination MAC
address and TCP transport protocol5 (two flows) and (b) source/destination MAC address
and UDP transport protocol6 (two flows). We obtain a total of eight medium-grained features:

5IP protocol number = 6.
6IP protocol number = 17.

, Vol. 1, No. 1, Article . Publication date: September 2023.

10 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

Belkin m
otio

n se
ns.

August
doorb

ell c
am

.

Am
azo

n Ech
o

Sam
su

ng sm
art

ca
m

.

Philip
s H

ue

Belkin ca
m

.

Google H
om

e

Google C
hro

m
eca

st

Sam
su

ng Sm
artT

hings

Canary
 ca

m
.

Neta
tm

o ca
m

.

Dro
pca

m

TP-Link ca
m

.

W
ith

ings s
leep se

ns.

Belkin sw
itc

h

Trib
y sp

eaker

HP Prin
te

r

LiFX lig
ht b

ulb

TP-Link plug

Ring doorb
ell

Pixsta
r p

hoto
 fr

am
e

Neta
tm

o w
eath

er

W
ith

ings b
ody ca

rd
io

Nest
sm

oke se
ns.

Awair
se

ns.

IoT device type

102

103

104
in

s
ta

n
c
e
 c

o
u
n
t

Fig. 3. The number of instances per each IoT device type in our benign dataset.

↓TCP packet and byte count, ↑TCP packet and byte count, ↓UDP packet and byte count,
↑UDP packet and byte count, per each device unit (a given device MAC address).

Application: This set focuses on fine-grained features specific to network activities of three
application-layer protocols, namely TCP/80 (a proxy for HTTP), TCP/443 (a proxy for HTTPS),
and UDP/53 (a proxy for DNS). Similar to what was discussed above for the other two sets, each
protocol demands two flow entries (matching TCP/UDP based on IP protocol, a corresponding
port number, source/destination MAC address), and provides four features meaning a total of
12 application-layer features.

It is important to note that all the flow-based features discussed above can be obtained con-
currently from a programmable switch using multiple flow tables, each table corresponding to a
specific flow granularity (one for datalink, one for transport, and one for application).

3.2 Quantifying the Efficacy of Specialized-View Classifiers
We now quantify the four characteristic metrics of features identified above using the traffic traces
of our IoT testbed. We collected PCAP traces (consisting of about 100 million packets exchanged
locally and remotely) on our testbed serving 25 consumer IoT devices (a unit per each device type)
during February and March 2020. IoT devices selected for our testbed were among the popular ones
in the Australian consumer market at that time. A subset of these devices can be found in a typical
smart home environment. Our IoT devices include eight cameras (August doorbell camera, Samsung
smart camera, Belkin camera, Canary camera, Netatmo camera, Dropcam, TP-Link camera, Ring
doorbell), six sensors (Belkin motion sensor, Nest smoke sensor, Netatmo weather station, Awair air
quality sensor, Withings sleep sensor, Withings body cardio scale), two power switches (TP-Link
plug, Belkin switch), two bulbs (LiFX light bulb and Philips Hue), five entertainment/assistant
devices (Google Chromecast, Pixtar photo frame, Triby speaker, Amazon Echo, Google Home), a
smart hub (Samsung SmartThings), and a printer (HP printer). We use a script written in Golang
to analyze the collected PCAP files and discretize them into 1-minute epochs (configurable). The
script runs on a machine using an 8-core Intel Core i9 CPU, 32GB of memory, and storage of 1TB.
Fig. 3 illustrates the number of instances (1-minute epochs) per each device type in our benign
dataset. Most IoT devices were highly active (with thousands to tens of thousands of instances)
during the capture period; however, three devices, namely the Withings body cardio scale, Nest
smoke sensor, and Awair air sensor, displayed less activity (with less than 100 instances) during the
data collection period.

Our Golang script measures the average CPU time needed for extracting packet-based features of
each packet. For flow-based features, the cost is an estimated amount of TCAM required to monitor
the activities of each device unit connected to the network. For a given set of flow-based features,

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 11

Table 1. Characteristics of feature sets we quantified by applying specialized classifiers to our data.

Packet-based Views Flow-based Views
Domain name SYN sign. User-Agent JA3 sign. Datalink Transport Application

Accuracy
𝜇 88% 85.9% 100% 98% 94.4% 97.2% 97.0%
𝜎 29% 33% 0 5% 15% 9% 7%
𝑚𝑖𝑛 3% 0% 100% 75% 27% 55% 69%

Cost 127 ns 220 ns 234 ns 285 ns 12 bytes 28 bytes 54 bytes
Availability 96% 96% 36% 88% 100% 96% 96%
Frequency 28% 42% 34% 15% 100% 97% 62%

the amount of TCAM is proportional to the number of flow rules inserted into the programmable
switch. Furthermore, the number of matching fields is another factor determining the amount of
required TCAM. Let us approximate the total byte size of TCAM required by each set of flow-based
features to monitor the network activities of a single IoT device. The size of each matching field
comes from the standard size of the respective field. We note that a MAC address is six bytes, an
IP protocol field is one byte, and a transport-layer port number field takes two bytes of memory.
Therefore, the TCAM cost for datalink, transport, and application flow features are estimated as 12
bytes (two flows of 6 bytes each), 28 bytes (four flows of 1 plus 6 bytes), and 54 bytes (six flows of 2
plus 1 plus 6 bytes), respectively. Note that increasing the granularity (from datalink to application)
requires more matching fields and hence more TCAM memory. We note the cost is measured in
different units for packet-based versus flow-based features. One may attempt to unify the cost
measures by converting CPU times and TCAM sizes to dollar costs. However, this is beyond the
scope of this paper. We will use a simpler cost proxy for optimization in §3.3 in order to unify
packet and flow-based costs.
Classification Dataset: During each 1-min epoch, we extract the traffic features discussed

above for individual active devices. We use the MAC address to identify connected devices and
associate traffic features with them. We maintain a list of measured values for packet-based features
and compute packet/byte counters for flow-based features during 1-min epochs. Finally, we export
the traffic features (list of packet values and flow counters) of a device per epoch to a CSV file row.
We split our entire processed data into three CSV files: (1) TRAIN dataset, containing instances

from the month of February that we use to quantify the cost, availability, and frequency metrics,
and also to train machine learning models (specialized ones and the single-combined one); (2)
TEST1 dataset, containing instances from the first ten days of March that are used to measure
the accuracy metric for the rest of this section; and, (3) TEST2 dataset, containing instances from
March 11 to 15 that are used to evaluate the performance of the multi-view classification in §5. We
publicly release these three CSV files to the research community [56].

Given four sets of packet-based features and three sets of flow-based features, we train a Random
Forest model (proven to be effective in learning patterns from IoT traffic [47, 61, 68, 69]) per each
feature set, meaning a total of seven specialized models. Also, for packet-based features, we employ
the bag of words technique, which is a well-known method to handle categorical data in machine
learning applications [32, 37, 69]. To obtain the baseline measure of accuracy for specialized models,
we apply them to TEST1 dataset. For each model, we compute three measures of accuracy: average
accuracy per IoT class (𝜇), the standard deviation of accuracy across IoT classes (𝜎), and theminimum
accuracy across IoT classes (𝑚𝑖𝑛).
Performance of Specialized-View Classifiers: Table 1 summarizes the four characteristic

metrics of our traffic features when we applied their corresponding specialized classifiers to our
data. Each row is color-coded in which yellow cells highlight weaker performance, while greener

, Vol. 1, No. 1, Article . Publication date: September 2023.

12 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

cells show stronger/better performance. Note that the color interpretation varies across metrics, e.g.,
higher average accuracy, lower standard deviation of accuracy, lower cost, and higher availability
are considered as better results and hence are highlighted with greener color.

Starting with the domain name model (under packet-based views), we see an average accuracy
of 88% with relatively large variations across classes that is mainly due to certain domain names
shared across different device types. Manual investigations of the TRAIN dataset revealed that
Belkin camera, Belkin motion sensor, and Belkin switch communicate with the same domain of their
manufacturer (Belkin: “belkin.com”) and CDN service provider (CloudFront: “cloudfront.net”).
We also found that devices like Google Home and Google Chromecast perform reverse DNS
lookups for eight specific IP addresses, which result in DNS queries with a domain name of format
“<IPaddress>.in-addr.arpa”. Finally, we observe that queried domain names are available in
the traffic of almost every (96%) IoT device and seem to be relatively predictive of IoT classes, but
DNS packets are only seen in their traffic just less than 30% of the time (not highly frequent).
The specialized model trained on SYN signatures gives an accuracy slightly lower than the

domain name model. We manually verified that this is again mainly attributed to the shared SYN
signatures in our TRAIN dataset. We found ten IoT device types shared their SYN signature with
another device type. Similar to what we saw above in domain names, Belkin devices display identical
SYN signatures in their network traffic. For example, the Belkin switch emits three unique SYN
signatures: two were found in SYN-ACK packets sent locally in response to Samsung SmartThings,
Belkin camera, and Belkin motion sensor, and one in SYN packets sent to access cloud-based
services remotely. From these signatures, the first two (local) are shared with the Belkin camera and
the Belkin motion sensor, and the third one (remote) is shared with the TP-Link camera, leaving no
unique SYN signature for the Belkin switch. After manually investigating the traffic traces of the
TP-Link camera, we found no common cloud servers with those of the Belkin switch. We think
the shared SYN signature (remote) is probably attributed to using similar firmware or software
libraries in the TP-Link camera and the Belkin switch.

The two models trained on User-Agent headers and JA3 signatures yield fairly high accuracy (i.e.,
98-100%) for those classes in which these features are available (36% for User-Agent and 88% for
JA3). Interestingly, no common User-Agent or JA3 signatures were found (by manual verification)
across all IoT classes. The reason for an imperfect accuracy (98%) of the JA3 model is that the
Philips Hue lightbulb comes with two different JA3 signatures in the TEST1 dataset, of which one
was not seen in the TRAIN dataset. The two signatures are used when the lightbulb communicates
with two different IP addresses in the Google cloud. We manually verified that the contacted server
in the TRAIN dataset was located in the Netherlands, and the one that was newly seen in the TEST1
dataset was located in the US.
Moving to flow-based views, we see those three specialized models perform relatively well in

terms of accuracy but cannot beat User-Agent and JA3 models. As expected, flow-based features are
more available and frequent compared to their packet-based counterparts. The accuracy (particularly
by measures of 𝜎 and min) increases steadily in granularity. Fine-grained application models
outperform coarse-grained datalink models. Although a slight decrease (0.2%) in the average
accuracy (𝜇) is seen from transport models to application models, the standard deviation and min
measures highlight notable improvements.

Table 1 highlights the fact that none of our specialized models (and their corresponding features)
is perfect by all four metrics. User-Agent and JA3 models seem highly accurate but not desirable by
the metrics of availability and frequency. Flow-based models perform moderately better. However,
all of them showed a relatively low accuracy in predicting the class of the Nest smoke sensor (the
minimum value). However, the domain name model perfectly classified (100% accuracy) the DNS
packets of the Nest smoke sensor. This highlights the fact that a reliable traffic classification for a

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 13

growing range of device types demands collective specialization – several models, each measuring
and analyzing a unique aspect of the network traffic. Now, the question is “how can/should one best
employ these specialized features/models for IoT traffic inference?". In what follows, we train a single
combined model on all features discussed above and evaluate its performance against individual
specialized models.

Evaluating Performance of Classifiers (Specialized versus Single-Combined-View): With
the specialized models having their performance evaluated individually and compared with each
other, let us look at how they compete with a single-combined model. To have a fair comparison, we
train a Random Forest model on all the seven features: domain names, SYN signatures, User-Agents,
JA3 signatures, and ↓↑ packet/byte counts for Datalink, Transport (TCP, UDP), Application (HTTP,
HTTPS, and DNS) traffic flows, for the single-combined-view classifier. Like we did earlier in this
section, we use the TRAIN and TEST1 datasets for training and testing of the combined-view model.
As the combined-view model includes all features shown in Table 1, its cost becomes the sum

of the cost of each feature set, meaning about 866ns CPU time and 94 bytes TCAM memory. This
cost is far higher than any of the specialized models, as reported in Table 1. Moving to accuracy,
the combined-view model gives an average accuracy (across all 25 IoT classes) of about 96% with
a standard deviation of 9%. The lowest class accuracy (𝑚𝑖𝑛) of the combined-view model is 55%
for the Nest smoke sensor. Comparing these measures with those reported in Table 1, it can be
clearly seen that three specialized-view models, namely User-Agent, JA3 signature, and Application
models, outperform the combined-view model, even though their features are a subset of those used
to train the combined-view model. This could be attributed to many instances with missing-value
features due to the variability of features’ availability and frequency. Missing values are known to
be detrimental to the performance of machine learning models [31, 77].

3.3 Optimal View Selection
With some specialized-viewmodels outperforming the single-combined-viewmodel, we now aim to
improve inference quality and efficiency by selecting the optimal set of specialized models (realizing
a multi-view inference). The optimal set aims to minimize the total computation cost while it meets
a certain level of accuracy, which is explained in detail in what follows. Needless to say that with
sufficient computing and processing powers (CPU and TCAM) and relaxing the cost constraint,
one can employ all the specialized models we have discussed so far. However, two considerations
are of utmost importance in real practice (particularly at scale): (1) processing costs are always
capped; therefore, only a subset of specialized models can be employed to meet constraints, and (2)
improving the prediction power (accuracy of classification) realized by a multi-view approach must
be balanced against other factors and additional costs. For example, IoT device types that generate
HTTP User-Agent headers can be perfectly classified by the corresponding model. However, those
types are a subset of devices that generate JA3 signatures, which can also be classified perfectly by
the JA3 model. In this scenario, no accuracy gain will be realized if we select the User-Agent model
along with the JA3 model.
To formulate an optimization problem, one may attempt to minimize the total cost and/or

maximize the prediction accuracy. An important factor to note here is the cost unit is different for
packet-based features (CPU time) compared to that of flow-based features (TCAM size). Therefore,
incorporating various costs into a complete optimization requires some forms of unification and/or
adaptation (e.g., converting CPU and TCAM usage to Dollar cost that can be directly used in the
objective function), which we leave for future work. This paper demonstrates the possibility and
impact of approximate optimization. We simplify our objective function by minimizing the number
of specialized models considered. Let 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑁] denote a vector of binary values, where

, Vol. 1, No. 1, Article . Publication date: September 2023.

14 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

!"#$

!"#$$%&

'$()*+%&*(!

! "

!

!#

!"!# !"!# !"!# !"!#

"#$%%&'&($)&*+

!!

!"

!#

! " $%

$%$!

!

!"#$$!%&'()%(#"*$+%,-

&! '! (!

&" '" ("

&# '# (#

!

!"#$%&'()*+",-('./"0

!"#$%&"#$%'(%)&"#*

"#$#%"
& ' (')

!"!
!# $!

!%

!""
$"

#%

$%$

!

!"$
! # $$

! % !"$
% # $$

%%!"$
& # $$

&% !

&'()'*+,-.%,/01%,+2.+'()/

'3/,%4+2%/)

!

!

!

!

Fig. 4. Resolution method for a multi-view traffic classification of IoT device 𝐷 .

𝑥𝑖 = 1 indicates the specialized-view model 𝑀𝑖 , where 𝑖 ∈ [1, 𝑁], is selected for inference, and
𝑥𝑖 = 0 otherwise. Therefore, the objective function is given by:

min
𝑁∑︁
𝑖=1

𝑥𝑖 (1)

In terms of constraints, every IoT class is expected to realize a prediction accuracy of more than
a configurable threshold. That way, a minimum prediction quality is secured across individual
classes by incorporating necessary specialized models. The threshold value can be set specifically
on a per-class basis. In this paper, we choose a global threshold (denoted by 𝐴) across all classes.
Therefore, each specialized model is considered either feasible (producing the desired accuracy)
or infeasible (not delivering the desired accuracy) per each known class, determined from prior
validation/testing on labeled data. Let 𝐹 = [𝑓𝑖, 𝑗]𝑁×𝐾 denote the feasibility matrix of 𝑁 models
across 𝐾 IoT device classes.

𝑓𝑖, 𝑗 =

{
1 if model𝑀𝑖 is feasible (accuracy ≥ 𝐴) for class 𝑑 𝑗
0 otherwise (2)

where, 𝑖 ∈ [1, 𝑁] and 𝑗 ∈ [1, 𝐾]. Our constraints, therefore, can be stated by:

∀𝑗 ∈ [1, 𝐾],
𝑁∑︁
𝑖=1

𝑥𝑖 .𝑓𝑖, 𝑗 ≥ 1 (3)

In other words, this constraint essentially checks all elements in the vector of 𝑋 × 𝐹 are non-zero.
In §5, we show how this optimization problem can be mapped to a convex problem and solved
efficiently using off-the-shelf solvers such as CVXPY tool [14], initialized by data from our TEST1
dataset. Having our problem defined as a convex optimization problem is attractive as convex
problems offer polynomial-time solutions as opposed to non-convex ones that are NP-Hard in
general. We will show that our optimally-selected multi-view will incur a sixth of the total cost of
all specialized models with almost the same level of prediction accuracy.

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 15

3.4 Resolving Multi-View Predictions
With our multi-view approach, specialized models work independently and in parallel. Each model
makes its prediction whenever the necessary features become available. For example, in an epoch,
a connected device may generate a DNS query but no TCP SYN packet is sent. Given models are
often imperfect (may make incorrect and/or less confident classification), a robust strategy is we
collect predictions (from various specialized models for a given device 𝐷) over a period of time (say,
six hours) and resolve discrepancies among models and across predictions for a final prediction the
class for 𝐷 .

Fig. 4 illustrates how multi-view predictions are resolved for a given device 𝐷 . The device traffic
𝑇𝐷 is measured every epoch time and presented to 𝑁 specialized models to make their inference
(the green classification box). In total, device 𝐷 can receive a maximum of 𝑁 × 𝐸 raw predictions
within 𝐸 epochs, represented by the matrix on the top left of Fig. 4. Note a cell with value “NaN”
highlights a model (in rows) that is unable to predict at the corresponding epoch (in columns) due
to missing features. The prediction (𝑑𝑒𝑖 , 𝑠𝑒𝑖) is a two-tuple, consisting of the predicted class 𝑑𝑒𝑖 by
model𝑀𝑖 at epoch 𝑒 with a corresponding confidence score 𝑠𝑒𝑖 .
At the end of epoch 𝐸, raw predictions of device 𝐷 are consolidated into a chart with 𝐾 rows

and three columns. The first column represents unique classes 𝑑 𝑗 (𝑗 ∈ [1, 𝐾]) various models may
classify the device. The second column shows the count (𝐶 𝑗) of raw predictions for each class 𝑑 𝑗 .
The third column is the total sum of scores in raw predictions for each class 𝑑 𝑗 , computed by:

𝑆 𝑗 =

𝐸∑︁
𝑒=1

𝑁∑︁
𝑖=1

𝑠𝑒𝑖 if 𝑑𝑒𝑖 = 𝑑 𝑗 (4)

We acknowledge that one may want to take a more conservative approach, considering raw
predictions with scores higher than their desired level [55]. In this paper, we do not filter predictions.
In ideal situations, we would expect to see a single row of non-zero counts in the consolidated

predictions chart, meaning𝐷 is consistently mapped to one class by all specialized models. However,
finding𝐷 mapped to two ormore classes (e.g.,𝐷 ↦−→ 𝑑1 and𝐷 ↦−→ 𝑑2) is a reasonably likely outcome
in practice. Therefore, resolving those conflicting predictions becomes important. In this paper, we
consider three resolution strategies discussed next.

Majority Voting (MV): This method considers the most popular label as the final result. In other
words, regardless of the classification score, the class with the largest count (in the second
column of the consolidated chart) is the winner. For example, assume at the end of the
resolution period, we obtain 𝐷 ↦−→ 𝑑1 hundred times, 𝐷 ↦−→ 𝑑2 ninety times, and 𝐷 ↦−→ 𝑑3
eighty times from our models. In this case, MV selects 𝑑1 as the final prediction.

Weighted Majority Voting (WMV): This method primarily promotes confident predictions. In
other words, regardless of counts, the class with the largest total score (in the third column
of the consolidated chart) is the winner. Suppose in the example above, the total score for
𝐷 ↦−→ 𝑑1 is 75, for 𝐷 ↦−→ 𝑑2 is 80, and for 𝐷 ↦−→ 𝑑3 is 75. In this case, WMV infers 𝑑2 as the
device type of 𝐷 .

Average Weighted Majority Voting (AWMV): Thismethod considers popularity and confidence
by taking the ratio of the total score to the count. In other words, the class with the largest
average score (the third column divided by the second column of the consolidated chart) is
the winner. In our examples above, the average weight of 𝐷 ↦−→ 𝑑1 is 0.75, and 𝐷 ↦−→ 𝑑2 is
0.89, and 𝐷 ↦−→ 𝑑3 is 0.93. In this case, AWMV selects 𝑑3 as the final label.

In §5, we will show how these resolving methods affect the accuracy of the classification phase.

, Vol. 1, No. 1, Article . Publication date: September 2023.

16 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

!

!"#$%&#'()*+(
!"#$%"$#

,-.(/-0

!!

!"#$%&'()*$+"#

!
!"!

#!,-*)."'()*$+"#

/$+"'()*$+"#
!"!"#

!"#"#

!"$"#

!"#$%"&$#'

!"#$%&"'(")$&#*$"+,

-#&$.$./0"+,(#0+(+.'-#$*1"+

!
$"$

#!

!
!"$

#!

!
%"$

#!

!
%"!

#!

!
%"%

#!

!
%"&

#!

Fig. 5. Architecture of progressively monitoring IoT behaviors with three levels of granularity.

4 PROGRESSIVE MONITORING OF IOT NETWORK BEHAVIORS
We saw earlier in Fig. 1 that the monitoring phase commences once the class of device 𝐷 is
determined. This phase is a continuous process for validating the behavior of classified IoT devices
against their benign profile.
Threat Model: The behavior of an IoT device may change [67] or deviate from its expected

patterns due to reasons like malware infection [28], volumetric network attacks [25], or even
legitimate changes (which may warrant updating the corresponding profile/model) [27]. Volumetric
attacks send a large number of packets to target IoT devices for purposes such as draining their
battery, disabling their functionality, or utilizing their reflection power [41] to overwhelm a victim
server on the Internet. In §5.2, we evaluate our progressive monitoring for attacks such as Ping-of-
Death, SYN attack, SYN reflection attack, and UDP DDoS.

With the device class determined, we can employ models trained on expected benign behaviors
specific to that class (one-class models) for monitoring. At this stage, our objective is to infer from
device traffic continuously and close to real-time; therefore, we incorporate traffic features with
the highest measure of availability and frequency. That said, one may choose to employ some
additional models that make inferences at slower timescales (catering to less frequent features).
We recall from Table 1 that pack-based features are relatively less available and less frequent
compared to their flow-based counterparts. Hence, focusing only on those packet-based features
can come at the risk of missing real-time short-lived anomalies in the behaviors of connected
devices. Flow-based features, instead, are available for real-time monitoring. Therefore, we choose
to develop our monitoring inference models based on the flow-based features.
Fig. 5 illustrates the architecture of the monitoring stage of our IoT traffic inference. Similar

to what we discussed in the previous section, the monitoring is done passively by a software
component running on a general computer fed by the mirror of IoT network traffic from the
network gateway. Note that the classification and monitoring modules can collocate on the same
computer but operate separately. Given IoT device𝐷 mapped to class 𝑑𝑖 , a number of device-specific

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 17

one-class models denoted by𝑚𝑑𝑖 are trained and employed to ensure 𝐷 behaves according to its
expected patterns; if not, anomalies are flagged by one or more of those models.

It can be seen in Fig. 5 that our architecture advocates an approachwherebymonitoring progresses
in stages, each with models of specific granularity (from coarse-grained to medium-grained to
fine-grained) to manage processing costs at scale. Given IoT class 𝑑𝑖 , let𝑚𝑑𝑖

𝑥,𝑦 denote model number
𝑦 at granularity level of 𝑥 , where 1≤𝑥≤3 in this paper. Progression can be triggered in different ways.
For example, one may choose to increase the granularity (more expensive monitoring) whenever
coarser models flag anomalies for a specific device 𝐷 (while other devices continue to be monitored
by coarse-grained as long as they conform to their expected patterns). Another may want to
frequently check the traffic of certain devices against all or just fine-grained models depending
upon their available computing resources.
It is important to note that, similar to our classification architecture (§3), our monitoring ar-

chitecture is flexible and generic in terms of its features, models, and progression. For example,
at the finest level, it allows for the choice of application flows (e.g., HTTPS and DNS versus SSH,
HTTPS, and DNS). Even in an environment where a device type communicates over a non-standard
protocol (e.g., TCP/6000), a one-class model specific to that application flow (service) can be trained
and added to this layer. In this paper, we consider and experiment with a three-layer architecture,
but one can freely choose more or fewer layers at different granularities.
At each granularity, a set of one-class models (trained on a corresponding set of features) will

be applied. Coarse-grained models are trained on expected behaviors at an aggregate level, while
behaviors across certain protocols (transport and/or application layers) are analyzed as granularity
progresses. In this paper, we use models across the three layers as follows.

Coarse-grained: For this layer, we use a model𝑚𝑑𝑖
1,1 that is trained on an aggregate measure of

traffic activities, namely the four features of datalink flows (i.e., ↓↑ total packet/byte counts
of a given MAC address 𝐷) discussed in §3.1.

Medium-grained: For this layer, we use two models:𝑚𝑑𝑖
2,1 trained on the feature of TCP flows

(i.e., ↓↑ TCP packet/byte counts), and𝑚𝑑𝑖
2,2 trained on the feature of UDP flows (i.e., ↓↑ UDP

packet/byte counts).
Fine-grained: For this layer, we use four models:𝑚𝑑𝑖

3,1 trained on ↓↑ HTTP packet/byte counts,
𝑚
𝑑𝑖
3,2 trained on ↓↑ HTTPS packet/byte counts,𝑚𝑑𝑖

3,3 trained on ↓↑ DNS packet/byte counts,
𝑚
𝑑𝑖
3,4 trained on ↓↑ NTP packet/byte counts.

Note that some of these models may not be applicable to some IoT device classes. For example,
Belkin devices, the LiFX lightbulb, the Nest smoke sensor, the Netatmo weather station, and the TP-
Link camera do not use HTTPS traffic (based on the dataset we analyzed for this paper). Therefore,
no HTTPS model is trained for those classes.
Employing models with different granularity not only helps with managing the computing

resources (when used progressively) but also makes the monitoring phase explainable by flagging
anomalies or deviations pertinent to a subset of traffic channels (e.g., ICMP, TCP, UDP, HTTP,
NTP, DNS) communicated by the device. This would help network administrators narrow their
investigations in verifying and/or determining the exact type of attack. For example, if our TCP
model detects an anomaly, the investigation can be focused on TCP-based attacks such as SYN flood
and SYN reflection. In another example, if the Ethernet model flags an anomaly while TCP/UDP
models produce no alert, the attack could be attributed to protocols like ICMP (e.g., Ping-of-Death).
It is important to note that every anomaly does not necessarily indicate malicious activities. The
output of the monitoring phase can be consumed by a subsequent inference stage (beyond the

, Vol. 1, No. 1, Article . Publication date: September 2023.

18 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

0 10 20 30 40
PCA component 1

−15

−10

−5

0

5

10

15

P
C

A
 c

o
m

p
o
n
e
n
t

2

cluster 1

cluster 2

cluster 3

cluster 4

(a) Default convex hulls.

0 10 20 30 40
PCA component 1

−15

−10

−5

0

5

10

15

P
C

A
 c

o
m

p
o
n
e
n
t

2

cluster 1

cluster 2

cluster 3

cluster 4

(b) Our refined convex hulls.

Fig. 6. Convex hulls (solid lines) versus spherical boundaries (dashed lines) for training instances of Belkin
switch: (a) default convex hulls contain all data instances of corresponding clusters, and (b) our refined version
of convex hulls exclude noises from benign boundaries.

scope of this paper and left for future work) that determines specific attacks by checking measured
anomalous patterns against known signatures.

One-class models are often trained on data purely from an objective class (e.g., benign instances
[25, 67]). However, some algorithms like Isolation Forest [3] require some levels of impurity in
training data (e.g., benign instances dominate, but some malicious instances are present). We
argue that including malicious instances in the training dataset may limit the model’s learning to
only “known” malicious behaviors [73]. Hence, models cannot react reliably to growing attacks
with unbounded behaviors (zero-day attacks). A better strategy, particularly for IoT devices with
bounded normal behaviors, is to train the models on only benign data, so any instance outside the
benign boundary would be considered abnormal.
Clustering algorithms have proven to be effective in modeling expected patterns. However,

some like 𝐾-Means inherently lack the notion of boundary. In other words, a data instance, no
matter where it appears in the space and how far it is from expected instances, will be assigned
(with a probability) to its nearest cluster. Therefore, to employ these models for anomaly detection
applications, we need to augment them with custom boundaries. Work in [67] used spherical
boundaries around the centroid of each cluster by covering 97.5% of the closest points to the
centroid. Spherical boundaries are easy to form. However, there are many cases where the area
they cover is unnecessarily bigger than the actual cluster, which makes the boundaries relatively
loose. We will show in §5 that loose boundaries can increase the chance of false negatives and
reduce anomaly detection rates.
In this paper, we use the concept of convex hull [60] for developing custom-shaped clusters.

Given a set of points 𝑃 , the convex hull is the smallest boundary that contains all points in 𝑃 .
Note that the complexity of checking whether an instance falls inside convex hull boundaries is
higher than spherical boundaries – the time complexity is O(𝑃) versus O(1). There are existing
tools like SciPy library [64] that generate convex hull for a given set of points. In this paper, we
employ PCA (Principle Component Analysis) to reduce the dimensions of our feature space into
a 2D space. This dimension reduction helps with the training/testing time and also enables us to
visualize the results. Note that one can also generate convex hulls on a multi-dimensional feature
space with less than nine dimensions [64]. With convex hulls, a practical challenge is that training
instances may still contain unintended noises that can lead to undesirable boundaries. Collecting
purely benign traffic traces of networked assets is almost infeasible as incidents such as device

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 19

misconfiguration, network disruption, or even uncaught attacks can poison the benign dataset.
Therefore, we need a data purification (refinement) method to avoid including noise instances in
our benign boundaries. In this paper, we first use 𝐾-Means on raw benign data (including noises)
to get the initial set of clusters. Next, we apply two filters (explained below) to remove some odd
clusters (with characteristics too dissimilar to their cohort) and then prune the remaining clusters
by tightening their boundary.

Fig. 6 illustrates the clusters (formed by𝐾-Means) and their boundaries. In Fig. 6(a), the boundaries
computed by the default convex hull are compared with the spherical boundaries. The convex hull
algorithm requires at least three data points to form a boundary. Cluster 4, therefore, is excluded
by default due to having only two data instances. It can be seen in Fig. 6(a) that default convex
hulls include all instances which can skew the benign boundaries (e.g., cluster 3 and, to some
extent, cluster 2) toward seemingly noisy instances. Such performance is enhanced in Fig. 6(b),
highlighting the refined version of the convex hull we developed for this paper.

4.1 Refined Convex Hull
Noises are inevitable in our training dataset which is intended to be purely benign. Traffic noises
are often a few short-lived instances that are caused due to intermittent outages or variations in the
network services. Therefore, the common observation is that noisy instances are usually scattered
and appear far from most benign instances. Noise can lead to two detrimental impacts on clusters:
(1) Some clusters emerge that do not share the characteristics of other benign clusters. These

clusters are often sparse, as opposed to most benign clusters that are formed with a significantly
larger number of instances (dense). An indicator for distinguishing sparse from dense clusters is
the mutual distance of the instances. In sparse clusters, instances are far from each other; hence,
we expect to see a more prominent measure of mutual distance than the dense clusters.

(2) Although some clusters are dense, they may include noisy instances that can skew/loosen
their benign boundary. We refer to these noise instances as outliers, which are often far from the
centroid of their corresponding cluster compared to other instances in the same cluster.
In what follows, we explain the methods we develop for detecting sparse clusters and outlier

instances in dense clusters:
Detecting Sparse Clusters: For this, we use the distribution of mutual distance (denoted as𝑀𝐷)

across all clusters. Having a total of 𝐶 clusters, for a given cluster 𝑐 ∈ [1,𝐶] with 𝑃 instances in it,
we compute a mutual distance matrix

[
𝐷𝑎,𝑏

]
𝑃×𝑃 in which 𝐷𝑎,𝑏 refers to the distance of instances 𝑎

and 𝑏. From the matrix 𝐷 , we measure𝑀𝐷𝑐 (i.e., the average mutual distance across 𝑃 instances in
the cluster 𝑐). Computing𝑀𝐷𝑐 for all 𝐶 clusters gives a distribution from which we compute an
average (𝜇𝑀𝐷) and standard deviation (𝜎𝑀𝐷) across all 𝐶 clusters.

A cluster 𝑐 is sparse if𝑀𝐷𝑐 > 𝜇𝑀𝐷 + 𝛼.𝜎𝑀𝐷 , where 𝛼 is a configurable parameter to specify how
much deviation from the average is acceptable. Increasing 𝛼 will allow for the inclusion of sparse
clusters, and decreasing it will aim for highly-dense clusters.

Detecting Outliers: We focus on distances of points from the cluster centroid to detect outliers
inside a relatively dense cluster. Let 𝐶𝐷𝑎 denote the distance of instance 𝑎 (for all 𝑎 ∈ [1, 𝑃]) from
the centroid. The distribution of 𝐶𝐷𝑎 is represented by 𝜇𝐶𝐷 and 𝜎𝐶𝐷 , referring to the average and
standard deviation of distances, respectively.
Now, for a given cluster, instance 𝑎 becomes an outlier if 𝐶𝐷𝑎 > 𝜇𝐶𝐷 + 𝛽.𝜎𝐶𝐷 , where 𝛽 is a

configurable parameter like 𝛼 explained above.
We also publicly release our Python source code for generating the convex hull of one-class

models [56]. In §5, we will evaluate the refined convex hull model over a range of 𝛼 and 𝛽 values
and demonstrate how they can affect the performance of anomaly detection.

, Vol. 1, No. 1, Article . Publication date: September 2023.

20 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

D
om

ai
n

na
m

e

SY
N
 s
ig

n

U
se

r-
A
ge

nt

JA
3

si
gn

D
at

a-
Li
nk

Tr
an

sp
or

t

A
pp

lic
at

io
n

model

Amazon Echo
August doorbell cam.

Awair sens.
Belkin cam.

Belkin motion sens.
Belkin switch
Canary cam.

Dropcam
Google Chromecast

Google Home
HP Printer

LiFX light bulb
Nest smoke sens.

Netatmo cam.
Netatmo weather

Philips Hue
Pixstar photo frame

Ring doorbell
Samsung SmartThings

Samsung smart cam.
TP-Link cam.
TP-Link plug

Triby speaker
Withings body cardio
Withings sleep sens.

Io
T
 d

e
v
ic

e
 t

y
p

e

100 100 NaN 100 100 100 100
100 8 NaN 100 100 100 100
NaN NaN NaN NaN 100 NaN NaN
100 100 100 100 100 100 100

3 100 100 100 100 100 96
100 100 NaN 100 96 95 100
100 96 100 100 100 100 100
100 100 NaN 100 100 100 100
99 100 100 100 99 100 100
26 100 100 100 99 99 100

100 100 NaN 100 100 100 100
100 100 NaN 100 100 100 92
100 57 NaN NaN 27 55 100
100 100 NaN 100 100 100 96
100 100 NaN NaN 100 100 100
99 100 NaN 75 98 99 100

100 0 100 100 94 99 99
100 100 NaN 100 89 99 69
99 100 NaN 100 100 100 100
5 100 NaN 100 100 100 90

100 0 100 100 98 100 100
100 100 NaN 100 99 100 100
100 100 NaN 100 97 100 100
100 100 NaN 100 78 88 88
100 100 100 100 100 100 100

0

20

40

60

80

100

Fig. 7. Testing accuracy of each specialized model for IoT device types with TEST1 dataset.

5 EVALUATION OF EFFICIENT IOT TRAFFIC INFERENCE
This section starts by evaluating our multi-view classification method on traffic traces we collected
from our lab using three resolving techniques discussed in §3.4. We next evaluate our progressive
one-class models using a public dataset. Note that the primary focus of this is to highlight the need
for, as well as the efficacy of, modular (multi-view and progressive) inference for analyzing network
traffic of IoT devices at scale. Hence, extensively evaluating the proposed methods on some of the
public datasets that contain full IoT traffic traces [4, 20, 69] is beyond the scope of this paper and is
left for future work.

5.1 Classification Phase Results
Before evaluating our multi-view approach, we need to solve the optimization problem formulated
in §3.3 to select our optimal set of specialized models. We implement the optimization problem
in two different Python libraries, namely Pyomo [10] and CVXPY [14]. CVXPY assures that our
optimization problem is convex; otherwise, it would not be able to solve it. The feasibility matrix
𝐹 of our optimization is initialized according to Eq. 2 using the threshold parameter 𝐴 and the
accuracy values obtained from the TEST1 dataset (aggregate results were reported in Table 1). We
choose the accuracy threshold parameter equal to a fairly high value 99%. The optimal set of models
returned by both Pyomo and CVXPY consists of the domain name and datalink models, as they
meet the accuracy threshold of 99% for each IoT class in our TEST1 dataset – such a performance
was expected from our optimization problem. We note that the actual accuracy can vary for a new

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 21

Table 2. Performance of multi-view classification at different resolution periods: all models versus the optimal
set of models.

Resolver All models Optimal models
technique 1h 6h 24h 1h 6h 24h
MV 99% 99% 98% 94% 93% 89%
WMV 100% 100% 100% 99% 99% 98%
AWMV 95% 91% 85% 93% 89% 83%

unseen dataset. We will shortly perform experiments with our optimization problem varying the
thresholds and specialized models available to us.

Let us better understand how the optimal set of specialized models is computed. Fig. 7 shows the
performance (prediction accuracy) of the seven models we discussed in §3.1 across 25 IoT device
classes in the TEST1 dataset. Cells with a “NaN” value highlight device classes 𝑑 that miss traffic
features necessary for model𝑚, in the TRAIN dataset – hence,𝑚 is unable detect the class 𝑑 . That
said, Amazon Echo is an exception with the User-Agent model. In fact, Amazon Echo has a unique
User-Agent header in our TRAIN dataset, but it does not exchange any User-Agent header in the
TEST1 dataset. The SYN signature model mispredicts all testing instances of Pixstar photo frame as
Google Home and those of TP-Link camera as Belkin switch. This is because of their shared SYN
signatures. For the Awair sensor, all datasets (i.e., TRAIN, TEST1, and TEST2) only include EAPol
(Extensible Authentication Protocol over LAN) traffic which does not use TCP/UDP protocols.
No traffic except Ethernet is seen for this sensor. Therefore, only the datalink model provides
predictions for this IoT class.
According to Fig. 7, the only model that is able to provide inference for all IoT classes (device

types) is the datalink model. In other words, the datalink model is the only one that offers an
availability metric of 100% for our multi-view classification. At the same time, the datalink model
falls short of expectations in accurately predicting traffic for several classes, including the Belkin
switch, the Nest smoke sensor, the Philips Hue, the Pixstar photo frame, the Ring doorbell, the
TP-Link camera, the Triby speaker, and the Withings body cardio. The prediction accuracy for
those individual classes is less than our desirable threshold of 99%. Considering alternatives for
these classes, we find that the domain name model gives an accuracy greater than 99% for all of
them. Hence, having at least two models, namely the domain name model and the datalink model,
would satisfy our optimization constraints.

Experimenting with Optimization:We saw in Fig. 7, the seven specialized models we consider
in this paper perform fairly well on the majority of IoT classes. Such high performance from
individual models may not highlight optimization’s benefits to our multi-view inference. Note
that our multi-view architecture and optimization readily allow for various specialized models
(an extended version or a subset of our list of models) and IoT classes. In order to showcase the
dynamics of our optimal model selection, let us experiment with a list of models when the domain
name and SYN signature models are assumed to be excluded. We solve our optimization problem
with the remaining five specialized models. This time the optimal set consists of JA3, datalink, and
application models. Again, this selection is not overly unexpected. Similar to what we saw earlier,
the datalink model must be selected as it is the only model that can predict traffic for the Awair
sensor. JA3 and application models are needed to be in the mix for the Withings body cardio and
the Nest smoke sensor, respectively. Note that we expect an accuracy of at least 99% per class.
Our optimization problem, with no exception, may become infeasible when it is applied to

another dataset, set of models, or IoT classes. In that case, relaxing the accuracy threshold (less
than 99%) can help make the problem feasible. To showcase an infeasible scenario, let us limit our

, Vol. 1, No. 1, Article . Publication date: September 2023.

22 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

Table 3. Cost of multi-view classification: all models versus the optimal set of models.

Cost All models Optimal models
CPU time (ns) 866 127
TCAM size (bytes) 94 12

superset of models to User-Agent, datalink, transport, and application with our original accuracy
threshold of 99%. In this case, no model can meet the threshold for two classes, namely the Ring
doorbell and the Withings body cardio – the problem becomes infeasible to solve. However, if we
relax the accuracy threshold to a value like 85%, the datalink and application models satisfy the
accuracy constraints for all devices and become our optimal set.
Performance of Optimal Multi-View Classification:We now evaluate the efficacy of our

optimal multi-view classification by comparing its performance and cost against those of a classifi-
cation scenario where all specialized models are employed. For this purpose, we use TEST2 dataset.
Table 2 summarizes the prediction performance (detection rate) of all models versus optimal models
selected at three resolution periods: short (one-hour), medium (six-hour), and long (24-hour), with
three resolver techniques discussed in §3.4. Given five days’ worth of data available in TEST2, we
can evaluate the performance across 120 short, 20 medium, and 5 long resolution periods. It is
important to note that the size of the resolution periods is independent of the classification epoch
duration, which is set to a minute throughout this paper. Therefore, longer resolution periods
cannot help with the missing values, which is the challenge of the single-combined-view model
(§3.2). For the evaluation metric, we measure the detection rate, which is the fraction of total active
IoT devices that are correctly classified for a given resolution period. Table 2 shows the average
detection rate computed across all resolution periods. Note that the detection rate metric slightly
differs from the accuracy metric (per one-minute epoch) we initially used to evaluate the prediction
of specialized models in §3. This new metric is computed at the end of each resolution period,
where a device is mapped to a class after resolving several predictions.

The first observation from Table 2 is that making classification inferences using all models is
slightly more accurate than the optimal models. The lowest gap is 1% when the WMV resolver
technique is used for the short and medium resolution periods. It can be as high as 9% for MV
over the long resolution period. Another interesting observation is that the inference (using all
models and optimal models) performs better when the resolution period is shorter, indicating that
mispredictions accumulated over time can be detrimental to the ultimate inference. The impact of
such accumulation is more pronounced in MV and AWMV techniques, whereas WMV yields a fairly
robust detection rate across the three resolution periods. The advantages of the optimally-selected
models become more apparent when computing and processing costs are considered. Table 3 shows
the CPU time and TCAM size required for all models versus optimal models. It can be seen that the
cost of optimal models is significantly lower than all models by a factor of 6 (by the measure of
CPU) and 7 (by the measure of TCAM size).
As discussed throughout this paper, classification is the foundational step for the monitoring

phase. Therefore, it is essential to correctly determine the class of all devices before proceeding to the
monitoring phase. As we saw in Table 2, this assurance is given by using all models with the WMV
technique; however, the optimal set may miss some devices in a few resolution periods. For example,
out of the total of 120 short (1hr) resolution periods, the optimal scheme with WMV technique
mispredicts the Google Home as the Google Chromecast in 9 periods, the Pixstar photo frame as the
Belkin switch in 7 periods, and the Nest smoke sensor as the Google Home in 2 resolution periods.
Although the chance of incorrect inference (after resolution) is relatively minimal, it can be avoided
by adding another layer of consolidation and/or resolution on top of our current inference. For

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 23

example, one can keep obtaining the classification outputs for several resolution periods (e.g., six
periods of each one hour) and then resolve conflicts (i.e., different claimed for given MAC address)
using similar techniques explained in §3.4. Another technique that could be effective in resolving
conflicts is developing a consistency score [67] that helps select the class that is consistently given
to a device for a number of consecutive resolution periods. Such an additional resolution is beyond
the scope of this paper. In the context of obtaining a perfect classification for all devices, we can
compare the performance of all models versus optimal models in terms of response time. It is seen
in Table 2 that all models can achieve 100% detection rate in a single 1-hour resolution period;
however, the optimal models need extra 1-hour periods for obtaining the same result. Even with
some delays, the optimal approach is still attractive in terms of computing costs – we often prefer
to spend a few more hours to make a reliable (accurate and confident) inference but keep the
computing cost to a minimum.

5.2 Monitoring Phase Results
In order to evaluate the performance of the monitoring phase, we first train seven one-class models
per IoT class using their benign traffic data and then quantify their false positive rates (incorrectly
predicting benign instances as anomalies) when applied to unseen benign data and their true
positive rates (correctly detecting anomalies) when applied to attack (malicious) traffic data. For
this purpose, we use public traffic traces [1] that were collected from our own testbed in 2018 and
include benign and attack traffic traces of the same set of IoT classes (except for the Withings sleep
sensor) we had in classification phase of this paper. We use benign traffic traces collected in May,
June, and October 2018 to train the one-class models. We found some devices were inactive during
the capture period for several days. Hence, the benign dataset could not be split chronologically into
training and testing portions, as it would have resulted in a heavily imbalanced training or testing
dataset. To overcome this challenge, we shuffle the benign dataset to distribute data instances across
all device classes evenly. Next, we take 70% of the benign dataset and create BENIGN1 instances used
for training the one-class models, and the remaining 30% of the data will create BENIGN2 instances
used for measuring false positive ratio. Note that portions of the public traces [1] we obtain are a
mixture of benign and attack traffic. The annotation files released by the same source [1] helped us
extract only attack traffic, constructing our ATTACK dataset, which we use for measuring the true
positives. The CSV files of BENIGN1, BENIGN2, and ATTACK instances are publicly released [56]
The ATTACK dataset includes instances of four types of volumetric attacks, including Ping-of-

Death, SYN attack, SYN reflection attack, and UDP DoS attack on IoT devices [1]. Each attack was
launched at three data rates: 1, 10, and 100 attack-packets-per-second. Attacks were launched using
a Python script using the Scapy library. For direct attacks like Ping-of-Death, SYN attack, and UDP
DoS, two configurations: (i) local attacker and (ii) remote attacker, were employed to overwhelm
target IoT devices connected to the network. For SYN reflection, attacks were launched: (i) from a
local attacker machine to the target IoT devices which reflected the incoming traffic to another
local machine, and (ii) from a remote attacker machine to the target IoT devices, which reflected
the incoming traffic to another remote machine.

For the monitoring phase, we experimented with one-minute and five-minute epochs. We found
that an epoch duration of five minutes gives better performance in terms of false/true positives.
Hence, we use five-minute epochs for the rest of this subsection. As discussed in §4, some of the
intended models cannot be trained for certain IoT device classes due to the unavailability of the
features required. We also noticed that some device types generate certain features infrequently.
For instance, the Ring doorbell only generates NTP traffic in 20 epochs, in contrast to 823 epochs
with DNS traffic. Models trained with insufficient epochs yield poor performance. Therefore, we

, Vol. 1, No. 1, Article . Publication date: September 2023.

24 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

0 1 2 3 4

outliers coef. (β)

0

1

2

3

4

s
p
a
rs
it
y
c
o
e
f.
(⍺
)

0.36 0.21 0.16 0.14 0.14

0.32 0.15 0.10 0.08 0.07

0.29 0.10 0.04 0.02 0.01

0.29 0.10 0.04 0.02 0.01

0.29 0.10 0.04 0.02 0.01

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fig. 8. Average false positive (per IoT class) of the coarse-grained models applied to the benign testing dataset
with varying combinations of coefficients 𝛼 and 𝛽 .

empirically found that at least 100 epochs (about 8 hours’ worth of traffic) are needed for a reliable
one-class model.
Let us begin by evaluating our one-class models with varying coefficients 𝛼 (sparsity) and 𝛽

(outliers) to analyze their impact on the performance of models. For this evaluation, we only focus
on the coarse-grained model (introduced in §4) as Ethernet traffic features are available for all device
classes. That said, one can perform the same evaluation on other one-class models and fine-tune
parameters 𝛼 and 𝛽 for them separately. We use the best combination of 𝛼 and 𝛽 obtained for the
Ethernet one-class models as default settings for other models (medium-grained and fine-grained).

Fig. 8 illustrates a heat map indicating the average false positive ratio of one-class models (of all
IoT classes) when applied to the benign testing dataset for 25 combinations of values for coefficients
𝛼 and 𝛽 . Recall smaller 𝛼 values result in more clusters being considered sparse (noisy) and removed,
meaning a reduced number of benign clusters (conservative approach). The coefficient 𝛽 has a
similar effect in restricting benign boundaries (of those clusters considered as dense). Smaller 𝛽
results in clusters with tighter boundaries, increasing the chance of some truly benign instances
falling outside the benign boundaries and contributing to false positives.
Although larger 𝛼 and 𝛽 values can improve false positives with the benign dataset, they may

loosen boundaries and cause false negatives with the attack dataset. Therefore, balancing these two
cases, we choose 𝛼 = 2 and 𝛽 = 2 (the middle cell in Fig. 8), which gives a relatively low average
false positive ratio equal to 0.04, and an average true negative of 0.96.
With parameters 𝛼 and 𝛽 fine-tuned empirically, let us quantify the performance of individual

models (specialized and combined) per each IoT class. Fig. 9 shows the false positive ratio of each
model across IoT classes on the benign testing dataset. To compare with the performance of our
specialized models, we train a combined model similar to what we saw earlier in the classification
phase (§3.2). Cells denoted by “NaN” and “Low”, respectively, indicate no training instances and a
low number (< 100) of training instances. On average, each model offers a reasonably acceptable
false positive ratio of less than 0.05 across all device classes. Among eight models, the DNS model
performs the worst for packets of the Samsung smart camera with about 0.24 false positive ratio
– this could be due to the marginally small number (108) of DNS training instances for this class
which is just slightly higher than the minimum requirement of 100 instances discussed above. Two
IoT classes, namely the Nest smoke sensor and the Withings body cardio, were only active over 22

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 25

E
th

e
rn

e
t

T
C

P

U
D

P

H
T
T
P

H
T
T
P
S

D
N

S

N
T
P

c
o
m

b
in

e
d

model

Amazon Echo

August doorbell cam.

Awair sens.

Belkin cam.

Belkin motion sens.

Belkin switch

Canary cam.

Dropcam

Google Chromecast

Google Home

HP Printer

LiFX light bulb

Netatmo cam.

Netatmo weather

Philips Hue

Pixstar photo frame

Ring doorbell

Samsung SmartThings

Samsung smart cam.

TP-Link cam.

TP-Link plug

Triby speaker

Io
T
 d

e
v
ic

e
 t

y
p

e
0.04 0.04 0.04 0.02 0.03 0.09 0.02 0.05

0.04 0.04 0.04 NaN 0.04 0.04 NaN 0.04

0.02 0.02 0.02 NaN 0.05 0.01 NaN 0.03

0.05 0.08 0.07 0.06 NaN 0.06 Low 0.07

0.06 0.06 0.08 0.07 NaN 0.07 0.01 0.04

0.04 0.04 0.07 NaN NaN Low 0.0 0.04

0.0 0.0 0.01 0.06 0.0 0.01 NaN 0.01

0.11 0.11 Low Low 0.11 Low Low 0.09

0.05 0.05 0.06 Low 0.06 0.03 0.05 0.04

0.08 0.04 0.02 Low 0.04 0.02 0.0 0.01

0.05 0.05 0.08 0.03 Low Low NaN 0.03

0.03 0.02 0.04 NaN NaN 0.01 0.0 0.02

0.05 0.04 0.01 Low 0.08 0.06 0.06 0.07

0.04 0.04 0.03 NaN NaN 0.01 NaN 0.13

0.05 0.05 0.05 0.04 0.02 0.03 0.06 0.06

0.03 0.05 0.03 Low 0.05 0.12 NaN 0.02

0.09 0.01 0.03 Low Low 0.02 Low 0.01

0.0 0.01 0.0 NaN 0.01 0.0 0.0 0.02

0.01 0.01 0.02 Low Low 0.24 Low 0.01

0.04 0.01 0.05 Low 0.01 0.04 Low 0.02

0.03 0.01 0.03 NaN NaN 0.06 0.0 0.02

0.01 0.01 0.02 Low 0.13 0.01 Low 0.03
0.00

0.05

0.10

0.15

0.20

Fig. 9. False positives of individual models (specialized and combined) per IoT class when applied to the
benign testing dataset.

and 15 epochs, respectively. Therefore, they are excluded from the evaluation due to insufficient
training instances. Looking at the performance of the combined model, it gives an average false
positive of 0.03, which is almost the same or slightly better (by a low margin of less than 1%) than
that of specialized models. Regarding cost considerations, our computation of flow-based models in
§3.2 reveals the following: the cost of the Ethernet model is 12 bytes; for both TCP and UDP models,
the cost is 14 bytes each; and, the cost of HTTP, HTTPS, DNS, and NTP models amounts to 18 bytes
each. Therefore, the combined model’s cost would total 112 bytes, which surpasses each specialized
model by a minimum factor of 6. Again, similar to what we found for the single-view-combined
model at the classification phase (§3.2), the performance gain of the combined monitoring model is
much less than the overall cost of the model.
We now evaluate the true positive rate of our models by applying them to the ATTACK dataset.

Note that the public traffic traces [1] we used to create our ATTACK dataset do not include any attacks
via HTTP, HTTPS, DNS, or NTP. However, there are a few instances of attacks via SSDP and SNMP,
but we did not train one-class models associated with those specific application-layer protocols.
Still, Ethernet and/or UDP models can flag behavioral deviations due to SSDP/SNMP-based attacks.
That said, one may train SSDP and SNMP one-class models and utilize our progressive monitoring
architecture to detect such attacks.
Table 4 shows the true positives for each attack instance on their respective IoT device type.

Some attacks in our dataset were launched on specific device types, leading to blank cells in the
table. Each attack was launched at three rates of 1, 10, and 100 packets per second (pps). For each
attack vector, we report the true positives of those models whose features could be affected by the

, Vol. 1, No. 1, Article . Publication date: September 2023.

26 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

Table 4. True positive rate of the models when applied to attack traces. “E”, “T”, “U”, and “C” denote Ethernet,
TCP, UDP, and combined models, respectively.

Ping-of-Death SYN attack SYN reflection UDP DoS
1pps 10pps 100ps 1pps 10pps 100ps 1pps 10pps 100ps 1pps 10pps 100ps

Belkin
switch

[E]:1.00
[C]:0.50

[E]:1.00
[C]:0.50

[E]:1.00
[C]:1.00

[E]:1.00
[T]:1.00
[C]:0.50

[E]:1.00
[T]:1.00
[C]:1.00

[E]:1.00
[T]:1.00
[C]:1.00

[E]:1.00
[T]:1.00
[C]:1.00

[E]:1.00
[T]:1.00
[C]:1.00

[E]:1.00
[T]:1.00
[C]:1.00

– – –

Belkin
motion sens.

[E]:0.50
[C]:0.00

[E]:1.00
[C]:1.00

[E]:1.00
[C]:1.00

[E]:0.00
[T]:0.17
[C]:0.00

[E]:1.00
[T]:1.00
[C]:0.84

[E]:1.00
[T]:1.00
[C]:1.00

[E]:0.67
[T]:0.50
[C]:0.50

[E]:1.00
[T]:1.00
[C]:1.00

[E]:1.00
[T]:1.00
[C]:1.00

[E]:0.50
[U]:1.00
[C]:1.00

[E]:1.00
[U]:1.00
[C]:1.00

[E]:1.00
[U]:1.00
[C]:1.00

Samsung
smart cam.

[E]:1.00
[C]:0.50

[E]:1.00
[C]:1.00

[E]:1.00
[C]:0.50

[E]:1.00
[T]:1.00
[C]:0.84

[E]:1.00
[T]:1.00
[C]:1.00

[E]:1.00
[T]:1.00
[C]:1.00

[E]:1.00
[T]:1.00
[C]:1.00

[E]:1.00
[T]:1.00
[C]:0.84

[E]:1.00
[T]:1.00
[C]:1.00

[E]:1.00
[U]:1.00
[C]:1.00

[E]:1.00
[U]:1.00
[C]:1.00

[E]:1.00
[U]:1.00
[C]:1.00

Netatmo
cam.

– – – [E]:0.50
[T]:1.00
[C]:0.50

[E]:1.00
[T]:1.00
[C]:0.50

[E]:1.00
[T]:1.00
[C]:1.00

[E]:0.34
[T]:1.00
[C]:0.34

[E]:1.00
[T]:0.84
[C]:0.38

[E]:1.00
[T]:1.00
[C]:0.88

– – –

Google
Chromecast

– – – [E]:0.25
[T]:1.00
[C]:0.75

[E]:0.25
[T]:1.00
[C]:1.00

[E]:0.75
[T]:1.00
[C]:1.00

[E]:0.00
[T]:1.00
[C]:0.75

[E]:0.25
[T]:1.00
[C]:1.00

[E]:0.50
[T]:1.00
[C]:1.00

– – –

LiFX
lightbulb

[E]:1.00
[C]:0.00

[E]:0.50
[C]:1.00

[E]:1.00
[C]:1.00

– – – – – – [E]:1.00
[U]:1.00
[C]:1.00

[E]:1.00
[U]:1.00
[C]:1.00

[E]:1.00
[U]:1.00
[C]:1.00

Amazon
Echo

– – – – – – – – – [E]:1.00
[U]:1.00
[C]:1.00

[E]:1.00
[U]:1.00
[C]:1.00

[E]:1.00
[U]:1.00
[C]:1.00

attack. For example, the Ping-of-Death attack uses ICMP to send ping requests. It only appears
in Ethernet traffic without affecting features of TCP/UDP and above. In most cases, the Ethernet
model yields the same true positive rate as TCP/UDP models. For 10 attacks, TCP or UDP models
show a higher true positive rate than the Ethernet model. For example, the TCP model can detect
all SYN and SYN reflection attacks (the two middle columns in Table 4) on the Google Chromecast,
while the Ethernet model can, at best, detect three-quarters of high rates attacks (100pps).

Focusing on the combined model, we see that its true positive rate is lower than or equal to
that of the specialized models for most of the attacks. However, there are some exceptions, like
the UDP DoS attacks on the Belkin motion sensor, SYN and SYN reflection attacks on the Google
Chromecast, and the Ping-of-Death attacks on the LiFX lightbulb in which the combined model
outperformed the Ethernet model. For all instances of SYN, SYN reflection, and UDP DoS attacks,
the true positive of the TCP and UDP model are higher than the combined model. Overall, the
average true positive rate of the Ethernet, TCP, UDP, and combined models (across all device types
and attacks available in our dataset) is 0.85, 0.96, 1.00, and 0.83, respectively. Also, the average false
negative of Ethernet, TCP, UDP, and combined models is 0.15, 0.04, 0.00, and 0.17, respectively.
This highlights that finer-grained models (which are more expensive computationally) can better
detect anomalies. Also, in the monitoring phase, similar to what is realized in the classification
phase, specialized models are relatively more beneficial than a combined model.

To compare the impact of convex hull boundaries versus spherical boundaries on the performance
of models in detecting attacks, we generated benign clusters with spherical boundaries that contain
the 97.5th percentile of benign instances. We found that spherical boundaries cause the models
to fall short in detecting some of the network attack instances. For example, the TCP model with
spherical boundaries gives a true positive of 0.71 for SYN and SYN reflection attacks on the Google
Chromecast, while this measure is 1.00 for the TCP model with convex hull boundaries. In fact, the
spherical boundaries lead to lower true positives for all four types of attacks, with the Ethernet,
TCP, and UDP models having average true positives of 0.73, 0.80, and 0.96.

, Vol. 1, No. 1, Article . Publication date: September 2023.

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 27

6 CONCLUSION
In this paper, we developed a generic traffic inference architecture consisting of a multi-view
classification stage followed by progressive monitoring phases. We developed a systematic approach
for the multi-view classification to quantify the prediction power versus computing costs of the
specialized-view models, each trained on specific features (packet or flow). We demonstrated that
specialized models could be more accurate and cost-effective than a single combined-view model.
We also formulated an optimization problem to select the best views for the multi-view classification
that minimizes the computing cost subject to prediction accuracy requirements. For progressive
monitoring, we employed one-class models and developed configurable convex hulls for them,
tightening benign behavioral boundaries. We evaluated the efficacy of our models (classification
and monitoring) by applying them to real traffic traces collected from our IoT testbed. We found
that our optimal set of specialized classifier models can reduce the processing cost by a factor of
six with insignificant impacts on the prediction accuracy. Also, our monitoring models yielded an
average true positive rate of 94% and a false positive rate of 5%. Finally, we publicly released our
data (training and testing instances of classification and monitoring tasks) and enhancement code
for the convex hull algorithm to the research community.

REFERENCES
[1] A. Hamza. 2019. IoT Benign and Attack Traces. https://iotanalytics.unsw.edu.au/attack-data.html
[2] Yaser Abu-Mostafa et al. 2012. Learning From Data. AMLBook.
[3] J. Ahmed et al. 2020. Monitoring Enterprise DNS Queries for Detecting Data Exfiltration From Internal Hosts. IEEE

Transactions on Network and Service Management 17, 1 (2020), 265–279.
[4] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK: Security Evaluation of Home-Based

IoT Deployments. In Proc. IEEE Symposium on Security and Privacy (S&P). San Francisco, CA, USA.
[5] J. Anand, A. Sivanathan, A. Hamza, and H. Habibi Gharakheili. 2021. PARVP: Passively Assessing Risk of Vulnerable

Passwords for HTTP Authentication in Networked Cameras. In Proc. ACM Workshop on DAI-SNAC. Virtual Event,
Germany, 10–16.

[6] B. Bezawada et al. 2018. Behavioral Fingerprinting of IoT Devices. In Proc. ACM ASHES. Toronto, Canada.
[7] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray. 2018. Behavioral Fingerprinting of IoT Devices. In

Proc. of the ASHES. Toronto, Canada.
[8] Bitdefender. 2017. Infected vending machines, lamps, other IoT devices shut down university network. https:

//bit.ly/3NE6dPu
[9] A. Bremler-Barr et al. 2020. IoT or NoT: Identifying IoT Devices in a Short Time Scale. In Proc. IEEE/IFIP NOMS.

Budapest, Hungary.
[10] M. Bynum et al. 2021. Pyomo–Optimization Modeling in Python (third ed.). Vol. 67. Springer Science & Business Media.
[11] Silvia Cateni et al. 2014. A Method for Resampling Imbalanced Datasets in Binary Classification Tasks for Real-world

Problems. Neurocomputing 135 (2014), 32–41. https://doi.org/10.1016/j.neucom.2013.05.059
[12] Cisco. 2012. Introduction to Cisco IOS NetFlow - A Technical Overview. https://www.cisco.com/c/en/us/products/

collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
[13] Cyber Edge. 2020. Cyberthreat Defense Report. https://cyber-edge.com/wp-content/uploads/2020/03/CyberEdge-

2020-CDR-Report-v1.0.pdf
[14] S. Diamond et al. 2016. CVXPY: A Python-embedded Modeling Language for Convex Optimization. Journal of Machine

Learning Research 17, 83 (2016), 1–5.
[15] R. Doshi et al. 2018. Machine Learning DDoS Detection for Consumer Internet of Things Devices. In Proc. IEEE S&P

Workshops. San Francisco, USA.
[16] Tlamelo E. et al. 2021. A Survey on Missing Data in Machine Learning. Journal of Big Data 8 (2021), 1–37.
[17] Wesley Eddy. 2022. Transmission Control Protocol (TCP). RFC 9293. https://doi.org/10.17487/RFC9293
[18] X. Feng, Q. Li, H. Wang, and L. Sun. 2018. Acquisitional Rule-based Engine for Discovering Internet-of-Things Devices.

In USENIX Security. Baltimore, USA.
[19] Forescout. 2016. Network visibility survey. http://bit.ly/30LBGaf.
[20] S. Garcia, A. Parmisano, and M. J. Erquiaga. 2023. oT-23: A Labeled Dataset with Malicious and Benign IoT Network

Traffic. http://doi.org/10.5281/zenodo.4743746
[21] H. Guo et al. 2018. IP-Based IoT Device Detection. In Proc. of ACM IoT S&P. Budapest, Hungary.

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://iotanalytics.unsw.edu.au/attack-data.html
https://bit.ly/3NE6dPu
https://bit.ly/3NE6dPu
https://doi.org/10.1016/j.neucom.2013.05.059
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://cyber-edge.com/wp-content/uploads/2020/03/CyberEdge-2020-CDR-Report-v1.0.pdf
https://cyber-edge.com/wp-content/uploads/2020/03/CyberEdge-2020-CDR-Report-v1.0.pdf
https://doi.org/10.17487/RFC9293
http://doi.org/10.5281/zenodo.4743746

28 A. Pashamokhtari, G. Batista and H. Habibi Gharakheili

[22] Hang Guo et al. 2020. IoTSTEED: Bot-side Defense to IoT-based DDoS Attacks (Extended). Technical Report ISI-TR-738.
USC/Information Sciences Institute. https://bit.ly/3ec9eGS

[23] H. Guo and J. Heidemann. 2020. IoTSTEED: Bot-side Defense to IoT-based DDoS Attacks (Extended). Technical Report
ISI-TR-738. USC/Information Sciences Institute. https://www.isi.edu/%7ejohnh/PAPERS/Guo20b.html

[24] H. Habibi Gharakheili, M. Lyu, Y. Wang, H. Kumar, and V. Sivaraman. 2019. iTeleScope: Softwarized Network Middle-
Box for Real-Time Video Telemetry and Classification. IEEE Transactions on Network and Service Management 16, 3
(2019), 1071–1085. https://doi.org/10.1109/TNSM.2019.2929511

[25] A. Hamza et al. 2019. Detecting Volumetric Attacks on IoT Devices via SDN-Based Monitoring of MUD Activity. In
Proc. ACM SOSR. New York, USA.

[26] A. Hamza et al. 2020. Verifying and Monitoring IoTs Network Behavior using MUD Profiles. IEEE Transactions on
Dependable and Secure Computing 19, 1 (May 2020), 1–18.

[27] A. Hamza et al. 2022. Verifying and Monitoring IoTs Network Behavior using MUD Profiles. IEEE TDSC 19, 1 (2022),
1–18.

[28] Ayyoob Hamza, Hassan Habibi Gharakheili, and Vijay Sivaraman. 2018. Combining MUD Policies with SDN for IoT
Intrusion Detection. In Proc. ACM IoT S&P. Budapest, Hungary.

[29] M. Hasan et al. 2019. Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches.
Internet of Things 7 (2019), 1–14.

[30] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. M. A. Hashem. 2019. Attack and Anomaly Detection in IoT Sensors in IoT
Sites Using Machine Learning Approaches. Internet of Things 7 (2019), 100059.

[31] Md Kamrul Hasan et al. 2021. Missing Value Imputation Affects the Performance of Machine Learning: A Review and
Analysis of the Literature (2010–2021). Informatics in Medicine Unlocked 27 (2021), 100799.

[32] J. Holland, R. Teixeira, P. Schmitt, K. Borgolte, J. Rexford, N. Feamster, and J. Mayer. 2020. Classifying Network Vendors
at Internet Scale. https://doi.org/10.48550/ARXIV.2006.13086

[33] D. Yuxing Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster. 2020. IoT Inspector: Crowdsourcing Labeled Network
Traffic from Smart Home Devices at Scale. ACM IMWUT 4, 2 (2020).

[34] IETF. 2013. Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow Information.
https://tools.ietf.org/html/rfc7011

[35] IETF. 2019. Manufacturer Usage Description Specification. https://tools.ietf.org/html/rfc8520
[36] Houda Jmila, Gregory Blanc, Mustafizur R. Shahid, and Marwan Lazrag. 2022. A Survey of Smart Home IoT Device

Classification Using Machine Learning-Based Network Traffic Analysis. IEEE Access 10 (2022), 97117–97141. https:
//doi.org/10.1109/ACCESS.2022.3205023

[37] D. Kumar et al. 2019. All Things Considered: An Analysis of IoT Devices on Home Networks. In Proc. USENIX Security.
Santa Clara, USA.

[38] F. Loi et al. 2017. Systematically Evaluating Security and Privacy for Consumer IoT Devices. In Proc. ACM Workshop
on IoT S&P. Dallas, Texas, USA, 1–6.

[39] G. Lyon. 1997. Nmap. https://nmap.org/
[40] Mi. Lyu et al. 2017. Quantifying the Reflective DDoS Attack Capability of Household IoT Devices. In Proc. ACM WiSec.

Boston, Massachusetts, USA, 46–51.
[41] M. Lyu, D. Sherratt, A. Sivanathan, H. Habibi Gharakheili, A. Radford, and V. Sivaraman. 2017. Quantifying the

Reflective DDoS Attack Capability of Household IoT Devices. In Proc. ACM WiSec. Boston, USA.
[42] S. Marchal et al. 2019. AuDI: Toward Autonomous IoT Device-Type Identification Using Periodic Communication.

IEEE JSAC 37, 6 (June 2019), 1402–1412.
[43] M. Mazhar et al. 2020. Characterizing Smart Home IoT Traffic in the Wild. In Proc. IEEE/ACM IoTDI. Los Alamitos,

USA.
[44] Y. Meidan et al. 2017. ProfilIoT: A Machine Learning Approach for IoT Device Identification Based on Network Traffic

Analysis. In Proc. SAC. Marrakesh, Morocco.
[45] Y. Meidan et al. 2018. N-BaIoT—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders. IEEE

Pervasive Computing 17, 3 (2018), 12–22.
[46] Y. Meidan et al. 2020. A Novel Approach For Detecting Vulnerable IoT Devices Connected Behind a Home NAT.

Computers & Security 97 (Oct. 2020), 1–23.
[47] M. Miettinen et al. 2017. IoT SENTINEL: Automated Device-Type Identification for Security Enforcement in IoT. In

Proc. of IEEE ICDCS. Atlanta, USA.
[48] D. Mills. 1992. Network Time Protocol (Version 3) Specification, Implementation and Analysis. RFC 1305. https:

//doi.org/10.17487/RFC1305
[49] MITRE. 2020. Common Vulnerabilities and Exposures. https://cve.mitre.org/
[50] N. Msadek et al. 2019. IoT Device Fingerprinting: Machine Learning based Encrypted Traffic Analysis. In Proc. IEEE

WCNC. Marrakesh, Morocco.

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://bit.ly/3ec9eGS
https://www.isi.edu/%7ejohnh/PAPERS/Guo20b.html
https://doi.org/10.1109/TNSM.2019.2929511
https://doi.org/10.48550/ARXIV.2006.13086
https://tools.ietf.org/html/rfc7011
https://tools.ietf.org/html/rfc8520
https://doi.org/10.1109/ACCESS.2022.3205023
https://doi.org/10.1109/ACCESS.2022.3205023
https://nmap.org/
https://doi.org/10.17487/RFC1305
https://doi.org/10.17487/RFC1305
https://cve.mitre.org/

Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring 29

[51] T. D. Nguyen et al. 2019. DÏoT: A Federated Self-learning Anomaly Detection System for IoT. In IEEE ICDCS. Dallas,
USA.

[52] T. D. Nguyen et al. 2019. DÏoT: A Federated Self-learning Anomaly Detection System for IoT. In Proc IEEE ICDCS.
Dallas, USA.

[53] Paloato. 2020. Unit 42 IoT Threat Report. https://start.paloaltonetworks.com/unit-42-iot-threat-report
[54] A. Pashamokhtari et al. 2020. Progressive Monitoring of IoT Networks Using SDN and Cost-Effective Traffic Signatures.

In Proc. of ETSecIoT. Sydney, Australia.
[55] A. Pashamokhtari et al. 2021. Inferring Connected IoT Devices from IPFIX Records in Residential ISP Networks. In

Proc. IEEE LCN. Virtual Event, Canada.
[56] A. Pashamokhtari et al. 2022. IoT Traffic Instances. https://iotanalytics.unsw.edu.au/smartinfer.html
[57] A. Pashamokhtari et al. 2022. PicP-MUD: Profiling Information Content of Payloads in MUD Flows for IoT Devices. In

Proc. IEEE WoWMoM. Belfast, United Kingdom.
[58] Red-Button. 2016. Dyn (DynDNS) DDoS Attack. https://www.red-button.net/blog/dyn-dyndns-ddos-attack
[59] D. Reis et al. 2018. One-class Quantification. In Proc. ECML PKDD. Dublin, Ireland.
[60] R. T. Rockafellar. 1997. Convex Analysis. Princeton Mathematical Series.
[61] M. Safi et al. 2022. A Survey on IoT Profiling, Fingerprinting, and Identification. ACM TIOT 3, 4, Article 26 (sep 2022),

39 pages.
[62] S. J. Saidi et al. 2020. A Haystack Full of Needles: Scalable Detection of IoT Devices in the Wild. In Proc. of ACM IMC.

New York, USA.
[63] Salesforce. 2019. TLS Fingerprinting with JA3 and JA3S. https://engineering.salesforce.com/tls-fingerprinting-with-

ja3-and-ja3s-247362855967
[64] SciPy. 2021. SciPy Convex Hull. https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
[65] R. A. Sharma et al. 2022. Lumos: Identifying and Localizing Diverse Hidden IoT Devices in an Unfamiliar Environment.

In Proc. USENIX Security. Boston, USA.
[66] A. Sivanathan et al. 2018. Can We Classify an IoT Device using TCP Port Scan?. In Proc. IEEE ICIAfS. Colombo, Sri

Lanka.
[67] A. Sivanathan et al. 2020. Detecting Behavioral Change of IoT Devices Using Clustering-Based Network Traffic

Modeling. IEEE Internet of Things Journal 7, 8 (2020), 7295–7309.
[68] A. Sivanathan et al. 2020. Managing IoT Cyber-Security Using Programmable Telemetry and Machine Learning. IEEE

Transactions on Network and Service Management 17, 1 (2020), 60–74.
[69] A. Sivanathan, H. Habibi Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vishwanath, and V. Sivaraman. 2019.

Classifying IoT Devices in Smart Environments Using Network Traffic Characteristics. IEEE Transactions on Mobile
Computing 18, 8 (2019), 1745–1759.

[70] A. Sivanathan, F. Loi, H. Habibi Gharakheili, and V. Sivaraman. 2017. Experimental evaluation of cybersecurity threats
to the smart-home. In Proc. IEEE ANTS. Bhubaneswar, India, 1–6.

[71] V. Sivaraman, D. Chan, D. Earl, and R. Boreli. 2016. Smart-Phones Attacking Smart-Homes. In Proc. ACM WiSec.
Darmstadt, Germany, 195–200.

[72] V. Sivaraman, H. Habibi Gharakheili, C. Fernandes, N. Clark, and T. Karliychuk. 2018. Smart IoT Devices in the Home:
Security and Privacy Implications. IEEE Technology and Society Magazine 37, 2 (2018), 71–79.

[73] R. Sommer and V. Paxson. 2010. Outside the Closed World: On Using Machine Learning for Network Intrusion
Detection. In Proc IEEE S&P. Oakland, CA, USA, 305–316.

[74] H. Sullivan, A. Sivanathan, A. Hamza, and H. Habibi Gharakheili. 2023. Programmable Active Scans Controlled by
Passive Traffic Inference for IoT Asset Characterization. In Proc. IEEE/IFIP NOMS Workshop on Manage-IoT. Miami, FL,
USA.

[75] V. Thangavelu, D.M. Divakaran, R. Sairam, S. S. Bhunia, andM. Gurusamy. 2019. DEFT: ADistributed IoT Fingerprinting
Technique. IEEE Internet of Things Journal 6, 1 (2019), 940–952. https://doi.org/10.1109/JIOT.2018.2865604

[76] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky. 2019. PingPong: Packet-Level Signatures for Smart
Home Device Events. In Proc. of NDSS. San Diego, California.

[77] Y. Wang et al. 2021. Analyzing the Impact of Missing Values and Selection Bias on Fairness. International Journal of
Data Science and Analytics 12, 2 (2021), 101–119.

[78] K. Yang et al. 2019. Towards automatic fingerprinting of IoT devices in the cyberspace. Computer Networks 148 (2019),
318–327.

[79] K. Yang, Q. Li, and L. Sun. 2019. Towards automatic fingerprinting of IoT devices in the cyberspace. Computer Networks
148 (2019), 318–327.

[80] J. Zhao et al. 2017. Multi-view Learning Overview: Recent Progress and New Challenges. Information Fusion 38 (2017),
43–54.

, Vol. 1, No. 1, Article . Publication date: September 2023.

https://start.paloaltonetworks.com/unit-42-iot-threat-report
https://iotanalytics.unsw.edu.au/smartinfer.html
https://www.red-button.net/blog/dyn-dyndns-ddos-attack
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
https://doi.org/10.1109/JIOT.2018.2865604

	Abstract
	1 Introduction
	2 Related work
	2.1 Classifying IoT Behaviors
	2.2 Monitoring Expected IoT Behaviors

	3 Multi-view Classification of IoT Traffic
	3.1 Characterization Metrics and Traffic Features
	3.2 Quantifying the Efficacy of Specialized-View Classifiers
	3.3 Optimal View Selection
	3.4 Resolving Multi-View Predictions

	4 Progressive Monitoring of IoT Network Behaviors
	4.1 Refined Convex Hull

	5 Evaluation of Efficient IoT Traffic Inference
	5.1 Classification Phase Results
	5.2 Monitoring Phase Results

	6 Conclusion
	References

