
1

Dynamic Inference from IoT Traffic Flows
under Concept Drifts in Residential ISP Networks

Arman Pashamokhtari, Norihiro Okui, Masataka Nakahara, Ayumu Kubota,
Gustavo Batista and Hassan Habibi Gharakheili

Abstract—Millions of vulnerable consumer IoT devices in home
networks are the enabler for cyber crimes putting user privacy
and Internet security at risk. Internet service providers (ISPs)
are best poised to mitigate risks by automatically inferring active
IoT devices per household and notifying users of vulnerable ones.
Developing a scalable inference method that can perform robustly
across thousands of home networks is a non-trivial task. This
paper focuses on the challenges of developing and applying data-
driven inference models when labeled data of device behaviors
is limited and the distribution of data changes across time and
space domains (concept drifts). Our contributions are fourfold:
(1) We collect and analyze more than six million network traffic
flows of 24 types of consumer IoT devices from 12 real homes
over six weeks to highlight the challenge of temporal and spatial
concept drifts in network behaviors of IoT devices – we publicly
release our training and testing instances data; (2) We analyze
the performance of two inference strategies, namely “global
inference” (a model trained on a combined set of all labeled
data from training homes) and “contextualized inference” (several
models each trained on the labeled data from a training home)
in the presence of concept drifts; (3) To manage concept drifts,
we develop a method that dynamically applies the “best” model
(from a set) to network traffic of unseen homes during the testing
phase, yielding better performance in a fifth of scenarios when
the labels are available for the testing data (ideal but unrealistic
settings); and (4) We develop a method to automatically select
the best model without needing labels of unseen data (a realistic
inference) and show that it can achieve 94% of the ideal model’s
accuracy.

Index Terms—IoT, IPFIX data, traffic inference, concept drifts,
machine learning

I. INTRODUCTION

IOT devices are becoming popular in households. It is
estimated that in 2021 there were about 258 million smart

homes around the globe [1]. The smart home market is also
anticipated to grow at least by the next two years [2]. This
means more IoT devices will be deployed in home networks by
the near future [3] supplied by the overwhelming market of IoT
device manufacturing that includes more than 1200 companies
delivering software/hardware platforms for IoT devices [4].

Despite their popularity, IoT devices bring several vulner-
abilities that make them attractive to cyber criminals. Weak
(or default) passwords and open insecure service ports are

A. Pashamokhtari and H. Habibi Gharakheili are with the School of
Electrical Engineering and Telecommunications, and G. Batista is with the
School of Computer Science and Engineering, University of New South Wales,
Sydney, NSW 2052, Australia (e-mails: a.pashamokhtari@unsw.edu.au,
h.habibi@unsw.edu.au, g.batista@unsw.edu.au).

N. Okui, M. Nakahara, and Ayumu Kubota are with KDDI Research,
Inc., Saitama, Japan (e-mails: no-okui@kddi.com, ms-nakahara@kddi.com,
ay-kubota@kddi.com).

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

considered the top two exploited vulnerabilities of IoT devices
[5]. Home users typically do not have adequate knowledge for
securing their IoT devices which causes malware like Mirai
and Mozi to compromise thousands of insecure devices and
create a botnet for launching large-scale DDoS (Distribute
Denial of Service) attacks [6]. Additionally, due to the diverse
market of IoT manufacturing, which includes small/startup
companies, the lack of security standards, and the urge to keep
the manufacturing cost to a minimum, IoT devices often come
without sufficient embedded security features [7].

Now with the massive number of vulnerable IoT devices in
households, they are becoming a risk challenge for ISPs [8].
Compromised IoT devices participating in volumetric attacks
can take the bandwidth of ISPs, downgrading the quality of
service for other legitimate customers and making the ISPs
accountable for carrying attack traffic across the Internet. The
first step in every risk assessment and security analysis is
obtaining visibility by discovering IoT devices connected to
the network and determining their type (e.g., camera, TV,
speaker) [9] using characteristics known a priori.

Tools like Avira SafeThings [10] are developed to be
installed on home routers for detecting and monitoring IoT
devices; however, deploying such a service requires the in-
volvement of every customer, which is a tremendous effort
for an ISP that servers thousands of customers. A practical
solution could be a passive subscription-based service pro-
vided by ISPs that analyzes the traffic of residential networks
(with the users’ consent) to detect the IoT devices in each
home network. As done in this paper, the ISPs may only use
metadata and flow-based statistical information without any
deep packet inspection to reduce privacy concerns. Once an
IoT device is detected in a home network, the ISP can check
public vulnerability databases like CVE [11] and notify the
users to take recommended actions (e.g., changing credentials
or upgrading firmware) to rectify the risk.

IoT devices often show identifiable patterns in their network
behaviors, making them relatively distinguishable from each
other (though behavioral overlaps are common too [12]). Many
works have developed methods for detecting IoT devices using
their network traffic [13]–[22]. From the existing works, only
a few of them [14], [17], [18], [20], [23], [24] are capable of
detecting IoT devices through limited and obfuscated traffic
due to Network Address Translation (NAT) on home gateways
which makes them feasible to be deployed by ISPs.

However, these patterns may change [25]–[27] by the time
and context of their use across various networks. The behav-
ioral change is more pronounced when IoT traffic inference
is the objective of an ISP tasked to serve and manage tens of

2

thousands of home networks, each with a unique composition
of assets and users, all distributed across sizable geography
(city, state, or country). Several existing research works studied
different methods that ISPs can leverage to detect IoT devices
in residential networks [20], [23], [24], [28]–[30]. Prior works
tend to train a global model with machine learning algorithms
and fine-tune it by traffic data collected from a testbed (rep-
resenting a single context). Due to the limitation of data or
evaluation scenarios, they did not encounter context variations
and could not highlight and/or address their impacts.

The challenge of data distribution change in data-driven
modeling is known as concept drift which has been studied
in various contexts like image recognition [31], insect species
detection [32], air quality detection [33], electricity price
[34], and network intrusion detection [35]. Some existing
methods for addressing concept drift [35]–[40] require true
labels during the testing phase to measure the error rate and
re-train the model if the error rate increases significantly. This
assumption is challenging for our context as obtaining labeled
data for thousands of home networks is not trivial for an ISP.
Therefore, a practical solution must be capable of addressing
concept drift with a limited amount of labeled data from a few
home networks for training purposes.

Context-aware or contextualized modeling [31]–[33] is an
alternative to global modeling where (1) a set of training
contexts are identified; (2) models are trained on a per-context
basis; and (3) a given testing sample is predicted by the
“closest” model selected from all available trained models.
The definition of context is dependent on the application. In
our case, each home network can be considered as a context.
Selecting the closest model is the key process where we
can leverage the classification scores of the models without
requiring the true labels in the testing phase [31], [32], which
makes this method more appealing for our problem. Note that
each contextualized model is trained by data collected from
a single context with narrow and relatively tight knowledge.
In contrast, the global model captures data from multiple
contexts, making its knowledge broader and loose. Limiting
a model to learn a single context may increase the chance of
overfitting, while exposing a model to a diversified data set
may not necessarily result in better performance, especially
when the data is noisy. Though contextualized modeling has
been studied in other domains [31]–[33], to the best of our
knowledge, no relevant study has been found in the area of
IoT traffic inference.

This paper compares global and contextualized modeling
for classifying IoT devices in home networks. Specifically,
we aim to answer the following question: “Given a labeled
dataset (training) from N homes and an unlabeled dataset
(testing) from other M homes, which of the global versus
contextualized modeling does yield better performance in
classifying devices during the testing phase?” Our first contri-
bution highlights the presence of concept drifts over time and
space domains in IoT network traffic behavior by analyzing
more than 6 million flow records (§III). Our data (labeled
training and testing instances) is publicly released [41] to the
research community. For our second contribution, we develop
global and contextualized models (aiming to manage concept

drifts in the space domain) and compare their performance
(§IV). For the third contribution, we demonstrate that a
dynamic inference can be applied to a combination of global
and contextualized models to address concept drifts in the
time domain (§V). In the fourth contribution, we develop a
selection strategy to select the closest model by using score
distributions of contextualized models without using the true
labels of the testing dataset (§VI).

II. RELATED WORK

Classifying IoT devices has received attention in the re-
search community during the last recent years [12], [13],
[15], [16], [28]–[30], [42], [43]. However, the majority of
the existing works need full visibility over the network traffic
like relying on local traffic (e.g., SSDP, DHCP, and mDNS)
[42], [44]–[46] or they take advantage of device identities like
IP/MAC address [25], [26], [29], [43], [47] for grouping their
network traffic features over a time window. These methods
become practically challenging for an ISP aiming to deliver
the device identification service because the ISP would need
to deploy its traffic measurement engine inside thousands of
home networks which requires a software/hardware change
to the existing home gateways. Alternatively, if the measure-
ment is done on the ISP network (outside individual home
networks), the local traffic and device identities (due to NAT)
will be lost.

As traffic measurement scalability is an important factor for
ISPs, some research works developed their inference model to
infer from partial information available when the measurement
is done outside the home network [14], [17], [18], [23]. In
[14], authors used domain names extracted from DNS query
packets sent by IoT devices to map server IP addresses to
their corresponding domain names. Then, they created a bag
of domains that each IoT device types communicate with so if
a certain number of domains from a given bag were contacted,
they would infer the presence of the device type associated
with that bag of domains. Work in [17], used a similar
inference technique i.e., using the IP address and domain
names; but, instead of extracting them from raw network
packets, they employed IPFIX [48], and NetFlow [49] which
are well-known tools for generating flow-based information
in networks. As neither DNS packets nor domain names are
accessible through IPFIX and NetFlow, the authors used a
third-party tool like DNSDB [50] and Censys [51] to look up
domain names. Work in [18] transformed TCP payloads into
gray-scale images and trained a machine learning model to
detect IoT device types based on that.

Our previous works [23], [24] analyzed data collected
from a testbed in our lab environment (training and testing
environments were identical) and studied the feasibility of
inferring IoT devices from their IPFIX records. We trained
an inference model on IPFIX data of IoT devices collected
from the testbed and evaluated its performance on the unseen
data of the same testbed. This paper leverages the findings of
and builds upon our previous works. It specifically extends
the scope of network traffic inference to a distributed set of
environments (home networks). With the new scope, this paper

3

primarily aims to study the practical challenges of concept
drifts in time and space domains and their impacts on the
quality of inference, where data can be collected from, and
inference is made across multiple home networks.

Concept drift has been studied by researchers [36]–[39],
[52]–[56] in contexts like image recognition, electricity mar-
ket, and network intrusion detection; however, to the best of
our knowledge, no existing work has explored this challenge
in the context IoT traffic inference.

Some of the existing works [35]–[40] assume that the
true labels are available during the testing phase so they
can evaluate the model performance and if they observe an
increase of the model’s error rate, they detect the concept
drift. Another body of works like [57]–[62] use the underlying
data distribution to measure the distance between the training
and testing data, so if the distance is greater than a threshold,
they consider it as concept drift. Although this method is more
realistic than relying on the testing labels, it becomes computa-
tionally expensive as the number of features (i.e., dimensions)
increases [52]. Works in [57], [63] developed decision tree
models with specialized leaves capable of measuring the error
rate; their methods can detect regions in the feature space that
are drifting.

Authors in [31], [32] argue that obtaining true labels could
sometimes be delayed or infeasible. Therefore, they used
statistical tests to measure the similarity between classification
score distributions without requiring labels. A classification
score is a number a classification model returns for each pre-
diction. Higher values indicate the model is more confident in
its predicted label. They showed that matching the distribution
of scores yields acceptable results in detecting concept drifts
while it is computationally more attractive than computing the
distance in the distribution of multi-dimensional feature space.

Once the concept drift is detected, there are different ways
to address it. Works like [36], [53], [64], [65] used the benefits
of testing labels to train a new model which replaces the old
one. Authors in [39], [55], [66] used an ensemble model that
includes several models trained via past data, and once the
drift occurs, they train a new model purely using the new
data which is added to the ensemble. Works like [67], [68]
developed decision trees-based models that can be updated in
real-time by replacing low-performance sub-trees with newly
trained ones based on new data. Contextualized modeling is
another method for handling concept drift [31]–[33], [35],
[40] which identifies some recurring contexts and trains a
separate model for each context. Then, based on the testing
data and a selection strategy, the best model is selected from
the previously trained models in the testing phase.

Works in [35], [40] assumed that true labels for testing
instances are available to help them select the model that has
the best performance for the given test data. In [33], authors
used temporal information to select the model that is trained
specifically for a certain month of the year or a specific time
of the day. Works in [31], [32] select the best model by
comparing the classification score distributions of the models
on their training dataset and the given test dataset. The model
with the closest score distribution between its training and test
datasets is selected as the best model. To our knowledge, this

paper is the first work highlighting the efficacy of global and
contextualized strategies for IoT traffic inference. Our dynamic
combination of the two strategies improves the quality of
traffic inference by 20%.

Our Novelty: Existing works (ours [23], [24] included)
developed inference models to identify/classify connected IoT
devices from network traffic. To our best knowledge, no
prior work studied the impact of concept drifts on IoT traffic
inference. Additionally, no work attempted to manage practical
challenges of concept drifts in the context of traffic inference
at the sale of ISPs where gaining labeled data is nontrivial,
particularly at scale. In this paper, we first quantify the impact
of concept drifts in traffic data collected from 12 real homes.
We next develop, compare, and combine ideal and practical
methods to manage concept drifts for IoT traffic inference.

III. CONCEPT DRIFTS IN NETWORK BEHAVIORS OF
IOT DEVICES

A prerequisite step for an ISP that aims at automatically
detecting IoT devices in home networks is to collect labeled
data of network traffic for an intended set of devices. Ob-
taining labeled datasets is a common challenge of machine
learning applications in different domains. This is even more
challenging for entities like ISPs due to the privacy concerns
around the Internet traffic data of users. An ISP may choose
to obtain labeled datasets in two broad ways:

(a) With offers like discounted monthly bills, the ISP may
incentivize subscribers who own and use IoT devices on their
home network to contribute certain and well-specified data,
allowing the ISP to collect non/less private meta-data from
within and/or outside their home network. Obtaining data from
subscribers’ networks would require the users’ explicit consent
with a clear explanation of what part of network traffic is being
collected and used by the ISP. We note that contributing certain
forms of data can preserve user privacy to a great extent,
particularly when data is stored as IPFIX records which merely
carry 5-tuple information (source/destination IP addresses,
transport protocol, and source/destination port numbers) and
flow-based statistical measures with no application contents
(payloads). In addition, the ISP may employ middleboxes
and/or preprocessing techniques to obfuscate packet contents
[44] before exporting network traffic to generate IPFIX records
to avoid further privacy concerns. In this work, to ensure
preserving user privacy, we obfuscated packet contents by
zeroing all bytes in the content of recorded packets; or (b) The
ISP can set up a limited number of testbeds that each emulates
a household with several IoT devices. The ISP must consider a
wide range of users’ behavior (e.g., single versus family, less
active versus highly active) to diversify the data it collects.
Although this approach may sound more expensive for the
ISP than the user-supplied one, it has no privacy concerns.

Alternatively, suppose collecting raw data with appropriate
user consent becomes infeasible, the ISP can employ feder-
ated learning, where they ship the model training engines to
subscribers’ premises where the data belongs and where users
have complete control. That way, no private raw data will
be sent out of home networks. Instead, trained models will

4

Ele
co

m
 sc

al
e

Can
on p

rin
te

r

W
ith

in
gs s

le
ep

 se
nso

r

M
er

oss
 h

um
id

ifi
er

M
er

oss
 re

m
ote

M
er

oss
 p

lu
g

TP-L
in

k li
ghbulb

M
er

oss
 li

ghtb
ulb

M
er

oss
 p

ow
er

 st
rip

Lin
kJa

pan
 eS

en
so

r

iR
obot r

oom
ba

Sw
itc

hbot p
lu

g

TP-L
in

k p
lu

g

Sw
itc

hbot h
ub

Pan
as

onic
 h

om
e u

nit

Q
rio

 h
ub

TP-L
in

k ca
m

er
a

Sw
itc

hbot h
um

id
ifi

er

A
m

az
on F

ire
 7

A
to

m
 ca

m
er

a

A
m

az
on F

ire
 T

V re
m

ote

A
m

az
on E

ch
o

G
oogle

 C
hro

m
ec

as
t

G
oogle

 N
es

t

device

10
4

10
5

10
6

#
IP

F
IX

 r
ec

o
rd

s

Fig. 1. Number of IPFIX records per device type across 12 homes.

be shared by users with the ISP. Federated learning has been
used for IoT traffic classification [47], [69], [70] due to its
privacy-preserving advantage, but it is beyond the scope of
this paper.

Focusing on labeled data, it is important to note that the
number of contexts (real households and/or testbeds) from
which the data is collected will be limited and hence can affect
the learning process. This paper highlights this practical chal-
lenge, quantifies its impacts, and develops various modeling
techniques to maximize the inference quality.

Concept drift is a known challenge of inference models that
occurs when the distribution of data changes in the testing set
from what it was in the training set. This challenge can be
perceived differently in the time domain (when the model was
trained on data collected some time ago) versus the space
domain (when the model was trained on data from different
homes with slight variations in context).

In the scope of this paper (inferring IoT devices in home
networks), we encounter both sources of concept drifts. The
probability and intensity of concept drifts vary by how the
ISP trains its inference models (composition of homes) and
how often they get re-trained. Frequent re-training can make
the models more tolerant to concept drifts in the time domain;
however, the re-training process has its practical challenges,
such as requiring recent labeled data. Another point to consider
is that the ISP may need to carefully select the training
context (composition of homes) to cater to diversity, becoming
relatively resilient to concept drifts in the space domain.

A. Data Collection

For this paper, we obtained network traffic collected1 from
12 real homes. The households were selected from volunteer
employees (who provided us with written consent) of the
specialist contractor in Japan. The selected households have di-
verse residential settings, including single-person and family2.
We have a set of 24 IoT device types (makers and models),
including two cameras, four power switches, two humidifiers,
an air sensor, two speakers, two media streamers, three hubs,
two lightbulbs, a weighing scale, a tablet, a printer, a sleep
sensor, a smart remote, and a vacuum cleaner. For each of
these types, we procured 12 units, meaning a total of 288 IoT
units. Individual homes are given a unit of each device type.
In other words, each of the 12 homes has its own set of 24
devices.

1Traffic collection was outsourced to a third-party specialist contractor.
2We have no information about linking households to their corresponding

dataset.

TABLE I
ACTIVITY FEATURES OF IPFIX RECORDS.

Feature Description
packetTotalCount # packet

octetTotalCount # byte

smallPacketCount # packet with < 60 bytes payload

largePacketCount # packet with ≥ 220 bytes payload

nonEmptyPacketCount # packet with payload

dataByteCount payload size in total

averageInterarrivalTime packets inter-arrival time µ

firstNonEmptyPacketSize first non-empty payload size

maxPacketSize maximum payload size

standardDeviationPayloadLength payload size σ

standardDeviationInterarrivalTime packets inter-arrival time σ

We collected the data from these homes for 47 days, using
the first 30 days for training and the remaining 17 days for
testing. One may construct (semi) randomized training/testing
datasets by shuffling instances. However, we split our data
chronologically for two reasons:

(1) In real-world settings, an ISP would start by collecting
data for a certain period (say, a month) to train models before
applying them in production. Therefore, learning from past
behaviors to predict future behaviors provides results closer
to realistic scenarios. In contrast, shuffling data instances
can break the chronological order, mixing past and future
behaviors that may not necessarily reveal intended insights.

(2) In this work, we highlight the existence of concept drifts
in the time domain, meaning the network behavior of devices
can change (to some extent) over time. Note that constructing
training and testing datasets in ways other than chronologically
would not have demonstrated this phenomenon.

To protect user privacy, precautionary actions, particularly
for cameras (e.g., ensuring the use of TLS-based encryption
for their data transmission and placing them in less private
locations of homes), have been taken. Also, the collected
data excludes network traffic of other household devices
(e.g., personal computers, phones) by connecting a new WiFi
access point (implemented with a Raspberry Pi) to the LAN
interface of the existing home gateway that only serves our
24 experimental IoT devices (where other household devices
are served by their existing gateway) and is the vantage
point of data collection. Additionally, the process of traffic
capture was configured by the MAC addresses (safelist) of our
experimental IoT devices to avoid recording data of unintended
devices.

For an ISP serving thousands of households, the choice of
traffic data and the measurement location are nontrivial tasks
mainly due to operational and scalability challenges. Works in
[17], [20], [23] showed that these challenges could be managed
by collecting data at the edge of the ISP network (outside
homes). This paper also considers that traffic is measured at
the same vantage point and that flow records are employed to
manage computing costs. That said, it is important to note that
to evaluate the efficacy of our inference methods, we collect
raw packets (in PCAP format) from inside home networks to
obtain true device labels. We transform them into post-NAT
IPFIX records [48] (emulating a real scenario) and use them
for training and testing models.

Our entire dataset consists of 6,305,626 IPFIX records,

5

Oct [training] Nov [testing]
time

0.70

0.75

0.80

0.85

0.90

0.95

1.00
ac

cu
ra

cy

m1

m2

m3

m4

m5

m6

m7

m8
m9

m10

m11 m12

m1
m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

Fig. 2. Temporal drifts in IoT network behaviors lead to performance decay
across models (one per each home) from training to testing.

shown in Fig. 1 for each device type. Each IPFIX record corre-
sponds to a five-tuple flow distinguished by source/destination
IP address, source/destination port number, and IP protocol
number. IPFIX records are bidirectional, which means they
include activity features corresponding to both directions of a
flow e.g., incoming packet count and outgoing packet count.
Inspired by prior work, we extract 22 activity features from
each IPFIX record that indicate packet count, byte count,
packet size, and inter-arrival time. Table I shows the IPFIX
features we extracted from IPFIX records. As IPFIX records
are bi-directional, a reverse equivalent for each of these
features captures the activity of the other flow direction; hence,
there is a total of 22 activity features. In addition to the
activity features, we extract 6 binary features for indicating
the protocol of flows into one of the following protocols: HTTP,
TLS, DNS, NTP, TCP (other than HTTP and TLS), and UDP (other
than DNS and NTP). Therefore, we extract a total of 28 features
per IPFIX record. Our dataset (labeled instances for each of the
12 home networks) can be found in [41] in the CSV (Comma
Separated Values) format.

In this paper, we use multi-class Random Forest to develop
our inference models as it has proven effective in network
traffic inferencing [71]. Model inputs are IPFIX features;
outputs are a device type (from 24 classes) and a classification
score. We note that the inference is not bound to any specific
algorithm, so one may use other methods like neural networks
for this purpose. As IPFIX records are coarse-grained, it is not
unlikely for the model to be less confident in its prediction.
To increase the prediction quality, we apply class-specific
thresholds to the score given by the model, thereby accepting
predictions accompanied by relatively high scores. We obtain
class-specific thresholds during the training phase by taking
the average score for correctly predicted training instances per
class.

B. Temporal Drifts in IoT Behaviors

Let us begin with how the behavior of IoT devices changes
over time. We train a Random Forest classifier for each home
using its corresponding training dataset, obtaining 12 inference
models i.e., one model per home (mi : i ∈ [1, 12]). We use a
10-fold cross-validation technique to obtain average accuracy.

We apply these 12 models to their corresponding training
and testing data to track their performance (average prediction

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

Models

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H
o
m
e
s

0.89 0.84 0.88 0.82 0.76 0.8 0.76 0.85 0.82 0.75 0.85 0.82

0.75 0.88 0.79 0.76 0.72 0.82 0.77 0.8 0.86 0.74 0.84 0.83

0.77 0.78 0.85 0.77 0.7 0.77 0.75 0.77 0.75 0.68 0.77 0.75

0.64 0.62 0.61 0.87 0.57 0.64 0.72 0.61 0.69 0.59 0.54 0.6

0.75 0.85 0.76 0.84 0.78 0.85 0.81 0.83 0.86 0.72 0.89 0.79

0.79 0.81 0.85 0.85 0.79 0.92 0.78 0.83 0.82 0.79 0.86 0.8

0.64 0.65 0.69 0.76 0.68 0.67 0.81 0.6 0.69 0.69 0.58 0.61

0.66 0.77 0.76 0.73 0.71 0.77 0.75 0.83 0.79 0.67 0.76 0.74

0.62 0.68 0.64 0.59 0.63 0.67 0.66 0.62 0.72 0.66 0.65 0.66

0.73 0.77 0.74 0.76 0.7 0.74 0.76 0.76 0.78 0.8 0.8 0.72

0.86 0.89 0.84 0.85 0.86 0.89 0.78 0.89 0.85 0.8 0.91 0.84

0.81 0.82 0.81 0.82 0.81 0.79 0.73 0.8 0.79 0.79 0.85 0.81
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Fig. 3. Spatial drifts in IoT network behaviors deteriorate model performance
when tested against data of other contexts.

accuracy across 24 classes). Fig. 2 shows the accuracy (a
value between 0 and 1) of models on average drops from
training (shown in blue circles) to testing (red circles). All
models realize a lower accuracy in the testing phase than in the
training phase. Temporal drifts deteriorated the performance
of models by about 13% on average. The smallest and largest
gaps are seen for m6 and m9, where their testing accuracy
drops by more than 6% and 27%, respectively.

C. Spatial Drifts in IoT Behaviors

The second form of drift is when models learn and infer
across the spatial domain. To analyze this scenario, we apply
the models (mi : i ∈ [1, 12]) trained in §III-B to the testing
set of each home (Hi : i ∈ [1, 12]). Fig. 3 shows the results of
this experiment. Each cell is the average prediction accuracy
of models (listed across columns) when tested against data of
homes (listed across rows).

Overall, models perform better when they apply to their
corresponding context. We observe that diagonal cells are often
among the highest in each row, with some exceptions. For
example, in H12, its own model m12 is beaten by m11, giving
an accuracy of 0.81 versus 0.85. Such an unexpected pattern
is more pronounced in H5, where the performance of m5 is
lower than that of eight other models.

Certain homes like H11 and H12 receive relatively con-
sistent predictions (fairly green cells) from all models. Con-
versely, in homes like H4 and H7, inconsistent performance
across models is evident (yellow versus green cells) – spatial
drifts deteriorate the performance more. Considering H4, for
example, the accuracy of its own model (m4) is 0.87, whereas
all other models at best give an accuracy of 0.72 – a non-
negligible gap of 0.15.

Summary: Concept drifts are unavoidable, particularly at
the scale of an ISP with only a limited amount of labeled
data available from a diverse set of homes. In the following
sections, we will develop strategies and methods to manage
the impact of concept drifts on our IoT traffic inference.

6

!"#$

%
&
'
(
$

!!"#$

!

!

!

!

!!

!"

!#

"$

!"#$%&%&'()*#%+,-(
.//0(123/4/5(5262

!"*."%&'()*#%+,-(
708//0(5262

!

!
"
#
$%
&
$'
(
)*
+
%
,

-
)"
.
(
)

!!%&!'()!#*)"#*+#*)#,

-.&/01&!*02*3!4 -.&/01&!*02*3!4

!!5#$

!!$#$!!$#5 !!$#.

!!5#5 !!5#.

!!"#5 !!"#.

""#$%& ""#$%' ""#(

!"#$

Fig. 4. Global versus contextualized modeling for detecting IoT devices in
home networks.

IV. IOT TRAFFIC INFERENCE STRATEGIES

With high-level observations in the previous section, let
us assume labeled data is available from some seen contexts
(say, N homes). One may employ different strategies to train
models and apply them to unseen contexts in practice. We
illustrate in Fig. 4 two representative strategies, highlighted by
purple (global) and green (contextualized) colors. Suppose we
have d days worth of labeled data from N homes, constructing
our training set (shown in the left section of Fig. 4). Therefore,
HsN,d denotes the unit of dataset collected from the seen home
N on day d.

The most straightforward strategy (baseline) is that we
combine all labeled data from N homes and train a classifier
(shown as purple Mg) based on the combined dataset. We
call this global modeling throughout the paper. Alternatively,
one may step back and, instead of combing all data, trains a
separate model per home (shown as green m1, ...,mN). We
call this method contextualized modeling. When it comes to
the testing phase (detecting a set of IoT devices in an unseen
home Hu), shown in the right section of Fig. 4, Mg is readily
applied to the daily data of Hu,K , giving prediction. For
contextualized modeling, instead, an additional computation is
required. It needs to “select the best” model from N available
models before applying it to data of an unseen home. In
§VI, we develop a strategy for selecting the best model in
the absence of labeled data in the testing period; but before
that, our primary objective is to compare the efficacy of global
versus contextualized modeling, assuming the best model can
be selected (either automatically or “given”). For now, we
leverage ground truth labels (provided by an oracle3) available
for all contexts (seen and unseen) during the training and
testing phases of our experiments. In other words, we choose
the model with the highest accuracy (given ground truth) for
unseen homes.

These two strategies have key differences: (1) Suppose a
labeled dataset becomes available from an unseen (or even
a seen) home. Global modeling requires re-training Mg on
past data combined with new data. Contextualized model-
ing, instead, trains an isolated model specific to a newly
added/updated home, which is relatively faster and less ex-

3Note that this would be infeasible in real practice. We will develop a
practical method in §VI.

TABLE II
PERFORMANCE OF GLOBAL VERSUS CONTEXTUALIZED MODELING.

Run Mg Best({mi}) Best(Mg , {mi}) Best(Mg , {mi})d

1 0.770 0.748 0.769 0.782

2 0.827 0.805 0.834 0.843

3 0.823 0.803 0.816 0.834

4 0.825 0.791 0.826 0.840

5 0.771 0.728 0.768 0.783

6 0.822 0.795 0.820 0.819

7 0.844 0.782 0.836 0.837

8 0.840 0.787 0.838 0.836

9 0.841 0.788 0.840 0.831

10 0.826 0.806 0.820 0.851

Avg. 0.818 0.783 0.816 0.826

pensive computationally; and (2) Although this paper selects
the best model by leveraging ground truth labels, a practical
approach like what we will explain in §V may not always be
able to select the best model from a set of available models
(hence, affecting the inference performance).

Evaluating Inference Strategies: For our evaluation, we
assume labeled data of five4 homes is available for training
(seen), and data from the remaining seven homes is used
for testing (unseen). To avoid creating bias, we ran our
experiments ten times and randomly selected five training
homes for each run. Let us call the first month (of the entire
47 days) training period. Note that we train models on data of
seen homes during training. We train a global model (Mg) and
five contextualized models (mi) for the chosen seen homes,
as shown in Fig. 4.

It is important to note that contextualized modeling requires
the best model assigned to an unseen home before the testing
phase. Given an unseen home, the best model (one of five
mi’s in our evaluation) is selected and assigned based on the
highest accuracy obtained by applying mi’s to the labeled data
of unseen homes (which is assumed to be available in this
paper). It is possible that the best model selected for an unseen
home may not necessarily perform the best during the testing
period. In fact, in nine runs (out of ten), we found at least one
unseen home where the ideal model for its training period
differs from the testing period due to temporal concept drifts
discussed in §III-B.

Table II summarizes the prediction accuracy (averaged
across testing homes) for 10 runs. The second and third
columns show the performance of global modeling (i.e., Mg)
versus that of contextualized modeling (i.e., Best({mi})),
respectively. Global modeling consistently outperforms con-
textualized modeling “on average” across all runs. However,
this pattern is not necessarily present at individual home levels.
Let us closely look at a representative run to draw detailed
insights. Considering run 2 , homes H1, H4, H5, H7, and
H9 were randomly chosen as seen contexts (resulting in mi’s)
and therefore remaining homes H2, H3, H6, H8, H11, H10,
and H12 were considered unseen. For unseen home H2, the

4Less than five seen homes result in insufficient data.

7

0.4

0.6

0.8
H
1
0
 r

u
n

 7

m6

m6

m6

m6

m6

m6
m6

Mg

Mg Mg Mg

Mg

Mg
Mg

Mg

dynamic static

0.6

0.8

H
1
 r

u
n

 1
0

m11

Mg
Mg

Mg

Mg

Mg
Mg

Mg

Mg
m9

m9

m9

m9 m9

Nov 21 Nov 24 Nov 27 Nov 30 Dec 3
Time

0.6

0.8

H
1
 r

u
n
 4

m3

m3
m2 m2

m2

m2

m2

m2

m2

m2

m2

m2

m2
m2

Fig. 5. Accuracy of static versus dynamic models during testing period for
three representative homes.

global model gives an accuracy of 0.822; however, the best
selected contextualized model m9 gives an accuracy of 0.860.
Similarly, in the same run, for unseen home H8, the accuracy
of the global model is 0.774, but m9 gives better accuracy of
0.790.

Overall, in half of the ten runs, we found cases of unseen
homes whereby the contextualized model outperforms the
global model. Scaling our small-size experiment to the size
of the operation of an ISP with thousands of homes, one
would appreciate the whole argument that either global or
contextualized modeling can be sub-optimal; hence, a better
strategy is required.

V. COMBINED AND DYNAMIC INFERENCE FOR
MANAGING CONCEPT DRIFTS

In the previous section, we saw that global modeling might
sound superior at a macro level but contextualized modeling
is not always worse (if not better) at a micro level. Therefore,
we choose a strategy whereby a combined capability of global
and contextualized modeling is leveraged. In other words, we
bring Mg as an additional context to the mix of contextu-
alized models {mi : i ∈ [1..N]} to select the best model,
Best(Mg, {mi}), for an unseen home.

Under the fourth column of Table II we report the ac-
curacy of the two approaches combined. Unsurprisingly, the
augmented contextualized modeling consistently outperforms
its original form (third column of Table II) at a macro level
(average accuracy across unseen homes). Also, it can be seen
that in some runs like 2 and 4 , the performance of the
new strategy is slightly better than that of the global Mg .
However, Mg marginally wins the competition with the new
strategy by the metric of aggregate accuracy. At a micro level
(individual homes), we found that the two strategies yield
almost the same prediction accuracy for about 60% testing
homes across different runs. For the remaining 40% testing
homes, the superiority of Mg or the combined strategy is
insignificant (< 1%). It is important to note that the best model
(of the combined strategy) is selected based on observations
during the training period. In other words, our selection of the
best model, though it has improved by incorporating Mg into
the mix, is still “static”, which makes it vulnerable to temporal
concept drifts.

TABLE III
AVERAGE NUMBER OF DAYS ACROSS 10 RUNS THAT DYNAMIC (d)

APPROACH GIVES HIGHER (>), LOWER (<), OR EQUAL (=) ACCURACY
COMPARED TO STATIC (s) APPROACH.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

d > s 5 1 0 0 0 0 4 4 0 2 0 1

d < s 3 2 1 0 0 1 1 1 0 1 0 1

d = s 6 12 14 14 9 14 10 10 15 12 16 14

To overcome this challenge, we slightly refine our infer-
ence strategy and make it “dynamic”. This means that the
process of best model selection continues in the time domain
(occurs, say, once a day). Such a change in our inference will
certainly introduce additional computing costs (for periodic
selection). Instead, the inference process becomes relatively
more resilient to temporal concept drifts.

Another practical challenge is that certain homes may not
have sufficient instances (only a few IPFIX records due to the
limited activity of the corresponding IoT devices) to make a
meaningful selection for some days during the testing period.
Therefore, we maintain a sliding window equal to the length
of our testing period (a month). The sliding window data is
considered for the dynamic selection of the best model. Note
that we still have Mg in our mix.

The fifth column in Table II shows the performance (average
daily accuracy of all unseen homes) of our model selected
dynamically. Unsurprisingly, our dynamic combined approach
consistently outperforms the baseline of contextualized mod-
eling (third column). In six (out of ten) runs, the performance
of the dynamic combined approach is better than that of
both Mg (second column) and static combined (third column)
approaches. Although Mg performs slightly better in the
remaining four runs, its superiority is marginal. Averaging
across all runs (the last row in Table II), the dynamic approach
gives an aggregate accuracy of 0.826, greater than all other
approaches we evaluated.

Note that results in Table II are at an aggregate level.
Fig. 5 helps us look closer at the performance of static versus
dynamic approaches for three representative homes unseen to
our models, each from a certain run, across the testing days.
Blue dotted lines correspond to the prediction accuracy of the
static combined approach, and solid green lines correspond
to the accuracy of the dynamic combined approach. For the
dynamic approach, the model selected each day is annotated
accordingly. Note that home H1 was entirely inactive on 5th

Dec, and hence no data point for that day.
Let us start from the top plot, corresponding to home H10

in run 7 . For the first six days (between 21st and 27th

Nov), M6 is the selected model by both static and dynamic
approaches. However, after that, the dynamic approach selects
Mg , which gives higher accuracy than M6. Moving to the
second plot (H1 in run 10), we observe that the dynamic
approach outperforms the static one on days between 21st Nov
and 30th Nov (except for 25th Nov). However, its superiority
fades out from 1st Dec onward. Lastly, for home H1 in run
4 , the static approach defeats the dynamic approach almost

every day, except for 25th Nov and 30th. The key takeaway is
that a definite winner cannot be easily concluded from these
observations.

8

!
!

!
"

!
#

!"#$%&%&'()*#%+,-(
.//0(123/4/5(5262

!!

!"

!#

!

!"*."%&'()*#%+,-(
708//0(5262

"!#$%&#'(%)(*$+

!
!

,!-!!%$&.(!!/

!$

!!

!!%$!"%$!#%$

!

!
"

!
#

,"-!"%$&.(!"/ ,#-!#%$.(!#/

!"#
! "# $%&

$"

Fig. 6. Selecting the best among contextualized models by measuring
distances of score distributions.

Inspired by observations in Fig. 5, we analyze the perfor-
mance using a different lens. In each run, we count the number
of days that the dynamic approach yields lower, higher, and
equal accuracy compared to the static approach. We then
compute the average count across ten runs. Table III shows
the results of this evaluation. While both dynamic and static
techniques often select the same model (D = S), the dynamic
approach outperforms when the two differ. It can be seen that
in 17 home days, the dynamic approach wins (D > S) versus
11 home days with the static approach winning (D < S),
meaning more than 50% superiority for the dynamic approach.
We also quantified the accuracy delta between these two
techniques. When the dynamic approach wins, it outperforms
by 0.004, on average. This metric is about 0.002 for the static
approach, meaning half of the dynamic approach. With the
dynamic approach, we found that for 20% of home days,
one of {mi} (instead of Mg) is selected for inference. This
means our dynamic combined method improves the baseline
inference (by Mg) in a fifth of our experimented scenarios.

VI. PRACTICAL METHOD FOR SELECTING THE
BEST CONTEXTUALIZED MODEL

So far, we have assumed that labels of unseen data are avail-
able, assisting us in selecting the best model (by measuring
prediction accuracy). However, this assumption is unrealistic
in practical settings, particularly at scale. Therefore, in this
section, we develop and evaluate the efficacy of a method
independent of unseen labels that selects the closest (best)
model based on the labeled training data and unlabeled test
data.

For this purpose, one approach is to compare the data
distribution of a given unseen home against the seen (labeled)
home datasets and select the model trained for the closest
seen dataset. This method can be complex and computationally
expensive as our data is multi-dimensional, while statistical
tests often work best for univariate distributions [72]. Inspired
by work in [32], we use the distribution of classification
scores (e.g., prediction confidence), a one-dimensional signal,
obtained from the models as a proxy for selecting the best
model. It is important to note that the model selection only
applies to contextualized models where we have a set of
models to choose from – the single global model is free
from a selection method. We will demonstrate in §VI-B that
our method may not pick the ideal model (from §V) in all

cases, but the performance of the selected model is close to
ideal (upper bound). We will also experiment with a baseline
method that randomly selects a model and show that our
method (matching distributions of classification scores) often
performs better than the baseline.

Fig. 6 illustrates the method of selecting the best model
among contextualized models by measuring the distances of
score distributions from individual mi’s. For each contextual-
ized model mi, we obtain its score distribution by applying it
to the seen labeled data of Hi during the training period. To get
unbiased score distributions, we use 10-fold cross-validation
to obtain 10 sets of score distributions (one set in each run).
The final score distribution is a superset of all score values
obtained from ten runs. We denote by di the score distribution
of model mi, shown on the left side of Fig. 6.

Moving to the testing period with an unseen home Hu.
We present its data to each of contextualized models (mi :
1≤i≤N) trained on labeled seen data and compute a corre-
sponding score distribution di,u, as shown at the top right of
Fig. 6. We next measure the distance between each pair of
di,u and di, denoted by ∆(di,u, di), an approximate measure of
distance between the underlying data distributions. Eventually,
we select the best model m∗ giving the shortest distance
min ∆(di,u, di) and use it to determine the class of devices
connected to home network Hu from its IPFIX flow records.
There are several statistical tests for measuring the distance
(i.e., the function ∆) of two given distributions. We experiment
with four well-known tests described in what follows.

A. Distance Metrics

Let us assume F (x) and G(x) are empirical Cumula-
tive Distribution Functions (eCDF) computed from prediction
scores when a classifier is applied to training (di) and testing
instances (di,u), respectively.
Kolmogorov-Smirnov (KS): KS is a non-parametric fitness

test for continuous distributions that measures the greatest
distance (supremum) between the two distributions [73].

KS(F,G) = sup |F (x)−G(x)| (1)

Kantorovich–Rubinstein (KR): KR (also known as Wasser-
stein distance) is a non-parametric fitness test for two
given distributions that measures the amount of change
needed to transform a distribution to another [74].

KR(F,G) =

∫ +∞

−∞
|F (x)−G(x)| (2)

Epps–Singleton (ES): ES is a parametric test, proved to be
more accurate than KS in some cases [75]. ES performs
Fourier transform on the given distributions before mea-
suring their distance which can be tuned using certain
parameters. The inventors of ES suggested a set of
parameters that performed well on different distributions,
and we use them in this paper.

Jensen–Shannon (JS): This measure is a symmetric version
[76] of Kullback–Leibler divergence that measures the
average number of bits lost by approximating F (x) using
G(x) [77]. Kullback–Leibler divergence can be measured
for both continuous and discrete distributions. However,

9

TABLE IV
SCORE DISTRIBUTIONS AND DISTANCE MEASURES FOR TWO REPRESENTATIVE UNSEEN HOMES H7 AND H10 ,

GIVEN TWO REPRESENTATIVE MODELS m3 AND m8 .

0.7 0.8 0.9 1.0
score

10
−4

10
−3

10
−2

10
−1

10
0

p
ro
b
ab
il
it
y

m3

0.7 0.8 0.9 1.0
score

10
−4

10
−3

10
−2

10
−1

10
0

p
ro
b
ab
il
it
y

m8

H7

KS=0.04, KR=0.004, ES=0.57 × 104 , JS=0.05

0.7 0.8 0.9 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

C
C

D
F

:
P

ro
b
 [

sc
o
re

 >
 x

]

d3

d3, 7

KS=0.13, KR=0.01, ES=0.50 × 104 , JS=0.12

0.7 0.8 0.9 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

C
C

D
F

:
P

ro
b
 [

sc
o
re

 >
 x

]

d8

d8, 7

H10

KS=0.40, KR=0.01, ES=0.57 × 105 , JS=0.25

0.7 0.8 0.9 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

C
C

D
F

:
P

ro
b
 [

sc
o
re

 >
 x

]

d3

d3, 10

KS=0.05, KR=0.007, ES=0.21 × 104 , JS=0.12

0.7 0.8 0.9 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

C
C

D
F

:
P

ro
b
 [

sc
o
re

 >
 x

]

d8

d8, 10

since the measurement for continuous distributions leads
to a numerical approximation rather than an exact value
[78], we use the discrete version of it. For this purpose,
we transform the score distributions to 10 discrete bins
(X) with the size of 0.1. Discrete Kullback–Leibler
divergence of F (x) and G(x) is defined by:

DKL(F,G) =
∑
x∈X

F (x) log
F (x)

G(x)
(3)

We compute the JS distance as follows.

JS(F,G) =

√
DKL(F,M) + DKL(G,M)

2
(4)

where, M(x) = F (x)+G(x)
2 .

To better understand how the score distributions work, let
us consider a scenario where we apply two models m3 and
m8 (trained on seen data of H3 and H8, respectively) to traffic
data of two unseen homes H7 and H10. Table IV summarizes
and illustrates score distributions and distance measures for
this representative scenario. The top row in this table shows
the score distribution (histogram) of the two models from their
respective training data. For a better illustration, we limit the

scores (x-axis of the plots) to values greater than 0.7, as most
scores fall in this range.

In this table’s second and third rows, our testing homes
are H7 and H10. Complementary Cumulative Distribution
Function (CCDF) plots visually highlight how closely the
distribution of H7 data (solid black lines) matches that of m3

(dashed blue lines with circle markers). In other words, d3,7
is closer to d3 than d8. We also see that d8,10 (dotted black
lines) matches d8 (dashed green lines with star markers) better
than d3, meaning m8 is the best model to infer from network
traffic of home H10.

In addition, CCDF plots are accompanied by the four
quantitative distance metrics (KS, KR, ES, and JS) we consider
in this paper. The smaller each metric value is, the closer the
two distributions are. For example, the KS metric measures the
distance between d3,7 and d3 as 0.04 where this distance is
0.13 between d8,7 and d8, corroborating our visual observation
from the CCDF plots in the second row. We also note that
the KS distance shows that the data of home H7 is ten
times closer than that of H10 to model m3 – KS = 0.04
versus KS = 0.40. Although KS and KR distance metrics
consistently support visual similarities in CCDF plots, ES
and, to some extent, JS behave differently, particularly for

10

TABLE V
ACCURACY RATIO OF A DISTANCE-/RANDOM-BASED SELECTED MODEL TO ITS CORRESPONDING IDEAL MODEL.

Runs 1 2 3 4 5 6 7 8 9 10 Avg.

Best(Mg , {mi})d

KS 0.955 0.915 0.961 0.911 0.868 0.976 0.943 0.901 0.906 0.991 0.933
KR 0.934 0.907 0.955 0.889 0.885 0.915 0.912 0.876 0.924 0.926 0.912
ES 0.982 0.921 0.971 0.918 0.914 0.974 0.980 0.925 0.904 0.916 0.940
JS 0.980 0.916 0.990 0.876 0.874 0.949 0.967 0.865 0.921 0.890 0.923

RND 0.917 0.939 0.937 0.947 0.911 0.927 0.926 0.908 0.914 0.926 0.925

Best(Mg , {mi})

KS 0.963 0.904 0.974 0.923 0.899 0.976 0.952 0.930 0.917 1.012 0.945
KR 0.957 0.903 0.982 0.891 0.896 0.917 0.920 0.886 0.931 0.964 0.925
ES 0.969 0.925 0.987 0.928 0.918 0.970 0.964 0.930 0.896 0.940 0.943
JS 0.970 0.904 1.005 0.854 0.899 0.936 0.958 0.865 0.923 0.926 0.924

RND 0.908 0.912 0.978 0.941 0.964 0.931 0.973 0.922 0.889 0.912 0.933

the scenario of d8 versus d8,7. This is perhaps because minor
similarities at a macroscopic level between d8 and d8,7 are
more signified by ES and JS. In contrast, ES and JS better
conform to KS and KR in the case of d3 versus d3,10,
where the two distributions are more distinct (dissimilar),
highlighting relatively larger distances.

B. Evaluating Efficacy of Practical Model Selection

We now evaluate the performance of the distance metrics
in selecting the best model for a given unseen home. We
experiment with our selection strategy over the same ten runs,
similar to what was discussed in §IV. To quantify how our
selected model (by distance metrics) is close to the ideal model
(the upper bound), we measure a ratio as AS

AI
, where AS and

AI are the average accuracy of the selected and the ideal
model, respectively. A higher ratio indicates how our method
performs close to ideal. Note that this ratio is expected to be
less than 1. However, it may go beyond 1 when the static
inference strategy (§IV) is employed. It is because the static
inference selects the best model based on training period data.
When the selected model is applied to testing data, the upper
bound AI is no longer applicable (AS can be greater than AI).
We observed and explained similar patterns in Table II.

Baseline: To compare with our method, let us establish a
baseline for selecting a model. We choose a random selection
method by randomly picking one of the six available models
(five contextualized models {mi} plus a global model Mg) at
the time of inference for a given unseen test home.

Table V summarizes our evaluation by reporting the accu-
racy ratio obtained from the selected model based on the four
distance metrics plus the baseline method (random selection
denoted by “RND”) across ten runs. Let us start with the
dynamic inference, rows corresponding to Best(Mg, {mi})d
in Table V. It can be seen that all metrics perform relatively
well as their selected models are close to ideal (giving ratios
greater than 0.9). Given a run, the cell of the best-performing
method is shaded in light green. ES seems to outperform
the others by winning in 40% of the runs (1 , 5 , 7 , and
8), as well as by the average ratio of 0.940 across the ten

runs. The baseline RND wins in two runs 2 and 4 , but on
average (0.925) ranks the third after ES and KS. Regarding the

standard deviation of accuracy ratios, the four metrics plus the
baseline measure around 0.04, indicating relatively consistent
performance across ten runs. In addition to the accuracy
ratio, we measured the absolute delta of the overall accuracy
|AS − AI |, which turns out to be about 0.05, 0.07, 0.04,
0.06, and 0.06 for KS, KR, ES, JS, and RND, respectively, on
average across ten runs. Again, by this measure, ES slightly
outperforms its rivals, yielding a relatively minor loss of
prediction accuracy compared to the upper bound (the ideal
model) in practical settings.

Moving to the static inference, rows corresponding to
Best(Mg, {mi}) in Table V, it can be seen that the selected
model sometimes outperforms the ideal model, giving a ratio
of more than 1. We now observe that KS is the winner metric
(marginally) by giving the highest ratio in three runs and
yielding an average ratio of 0.945. Similar to what we saw
for the dynamic inference, the baseline RND comes third after
KS and ES metrics. The standard deviation of accuracy ratios
is about 0.05, not much different from what was seen in the
dynamic inference. Finally, the absolute accuracy delta in the
static inference is about 0.04 for KS and ES, 0.06 for KR and
JS metrics, and 0.05 for RND.

F1-score vs. Accuracy: Throughout this paper, we have
been using accuracy as the performance metric of our in-
ference models – the best model was the one that yields
the highest overall accuracy across IoT classes. Let us now
evaluate the efficacy of inference models using two other well-
known metrics, precision and recall. Precision is computed
by the number of correctly predicted IoT classes (which
indeed connect to the network) divided by the total number
of predicted classes (correct and incorrect) in a given home.
In other words, the precision metric indicates how precise
the prediction of an inference model is, which decreases by
false positives (those predicted IoT classes that are not present
on the target home network). On the other hand, recall is
the number of correctly predicted IoT classes divided by the
number of IoT classes connected to a home network. Recall
decreases by false negatives (missing classes that indeed exist
in the home network. Precision and recall are incomplete
and cannot be reliable performance indicators individually.
However, combining these two metrics gives a better picture

11

TABLE VI
F1-SCORE RATIO OF A DISTANCE-/RANDOM-BASED SELECTED MODEL TO ITS CORRESPONDING IDEAL MODEL.

Runs 1 2 3 4 5 6 7 8 9 10 Avg.

Best(Mg , {mi})d

KS 0.986 0.988 0.989 0.992 0.986 0.995 0.990 0.994 0.992 0.9974 0.991
KR 0.991 0.989 0.989 0.992 0.986 0.993 0.989 0.991 0.994 0.984 0.990
ES 0.992 0.994 0.993 0.993 0.984 0.995 0.996 0.995 0.987 0.992 0.992
JS 0.993 0.991 0.993 0.989 0.985 0.994 0.991 0.987 0.991 0.981 0.990

RND 0.988 0.991 0.988 0.995 0.985 0.988 0.986 0.989 0.987 0.983 0.988

Best(Mg , {mi})

KS 1.000 0.984 1.003 1.005 0.990 1.007 1.008 0.997 0.997 0.994 0.999
KR 1.007 0.981 1.008 1.002 0.999 1.008 1.008 1.000 1.003 0.997 1.001
ES 0.997 0.991 1.015 1.002 0.988 1.004 1.008 0.997 0.997 0.987 0.998
JS 1.007 0.984 1.015 0.992 0.990 1.008 1.004 0.991 0.994 0.984 0.997

RND 1.001 0.994 1.007 1.004 0.990 0.994 1.008 0.981 0.997 0.981 0.996

of the model performance. F1-score, the harmonic mean of
precision and recall, is widely used as a performance measure
in machine learning applications. F1-score is computed by:

F1-score = 2× Precision× Recall
Precision + Recall

(5)

Note that our objective is to select a model with the highest
F1-score. Table VI reports the ratio of F1-score ratio of a
distance-/random-based selected model to that of the ideal
model across ten runs with dynamic and static inference
strategies. Given a strategy, the best-performing model of
each run is highlighted. Though various metrics perform very
closely, ES is the winner of the dynamic inference by giving
the highest F1-score ratio in half of the runs and the average
ratio of 0.992. At the same time, KR outperforms other metrics
with the static inference by giving the highest F1-score ratio
in 70% of the runs and the average ratio of 1.001. Compared
with the metric-selected models, RND has the lowest F1-score
ratio in dynamic and static strategies. It is important to note
that distance-/random-based selected models yield a better F1-
score ratio in Table VI compared to the accuracy ratio in
Table V.

VII. CONCLUSION

Network operators of various sizes increasingly employ
machine learning-based models to infer passively from their
network traffic, identifying and characterizing connected as-
sets. Vulnerable consumer IoT devices coming online in home
networks are particularly interesting to residential ISPs who
are tasked to manage large-scale networks. This paper focused
on the practical challenges of concept drifts in modeling
the behavior of IoT devices in traffic flows from residential
networks. We collected and analyzed over 6 million IPFIX
flow records from 12 homes, each serving 24 IoT device types
– we publicly released our training and testing instances data.
We quantified the impact of concept drifts in traffic data across
time and space domains. Given concept drifts, we next quan-
titatively compared the performance of two broad inference
strategies: global (one model trained on aggregate data from all
seen homes) versus contextualized (one model per seen home)
when predicting traffic data of unseen homes. We dynamically
combined the capabilities of the two strategies, improving the

baseline inference by 20%. Finally, we developed a practical
method to automatically and dynamically select the best model
with overall accuracy and F1-score very close (94% and 99%,
respectively) to those of the upper bound from the ideal model
without needing labels of unseen data for a realistic inference.

ACKNOWLEDGMENT

Funding for this project was partially provided by the
National Institute of Information and Communications Tech-
nology (NICT) in Japan, Project No. 05201.

REFERENCES

[1] Earthweb, “Smart Home Statistics,” 2022. [Online]. Available:
https://earthweb.com/smart-home-statistics/

[2] Security Sales & Integration, “Global Smart Home Market Projected
to Reach $158B by 2024,” 2020. [Online]. Available: https:
//www.securitysales.com/research/global-smart-home-158b-2024/

[3] World Economic Forum, “The Market for Smart Home Devices is
Expected to Boom Over the Next 5 Years,” 2022. [Online]. Available:
https://www.weforum.org/agenda/2022/04/homes-smart-tech-market/

[4] IoT Business News, “The 1,200 IoT Companies that are Creating
the Connected World of the Future,” 2021. [Online]. Available:
https://bit.ly/3CG4fJt

[5] D. Aronoff, “Top 5 IoT Vulnerability Exploits in Smart Homes,” 2020.
[Online]. Available: https://bit.ly/3f5ElXo

[6] SAM Seamless Network, “Security IoT Landscape,” 2021. [Online].
Available: https://securingsam.com/wp-content/uploads/2022/04/SAM
IOT-Security-Report.pdf

[7] D. Harkin et al., “Consumer IoT and its under-regulation: Findings from
an Australian Study,” Policy & Internet, vol. 14, no. 1, pp. 96–113, 2022.

[8] Bitdefender, “Common IoT Devices Become the ISPs’ Worst
Enemy,” 2020. [Online]. Available: https://businessinsights.bitdefender.
com/common-iot-devices-become-the-isps-worst-enemy

[9] PaloAlto, “Unit 42 IoT Threat Report,” 2020. [Online]. Available:
https://unit42.paloaltonetworks.com/iot-threat-report-2020/

[10] Avira, “Avira SafeThings,” 2022. [Online]. Available: https://oem.avira.
com/en/solutions/safethings-for-router-manufacturers

[11] MITRE Corporation, “Common Vulnerabilities and Exposures.”
[Online]. Available: https://cve.mitre.org/

[12] A. Sivanathan et al., “Classifying IoT Devices in Smart Environments
Using Network Traffic Characteristics,” IEEE TMC, vol. 18, no. 8, pp.
1745–1759, Aug 2019.

[13] B. Bezawada et al., “Behavioral Fingerprinting of IoT Devices,” in Proc.
ACM ASHES, Toronto, Canada, Oct 2018.

[14] H. Guo et al., “IP-Based IoT Device Detection,” in Proc. ACM IoT S&P,
Budapest, Hungary, Aug 2018.

[15] N. Msadek et al., “IoT Device Fingerprinting: Machine Learning based
Encrypted Traffic Analysis,” in Proc. IEEE WCNC, Marrakesh, Mo-
rocco, Apr 2019.

12

[16] Y. Meidan et al., “ProfilIoT: A Machine Learning Approach for IoT
Device Identification Based on Network Traffic Analysis,” in Proc. SAC,
Marrakesh, Morocco, Apr 2017.

[17] S. J. Saidi et al., “A Haystack Full of Needles: Scalable Detection of
IoT Devices in the Wild,” in Proc. ACM IMC, New York, USA, Oct
2020.

[18] J. Kotak et al., “IoT Device Identification Using Deep Learning,” in
Proc. CISIS, Seville, Spain, May 2021.

[19] X. Ma et al., “Inferring Hidden IoT Devices and User Interactions via
Spatial-Temporal Traffic Fingerprinting,” IEEE/ACM Transactions on
Networking, vol. 30, no. 1, pp. 394–408, Feb 2022.

[20] Y. Meidan et al., “A Novel Approach For Detecting Vulnerable IoT
Devices Connected Behind a Home NAT,” Computers & Security,
vol. 97, pp. 1–23, Oct 2020.

[21] A. Hamza et al., “Clear as MUD: Generating, Validating and Applying
IoT Behavioral Profiles,” in Proc. ACM S&P, Aug 2018.

[22] R. Trimananda et al., “PingPong: Packet-Level Signatures for Smart
Home Device Events,” in Proc. NDSS, San Diego, California, Feb 2019.

[23] A. Pashamokhtari et al., “Inferring Connected IoT Devices from IPFIX
Records in Residential ISP Networks,” in Proc. IEEE LCN, Virtual
Event, Canada, Oct 2021.

[24] ——, “Combining Stochastic and Deterministic Modeling of IPFIX
Records to Infer Connected IoT Devices in Residential ISP Networks,”
to appear in IEEE IoTJ, 2022.

[25] A. Sivanathan et al., “Detecting Behavioral Change of IoT Devices
Using Clustering-Based Network Traffic Modeling,” IEEE Internet of
Things Journal, vol. 7, no. 8, pp. 7295–7309, 2020.

[26] ——, “Managing IoT Cyber-Security Using Programmable Telemetry
and Machine Learning,” IEEE TNSM, vol. 17, no. 1, pp. 60–74, Mar
2020.

[27] R. Kolcun et al., “Revisiting IoT Device Identification,” in Proc. IFIP
TMA, Virtual, Sep 2021.

[28] S. Marchal et al., “AuDI: Toward Autonomous IoT Device-Type Iden-
tification Using Periodic Communication,” IEEE JSAC, vol. 37, no. 6,
pp. 1402–1412, Jun 2019.

[29] M. Miettinen et al., “IoT SENTINEL: Automated Device-Type Identifi-
cation for Security Enforcement in IoT,” in Proc. IEEE ICDCS, Atlanta,
USA, Jun 2017.

[30] V. Thangavelu et al., “DEFT: A Distributed IoT Fingerprinting Tech-
nique,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 940–952,
Feb 2019.

[31] D. M. Reis et al., “Unsupervised Context Switch for Classification Tasks
on Data Streams with Recurrent Concepts,” in Proc. ACM SAC, Pau,
France, Apr 2018.

[32] ——, “Classifying and Counting with Recurrent Contexts,” in Proc.
ACM SIGKDD, London, United Kingdom, Jul 2018.

[33] N. Nascimento et al., “A Context-Aware Machine Learning-Based
Approach,” in Proc. CASCON, Markham, Canada, Oct 2018.

[34] J. B. Gomes et al., “Tracking Recurrent Concepts Using Context,”
Intelligent Data Analysis, vol. 16, pp. 803–825, Sep 2012.

[35] Y. Yang et al., “Combining Proactive and Reactive Predictions for Data
Streams,” in Pro. ACM SIGKDD, Chicago, USA, Aug 2005.

[36] A. Bifet et al., “Learning from Time-Changing Data with Adaptive
Windowing,” in Proc. SDM, Minneapolis, USA, Apr 2007.

[37] ——, “Adaptive Learning from Evolving Data Streams,” in Proc. IDA,
Lyon, France, Aug 2009.

[38] J. Gama et al., “Learning with drift detection,” in Proc. SBIA, Sao Luis,
Brazil, Sep 2004.

[39] N. Oza, “Online Bagging and Boosting,” in Proc., Waikoloa, USA, Oct
2005.

[40] J. Gama et al., “Tracking Recurring Concepts with Meta-learners,” in
Proc. Progress in Artificial Intelligence, Berlin, Germany, Oct 2009.

[41] A. Pashamokhtari, N. Okui, M. Nakahara, A. Kubota, G. Batista, and
H. Habibi Gharakheili, “IoT IPFIX Home Dataset,” 2023. [Online].
Available: https://iotanalytics.unsw.edu.au/homedataset.html

[42] R. A. Sharma et al., “Lumos: Identifying and Localizing Diverse Hidden
IoT Devices in an Unfamiliar Environment,” in Proc. USENIX Security,
Boston, USA, Aug 2022.

[43] A. Bremler-Barr et al., “IoT or NoT: Identifying IoT Devices in a Short
Time Scale,” in Proc. IEEE/IFIP NOMS, Budapest, Hungary, Apr 2020.

[44] D. Huang et al., “IoT Inspector: Crowdsourcing Labeled Network Traffic
from Smart Home Devices at Scale,” ACM IMWUT, vol. 4, no. 2, pp.
1–12, Jun 2020.

[45] D. Kumar et al., “All Things Considered: An Analysis of IoT Devices
on Home Networks,” in Proc. USENIX Security, Santa Clara, USA, Aug
2019.

[46] M. Mazhar et al., “Characterizing Smart Home IoT Traffic in the Wild,”
in Proc. IEEE/ACM IoTDI, Los Alamitos, USA, Apr 2020.

[47] T. D. Nguyen et al., “DÏoT: A Federated Self-learning Anomaly Detec-
tion System for IoT,” in IEEE ICDCS, Dallas, USA, Jul. 2019.

[48] B. Trammell et al., “Bidirectional Flow Export Using IP Flow
Information Export (IPFIX),” RFC 5103, Jan 2008. [Online]. Available:
https://rfc-editor.org/rfc/rfc5103.txt

[49] Cisco, “Cisco NetFlow.” [Online]. Available: https://www.cisco.com/c/
en/us/products/ios-nx-os-software/ios-netflow/index.html

[50] F. Security, “DNSDB,” 2017. [Online]. Available: https://www.dnsdb.
info

[51] Censys, “Censys.” [Online]. Available: https://search.censys.io/
[52] J. Lu et al., “Learning under Concept Drift: A Review,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 31, no. 12, pp. 2346–
2363, 2019.

[53] S. Xu et al., “Dynamic Extreme Learning Machine for Data Stream
Classification,” Neurocomputing, vol. 238, pp. 433–449, 2017.

[54] D. Liu et al., “FP-ELM: An Online Sequential Learning Algorithm for
Dealing with Concept Drift,” Neurocomputing, vol. 207, pp. 322–334,
2016.

[55] N. C. Oza et al., “Experimental Comparisons of Online and Batch
Versions of Bagging and Boosting,” in Proc. ACM KDD, San Francisco,
USA, Aug 2001.

[56] A. Bifet et al., “Leveraging Bagging for Evolving Data Streams,” in
Proc. PKDD, Barcelona, Spain, Sep 2010.

[57] T. Dasu et al., “An Information-Theoretic Approach to Detecting
Changes in Multi-Dimensional Data Streams,” in Proc. ISCSA, Citeseer,
2006.

[58] A. A. Qahtan et al., “A PCA-Based Change Detection Framework for
Multidimensional Data Streams: Change Detection in Multidimensional
Data Streams,” in Proc. ACM KDD, Sydney, Australia, Aug 2015.

[59] F. Gu et al., “Concept Drift Detection Based on Equal Density Estima-
tion,” in Proc. IJCNN, Vancouver, Canada, Jul 2016.

[60] J. Shao et al., “Prototype-Based Learning on Concept-Drifting Data
Streams,” in Proc. ACM KDD, New York, USA, Aug 2014.

[61] M. van Leeuwen et al., “StreamKrimp: Detecting Change in Data
Streams,” in Proc. PKDD, Antwerp, Belgium, Sep 2008.

[62] X. Song et al., “Statistical Change Detection for Multi-Dimensional
Data,” in Proc. KDD, San Jose, USA, Aug 2007.

[63] J. a. Gama et al., “Learning with Local Drift Detection,” in Proc. ADMA,
Xi’an, China, Aug 2006.

[64] S. H. Bach et al., “Paired Learners for Concept Drift,” in Proc IEEE
ICDM, Pisa, Italy, Dec 2008.

[65] D. Han, C. Giraud-Carrier, and S. Li, “Efficient Mining of High-
Speed Uncertain Data Streams,” Applied Intelligence, vol. 43, no. 4,
p. 773–785, 2015.

[66] H. M. Gomes et al., “Adaptive Random Forests for Evolving Data
Stream Classification,” Machine Learning, vol. 106, no. 9, pp. 1469–
1495, 2017.

[67] G. Hulten et al., “Mining Time-Changing Data Streams,” in Proc. ACM
KDD, San Francisco, USA, Aug 2001.

[68] J. a. Gama et al., “Accurate Decision Trees for Mining High-Speed Data
Streams,” in Proc. ACM KDD, Washington, USA, Aug 2003.

[69] A. Feraudo et al., “CoLearn: Enabling Federated Learning in MUD-
Compliant IoT Edge Networks,” in Proc. ACM EdgeSys, Heraklion,
Greece, Apr. 2020.

[70] M. Abbasi et al., “FLITC: A Novel Federated Learning-Based Method
for IoT Traffic Classification,” in Proc. IEEE SMARTCOMP, Helsinki,
Finland, Jun. 2022.

[71] J. Zhao et al., “Network Traffic Classification for Data Fusion: A
Survey,” Information Fusion, vol. 72, pp. 22–47, 2021.

[72] D. W. Scott, The Curse of Dimensionality and Dimension Reduction.
John Wiley, Ltd, 1992, ch. 7, pp. 195–217.

[73] J. L. Hodges, “The Significance Probability of the Smirnov Two-sample
Test,” Arkiv för Matematik, vol. 3, pp. 469–486, 1958.

[74] L. V. Kantorovich, “Mathematical Methods of Organizing and Planning
Production,” Management Science, vol. 6, no. 4, pp. 366–422, 1960.

[75] T. Epps and K. J. Singleton, “An Omnibus Test for the Two-sample Prob-
lem Using the Empirical Characteristic Function,” Journal of Statistical
Computation and Simulation, vol. 26, no. 3-4, pp. 177–203, 1986.

[76] J. Lin, “Divergence Measures Based on the Shannon Entropy,” IEEE
Transactions on Information theory, vol. 37, no. 1, pp. 145–151, 1991.

[77] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79 – 86, 1951.

[78] I. Goldenberg and G. I. Webb, “Survey of distance measures for
quantifying concept drift and shift in numeric data,” Knowledge and
Information Systems, vol. 60, no. 2, pp. 591–615, 2019.

13

Arman Pashamokhtari received his B.Sc. degree
in Computer Engineering from the Amirkabir Uni-
versity of Technology in Tehran, Iran, in 2019.
He is currently pursuing Ph.D. degree in the area
of computer networks from the University of New
South Wales (UNSW) in Sydney, Australia. His
research interests include programmable networks,
IoT network traffic analytics and applied machine
learning.

Norihiro Okui received the B.E. and M.E. degrees
in Computer Science and Engineering from Waseda
University, Japan, in 2010 and 2012, respectively.
He joined KDDI in 2012. He is a research engineer
at the Cyber Security Lab. in KDDI Research, Inc.
His research interest includes cyber security for IoT.

Masataka Nakahara received the B.Eng. degree in
Electrical Engineering and the M. Informatics degree
from the Graduate School of Informatics from Kyoto
University, Japan, in 2014 and 2016, respectively. He
joined KDDI in 2016 and joined KDDI Research,
Inc. in 2019. His current research interest includes
cyber security for IoT.

Ayumu Kubota received the B.E. and M.E degrees
from Kyoto University, Japan, in 1993 and 1995,
respectively. He joined KDD (now KDDI) in 1995
and has been researching computer networks and
cyber security.

Gustavo Batista received his MSc and PhD degrees
in Computer Science from the University of Sao
Paulo, Brazil, in 1997 and 2003, respectively. He
was an associate professor at the University of Sao
Paulo (2007-2018) and an associate professor at
the University of New South Wales (UNSW). His
research interests fall in Machine Learning, includ-
ing time series and data stream quantification and
classification.

Hassan Habibi Gharakheili received his B.Sc. and
M.Sc. degrees in Electrical Engineering from the
Sharif University of Technology in Tehran, Iran, in
2001 and 2004, respectively, and his Ph.D. in Elec-
trical Engineering and Telecommunications from the
University of New South Wales (UNSW) in Sydney,
Australia in 2015. He is currently a Senior Lecturer
at UNSW Sydney. His research interests include
programmable networks, learning-based networked
systems, and data analytics in computer systems.

