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ABSTRACT This work presents the Deakin IoT Traffic dataset comprising of packets emitted by Internet
of Things (IoT) devices, each having different functions and behaviors. In total, 112 million packets
were collected over 119 days from 24 IoT devices. Of the 24 IoT devices, 19 of them are distinct. The
collected packets are stored in PCAP (Packet Capture) files, preserving a wide array of network protocols
such as DHCP, ARP, DNS, HTTP, and other TCP/UDP-based applications, which enable a detailed
analysis of communication patterns. Alongside the IoT PCAP files, we provide the full PCAP files which
contain traffic from 36 non-IoT devices. In addition to the PCAP files, the dataset includes a CSV file
that maps each IoT device to its unique MAC address, simplifying device-specific analysis. To assist
researchers, Python scripts are provided for extracting and processing packets, demonstrating ways to
leverage the data for various applications. This dataset is valuable for a wide range of research purposes:
it enables researchers to study and differentiate network behaviors based on device function, supports
behavior-based profiling for anomaly detection, and provides a foundation for designing IoT-tailored
network policies.
IEEE SOCIETY/COUNCIL Computer Society (CS)

DATA DOI/PID 10.26187/deakin.28013234
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BACKGROUND
With the growth and heterogeneity of IoT devices, managing
and understanding their behavior is a challenge. A behavior
profile describes the expected communication patterns and
operational characteristics of a device. They serve as a
reference point for what constitutes normal device activity
(a baseline). By monitoring device behavior against the
baseline, it becomes easier to manage devices and detect
anomalies.

To create behavioral profiles, historical traffic data is
needed. Our IoT dataset1 contains packets that are emitted by
the IoT devices. Many datasets on IoT traffic exist, as seen
in Table 1; however, the type of packets collected differs
between them. Two main aspects affect the traffic data. The

1Our full traffic capture includes packets from both IoT and non-IoT
devices on our testbed, with the IoT dataset representing a subset of this
capture.

first is the location where traffic is measured and recorded.
Packets collected from within a local network before under-
going network address translation function (pre-NAT) differ
from packets collected post-NAT. In typical home network
settings, routers perform NAT by changing the IP headers
of packets and replacing internal (private) addresses with
public IP addresses on the Internet. Only a few datasets
collect traffic after the gateway, such as HomeMole [4], IoT-
deNat [12], and MON(IOT)R [2] datasets. Some of these
datasets also include virtual private network (VPN) traffic,
which further changes the packets by encrypting them. The
majority, however, collect packets in pre-NAT environments,
as network administrators typically have access to this infor-
mation.

The second aspect is the device’s operational phase. Pre-
vious studies [13] have categorized three possible phases.
The first is the setup phase. This phase is the shortest and
begins when the device first connects to a network. A device
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TABLE 1. Overview of benign IoT PCAP datasets. “Filtered” indicates that the traffic has been transformed in some way, such as by excluding traffic of

non-IoT devices in Deakin IoT Traffic. Filtering methods vary across datasets.

Dataset Name
Number of Devices Device Behaviors Private or

Public
Filtered
or Raw

Number of
PacketsIoT Non-IoT Setup Idle Interaction

Deakin IoT Traffic 24 0 ✓ ✓ ✓ Public Filtered 112.84m

Active CICIoT-22 [1] 24 0 - ✓ ✓ Public Filtered 63.57m

MON(IOT)R [2] 81 0 - ✓ ✓ Public Filtered 40.80m

LSIF [3] 22 0 - ✓ ✓ Public Filtered 32.43m

HomeMole-Ind [4] 7 0 - ✓ ✓ Public Filtered 2.75m

IoTFinder [5] 53 0 - ✓ ✓ Public Filtered 2.05m

Benign IoT-23 [6] 3 0 - ✓ ✓ Public Filtered 428k

IoTSentinel [7] 31 0 ✓ - - Public Filtered 193k

SHIoT [8] 36 0 - ✓ ✓ Private Raw 555.50m

YourThings [9] 45 9 - ✓ ✓ Public Raw 451.53m

Deakin Full Traffic 24 36 ✓ ✓ ✓ Public Raw 257.67m

UNSW [10] 28 3 - ✓ ✓ Public Raw 23.81m

Benign ACI IoT [11] 30 21 - ✓ ✓ Public Raw 8.06m

will communicate with its company servers to check for
updates and configure itself. After this configuration ends,
the device transitions into either idle or interaction phases.
If the device senses an event, then that device executes its
task and the device’s state changes to its interaction phase.
This interaction increases the amount of traffic the device
generates, and potentially more informative traffic patterns
can be found. If there are no events, then the device is
in its idle phase. Idle phases produce a minimal amount
of traffic. Certain datasets are limited to specific phases
of device activity. For example, IoTSentinel [7] exclusively
contains device setup traffic, amounting to just 193 thousand
packets captured. Similarly, IoTFinder [5] is restricted to
DNS traffic alone. This selective focus on particular device
phases limits the ability to generate comprehensive profiles
of device behavior.

The main limitation of previous datasets is that they
do not fully capture all aspects of device behavior. Short
capture durations miss rare behaviors, and the datasets do
not capture how devices change over time. Both aspects
are useful for building behavioral profiles. To address this
gap, the Deakin IoT Traffic dataset was created. It only
contains pre-NAT, benign IoT traffic captured over 120 days.
IoT devices generally have a limited set of functions, which
makes it easier to build behavioral profiles. In contrast, non-
IoT behavioral profiles are more challenging to construct.
To support further research, we provide the full PCAP files
for those interested in analyzing non-IoT traffic. Moreover,
no malicious (attack) traffic was generated as our primary
intent was to capture benign behaviors, which can be well-
defined and constrained, unlike attacks. Creating a com-
prehensive device profile is more useful as any type of
malicious attack can be detected as an anomaly. Additionally,
capturing packets from all three phases, namely setting up,
performing actions, or being idle, is essential, as real-world
devices may exhibit distinct patterns during each phase. This

comprehensive approach: (a) yields richer device profiles,
and (b) enables more diverse applications.

COLLECTION METHODS AND DESIGN
To generate this dataset, we constructed a network designed
to collect and monitor traffic. Packet capture was performed
on the LAN bridge of the network gateway, enabling the use
of packet MAC addresses as unique identifiers. No protocols
were excluded, ensuring all types of traffic were recorded.
The captured traffic is stored in PCAP files. A PCAP file,
short for “packet capture” file, is a data format used to
record raw network traffic at the packet level. It contains a
sequential log of network packets transmitted over a network
during a specific time frame. Each packet in a PCAP file
includes detailed information such as source and destination
addresses, protocol types, headers, and payload data.

To capture traffic from the devices’ setup phase, we
added and removed devices from the network over time.
To generate interaction traffic, we actively and passively
engaged with devices to perform specific tasks. The devices
were also left on when no one was in the lab to ensure that
idle phase traffic was collected.

A. Network Setup
Fig. 1 shows the network setup in our Cyberlab at Deakin
University, and all IoT and non-IoT devices were connected
via WiFi. To simulate a realistic network environment,
devices were dynamically added and removed, reflecting
typical usage patterns. Thus, despite having 24 IoT devices,
not all of them were always generating traffic.

Most consumer routers (home gateways) have limited
functionality for network data collection by default. To
overcome this limitation, we installed OpenWrt [14] on the
router. OpenWrt is an open-source firmware that provides
control options for routers, transforming standard consumer-
grade routers into powerful tools for network monitoring
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FIGURE 1. How the Deakin Cyberlab was set up. The non-IoT device
traffic is only found in the Full PCAP files.

and control. Since OpenWrt is not supported by all routers,
we selected the Archer AC1750 for its compatibility. This
setup provides complete control over network interfaces and
supports packet-capturing tools like tcpdump.

B. Traffic Collection
To capture the packets from the devices, we executed the
shell script shown in Algorithm 1, which automates the
daily process network packet capture using tcpdump. The
script starts by specifying the directory where the packet
capture files will be stored, setting the variable SAVEDIR
to /mnt/sda1/traffic. It ensures the directory exists by
running mkdir -p "$SAVEDIR".

To set the duration of each capture, the script calculates
the total number of seconds in a day and stores it in the
variable DURATION. This is done by multiplying 60 seconds
by 60 minutes, and then by 24 hours, resulting in 86,400
seconds.

Next, the script calculates the remaining seconds until
midnight (23:59:59) by subtracting the current epoch time
from the epoch time for the end of the day. This result is
stored in the variable SECONDSLEFT and is used to determine
the duration of the first day’s capture, which runs only for
the remaining time in the current day. Once the first day
concludes, subsequent captures use the predefined duration
stored in DURATION.

The main functionality of the script is implemented within
a loop that iterates REPEAT times, enabling daily packet
captures for the current day and the subsequent REPEAT-1
days. During the data collection period, REPEAT was manually
configured to 30, 29 or 7 depending on the anticipated
frequency of our presence in the lab and interactions with
the IoT devices. After completing REPEAT days, the script

Algorithm 1: Daily Packet Capture Script.

Set SAVEDIR ← "/mnt/sda1/traffic"
Create directory SAVEDIR if it does not exist
Set DURATION ← 60× 60× 24
Compute SECONDSLEFT ← seconds until today’s
23:59:59

Set REPEAT ← 29 ∨ 30 ∨ 7
for i← 0 to REPEAT do

Get current date components: YYYY, MM, DD
Set FILENAME ← "YYYY-MM-DD.pcap"
Run tcpdump with parameters:

Interface: any
Output file: SAVEDIR/FILENAME
Duration: SECONDSLEFT
File rotation limit: 1

Display message: “Packet capture for YYYY-MM-DD
completed.”

Set SECONDSLEFT ←DURATION
end

must be restarted manually, and the captured packets on
the hard drive are moved to backup locations. During each
iteration, the script updates the date variables (YYYY, MM, and
DD) to reflect the current date at execution. It then generates
a unique filename (FILENAME) in the YYYY-MM-DD format to
identify each capture file by its corresponding date.

The packet capture is initiated with the tcpdump command,
configured with the following options:

• -i any: Captures packets on all network interfaces.
• -w "$SAVEDIR/$FILENAME": Specifies the output file

path for the captured packets.
• -G "$SECONDSLEFT": Sets the duration in seconds for

the capture. For the first iteration, this value indicates
the remaining seconds in the current day; for subse-
quent iterations, it is a full day (86,400 seconds).

• -W 1: Limits the output to one file per capture session.

Upon completion of each capture, the script outputs a mes-
sage using echo to indicate that the capture for the specific
day is complete. After the first capture, the SECONDSLEFT vari-
able is reset to DURATION, ensuring subsequent captures run
for a full 24-hour period. This script was repeated until 119
PCAP files were generated. During the collection process,
devices were set up and interacted with. This metadata was
recorded in CSV files.

C. Postprocessing
We stored the MAC address of IoT devices in a CSV file
named macAddresses.csv. These addresses are listed in the
second column of Table 2, along with their total packet count
(sorted in descending order), their commercial name, and
the date they sent their first packet (“first seen” date). From
the table, it can be seen that the Samsung camera sent the
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TABLE 2. The list of IoT devices in the Deakin IoT Traffic dataset and basic statistics.

First-Seen date (YYYY-MM-DD) Device MAC address IoT device commercial name # Packets sent
2023-07-11 00:16:6c:d7:d5:f9 SAMSUNG Pan/Tilt 1080P Wi-Fi Camera 20.8m

2023-05-17 18:48:be:31:4b:49 Echo Show 8 18.9m

2023-05-18 70:ee:50:96:bb:dc Netatmo Weather Station 11.3m

2023-05-17 10:5a:17:b8:a2:0b TOPERSUN Smart Plug 10.8m

2023-07-07 70:ee:50:57:95:29 Netatmo Smart Indoor Security Camera 9.6m

2023-05-17 10:5a:17:b8:9f:70 TOPERSUN Smart Plug 9.5m

2023-05-15 40:f6:bc:bc:89:7b Echo Dot (4th Gen) 7.5m

2024-03-27 74:d4:23:32:a2:d7 Echo Show 8 5.2m

2024-03-27 68:3a:48:0d:d4:1c Aeotec Smart Hub 5.3m

2023-07-18 84:69:93:27:ad:35 HP Envy 3.3m

2023-05-15 70:09:71:9d:ad:10 32” Smart Monitor M80B UHD 2.6m

2023-05-17 90:48:6c:08:da:8a Ring Video Doorbell 2.3m

2023-05-22 54:af:97:bb:8d:8f TP-Link Tapo Pan/Tilt Wi-Fi Camera 1.2m

2023-05-22 40:ac:bf:29:04:d4 EZVIZ Security Camera 1.1m

2023-07-13 b0:02:47:6f:63:37 Pix-Star Easy Digital Photo Frame 1.1m

2023-05-18 70:3a:2d:4a:48:e2 TUYA Smart Doorbell 1.0m

2024-04-18 6e:fe:2f:5a:d7:7e GALAXY Watch5 Pro 303.1k

2023-05-29 1c:90:ff:bf:89:46 Perfk Motion Sensor 92.8k

2023-05-29 fc:67:1f:53:fa:6e Perfk Motion Sensor 79.6k

2023-05-17 cc:a7:c1:6a:b5:78 NEST Protect Smoke Alarm 12.3k

2024-03-27 00:24:e4:e4:55:26 Withings Body+ (Scales) 7947

2024-03-27 00:24:e4:f7:ee:ac Withings Connect (Blood Pressure) 2702

2023-05-15 00:24:e4:e3:15:6e Withings Body+ (Scales) 2324

2023-05-15 00:24:e4:f6:91:38 Withings Connect (Blood Pressure) 510
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FIGURE 2. Packet count per daily IoT PCAP file.

highest number of packets, which is double the amount sent
by the Netatmo camera. Also, despite one of the Withings
scales being added almost a year earlier, it sent fewer packets
than the newer one. This indicates that the newer scale was
interacted with more than the older one.

We then separated the non-IoT devices from the IoT by
creating a pure IoT traffic dataset. Any packets originating
from MAC addresses not listed in macAddresses.csv were
removed from the IoT dataset, as they are assumed to come

from non-IoT devices. Packets with matching source MAC
addresses were saved to a new file, prefixed with “IoT ”.

Once this processing was complete, the Deakin IoT Traffic
dataset was finalized. The time trace of packets collected
is shown in Fig. 2. Initially, the network contained a few
devices, resulting in a lower volume of captured packets.
After 22 July 2023, the network maintained a minimum of
12 IoT devices, which resulted in a consistent level of traffic
being recorded in the PCAP files.
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TABLE 3. Active interaction times. These time periods indicate the device

was interacted with to achieve its main function, e.g., stream a video to the

Smart Monitor M80B UHD or press the doorbell on the Ring Video Doorbell.

IoT device Date Start End
32” Smart Monitor M80B UHD 2023-07-06 13:27 14:05

Echo Dot (4th Gen) 2023-07-06 13:20 14:05

32” Smart Monitor M80B UHD 2023-07-11 13:31 16:15

Echo Show 8 2023-07-11 13:39 13:40

Netatmo Smart Indoor Security Camera 2023-07-11 13:31 16:15

Samsung Smart Cam 2023-07-11 14:14 14:25

Ring Video Doorbell 2023-07-11 16:03 16:05

Netatmo Smart Indoor Security Camera 2023-07-12 14:19 16:03

32” Smart Monitor M80B UHD 2023-07-12 14:25 16:03

TP-Link Tapo Pan/Tilt Wi-Fi Camera 2023-07-12 14:52 14:53

Perfk Motion Sensor 2023-07-12 15:20 15:25

32” Smart Monitor M80B UHD 2023-07-13 15:12 16:00

32” Smart Monitor M80B UHD 2023-07-18 14:04 16:20

32” Smart Monitor M80B UHD 2023-07-24 13:42 16:02

Pix-Star Easy Digital Photo Frame 2023-07-24 15:35 15:40

Echo Show 8 2023-07-25 14:41 16:25

Three additional CSV files were created to store the
generated metadata. activeInteractions.csv contains the
times and dates when devices were actively interacted with.
passiveInteractions.csv logs the times and dates when
human users were present in the lab and possibly engaging
with the environment and devices in a passive manner.
Finally, setupTimes.csv contains the times and dates when
the devices were first added to the network.

VALIDATION AND QUALITY
To demonstrate the value of the Deakin IoT Traffic dataset,
we conducted three experiments. Each experiment uses data
from different parts of the dataset.

Interaction Traffic Analysis
Table 3 shows the recorded times when the devices were
interacted with. Note that it is not a full of list interactions
(See Missing Annotation and Data for more details). Never-
theless, our traffic traces data can be used to identify other
periods of device interactions.

For example, the Perfk Motion Sensor (highlighted by
a yellow shade) recorded a user interaction at 15:20 on
the 12th of July 2023, lasting approximately five minutes.
Analyzing the IoT 2023-07-12.pcap file during that time
reveals that the Perfk Motion Sensor sent TLSv1.2 packets
to 3.121.210.75, as shown in Fig. 3. This IP address belongs
to Tuya Smart, the manufacturer of the motion sensor. This
specific traffic likely correlates with motion detection, as this
sensor does not send TLSv1.2 packets to 3.121.210.75 at
other times of the day. From this observation, we constructed
the following command (pattern) to identify other occasions
when the Motion Sensor was interacted with:

sll.src.eth==1c:90:ff:bf:89:46 && ip.dst==3.121.210.75

FIGURE 3. Packets sent by the Perfk Motion Sensor after interaction.

We tested this pattern by applying it to a traffic trace
from Sunday (IoT 2023-07-16.pcap). It yielded no packets,
as there was no motion in our lab on that day. However,
when applied to IoT 2023-07-18.pcap (Tuesday), it returns
packets starting at 15:32. This timing aligns with Table 4,
which records the presence of a human in the lab at that time.
Future work could build upon this by developing a model
to detect transitions between idle and interaction states of a
device.

Behavioral Profiles with PCAP Traffic
For our second experiment, a filtered PCAP file was used
to create a behavior profile for three representative IoT
devices. We choose an Echo Show 8, a Netatmo Smart
Indoor Security Camera, and the 32” Smart Monitor M80B
UHD. These devices have distinct functions that will make
the process of generating profiles easier.

To create these profiles, we employed two different
machine learning algorithms implemented with scikit-learn
[15]: an unsupervised Isolation Forest and a supervised Ran-
dom Forest. For Isolation Forest, we trained a separate model
for each device type and then combined the three models
into an ensemble for classification. All hyperparameters were
left at their default settings, except for the contamination
parameter for the Isolation Forest models, which was set to
0.001. This was chosen because the dataset only contains
benign traffic, ensuring that the models classify the training
data with 99.9% accuracy. Five traffic features were extracted
to prepare the data for the models.

f1 Packet Length: The total length of the packet (headers
and payload) in bytes.

f2 Protocol Type: If the packet contains an IP layer, the
protocol number is extracted and stored. If the IP layer
is absent, a value of −1 is assigned to this feature.

f3 Source and Destination Ports: If the packet contains
a TCP or UDP layer, the source port (sport) and
destination port (dport) are extracted and stored. If
neither TCP nor UDP layers are present, values of −1
are assigned for both source and destination ports.

f4 Payload Length: The length of the Cooked Linux
payload of each packet in bytes.

This feature extraction ensures that the feature vector
maintains a consistent length for each packet, which is
required by machine learning algorithms for their input.
We trained the models on 70% of the dataset and applied
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TABLE 4. Records of passive interaction times during which the presence

of human users in the lab caused an “Environment Change”, leading to

passive interactions with devices like cameras and motion sensors.

Date (YYYY-MM-DD) Start End
2023-07-13 13:00 16:00

2023-07-18 13:43 16:25

2023-07-24 12:59 16:02

2023-07-25 13:03 16:25

2023-08-10 12:50 16:00

2023-08-15 13:00 16:00

2023-08-16 13:04 14:54

2023-08-17 13:44 15:59

2023-08-21 12:21 15:56

2023-08-22 13:13 16:17

2023-08-23 11:52 16:09

2023-08-28 12:43 15:57

2023-08-29 13:13 16:13

2023-08-30 14:00 16:15

2023-09-05 13:14 16:12

2023-09-06 12:13 16:00

2023-09-07 15:10 16:30

them to the remaining 30%. The Isolation Forest models
were ensembled by assigning a score from each model’s
decision function to each instance, and the class with the
highest score was assigned to the instance. The resulting
test accuracies were 98% for the Random Forest and 83%
for the ensembled Isolation Forest. This shows that the
PCAP files provide sufficient information for the models to
build effective behavioral profiles. This experiment can be
extended by adding more devices and testing how well the
profiles perform for malicious packet detection.

Equations to Distinguish IoT from non-IoT Devices
Our final experiment examined the full PCAP files. We
chose to use a Kolmogorov-Arnold Networks (KANs) [16]
to distinguish between the IoT and non-IoT devices. KANs
are neural networks that utilize the Kolmogorov-Arnold
representation theorem, which states that any continuous
multivariate function can be represented as a finite sum of
continuous univariate functions. In these networks, the tra-
ditional weights are replaced with learnable spline functions
on edges. This allows each connection to adapt not only
in magnitude but the form of the transformation it applies,
enabling non-linear mappings with fewer parameters. We can
then extract the univariate equation and use it to approximate
complex functions, such as whether a device is IoT or not.

For this experiment, we used a single PCAP file (i.e.,
2023-08-30.pcap). The packets needed to be transformed
into a form compatible with the KAN. To achieve this,
we again created feature vectors but with different features
specific to this experiment. Also, to reduce the amount of
data, we selected only packets with an IP layer. From each
IP packet, we extracted the following:

TABLE 5. Device Setup times. Echo Dot (4th Gen) was set up twice.

IoT device Date Start End
Echo Dot (4th Gen) 2023-05-15 15:30 15:33

Withings Body+ (Scales) 2023-05-15 15:45 15:47

Withings Connect (Blood Pressure) 2023-05-15 15:49 15:50

Netatmo Weather Station 2023-07-05 15:42 15:45

32” Smart Monitor M80B UHD 2023-07-05 16:19 16:28

Echo Dot (4th Gen) 2023-07-05 16:33 16:36

Samsung Smart Cam 2023-07-11 14:11 14:14

Ring Video Doorbell 2023-07-11 15:54 16:03

TP-Link Tapo Pan/Tilt Wi-Fi Camera 2023-07-12 14:47 14:51

Perfk Motion Sensor 2023-07-12 15:20 15:23

TOPERSUN Smart Plug 2023-07-12 15:19 15:22

Pix-Star Easy Digital Photo Frame 2023-07-13 15:26 15:38

HP Envy 2023-07-18 16:10 16:30

x1 Packet Length: The total length of the packet in bytes.
It indicates whether the packet carries a large payload
or is simply a control message.

x2 Protocol Number: The protocol number specifies the
protocol used at the transport layer, such as TCP
(protocol number 6) or UDP (protocol number 17).
If it is not available, it gets set to zero.

x3 Time-to-Live (TTL): The TTL value indicates the
maximum number of hops a packet can make on a
network before it is discarded.

x4 Window Size: The window size is a TCP header field
that specifies the size of the sender’s receive window. It
indicates how much data (in bytes) the sender is will-
ing to receive before expecting an acknowledgment. If
it is not available, it gets set to zero.

x5 Destination Port: The destination port number iden-
tifies the specific application or service the packet is
intended for, such as HTTP (port 80), HTTPS (port
443), or DNS (port 53).

x6 Payload Hash: If the packet had a payload, we com-
puted the MD5 hash of the payload bytes, converted
the hash to an integer, and normalized it to a float
between 0 and 1. This value was rounded to 12 decimal
places. If there was no payload, this feature was set to
zero.

After training the KAN on a 80% random split of the
PCAP file (comprising 52% IoT packets and 48% non-IoT
packets), we derived the following equations:

Non-IoT equation:

− 0.0441x1 − 0.0519x2 − 0.0669x3 − 0.0933x4

+ 0.1752x5 +
2.1409

9.979− 3.392x6
− 0.1914

IoT equation:
− 0.043x1 − 0.0519x2 − 0.0597x3 − 0.0932x4

+ 0.1751x5 − 0.4885 cos(0.5922x6 + 0.4976) + 0.4297
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FIGURE 4. The structure of the Deakin IoT Traffic dataset.

From these equations, we observe that for the first five fea-
tures (i.e., x1, ... , x5), there is almost no difference between
an IoT packet and a non-IoT one. The main differentiator
is the Payload Hash (i.e., x6). IoT and non-IoT devices
produce different hashes because the data structures and
communication protocols found in the payload are different.

Applying these equations to the test dataset resulted in
an accuracy of 80%. For each packet, both equations are
evaluated, and the one producing the higher numerical output
determines the packet’s class. Specifically, 75% of the non-
IoT packets were correctly classified, while the IoT equation
correctly identified 85% of the IoT packets. This shows
that while the payloads of IoT and non-IoT devices differ,
IoT payloads closely resemble other IoT payloads, and non-
IoT payloads similarly resemble other non-IoT payloads.
Future work could expand on this by developing equations
for different classes of IoT devices or creating behavioral
profiles for non-IoT devices.

RECORDS AND STORAGE
Fig. 4 shows the structure of the Deakin IoT Traffic dataset
comprising four components. The first component is the
pcapIoT folder. The PCAP files with “IoT” in their filename
have been filtered to only include packets that have been
emitted by an IoT device.

The second component is the pcapFull directory. It con-
tains the full PCAP files without any filtering. This means
that these files also contain traffic traces of non-IoT devices.
However, the first 32 days of the Full PCAP dataset only con-
tain IoT traffic. This is because the testbed was configured
to focus solely on IoT traffic during the first month. After
that period, all traffic (IoT and non-IoT) was recorded.

The third component is the Scripts directory. This folder
contains seven Python scripts that perform different tasks.
The scripts are as follows:

1) Stats.py: Generates the high-level statistics (e.g., total
packet counts - Fig. 2, average number of packets per
file) for the dataset.

2) removeNonIoT.py: Removes non-IoT packets from the
PCAP files and creates the filtered IoT PCAP files.

3) reformatPcap.py: Reformats the PCAP files from
date-based to device-based. A new directory will be
created for each device and it will include PCAP files
containing packets exclusively from that device.

4) protocolCount.py: Counts the number of protocols
used in the dataset and was used to help generate
Fig. 5.

5) packetCount.py: Counts the number of packets used
in the dataset and was used to help generate Table. 1.

6) oneClassVsMultiClass.py: Runs the ensemble isola-
tion forest and the random forest models and outputs
their respective accuracies for 3 classes.

7) IoTOrNonIoT.py: Runs the KAN model and outputs
symbolic equations and the equations’ accuracies.

The final component consists of four CSV files that
provide metadata for the Deakin IoT Traffic dataset.
macAddresses.csv contains two columns: one for the MAC
address and another for the associated device, as shown in
Table 2. The activeInteractions.csv file contains the start
and end times during which a device was actively interacted
with. Its structure is illustrated in Table 3. Similarly, the
setupTimes.csv and passiveInteractions.csv files share
a similar layout, but they capture information related to
device setup events and passive interactions, respectively.
Their information can be seen in Tables 4 and 5.

INSIGHTS AND NOTES
The following notes need to be considered if this dataset is
used.

Daylight Savings
Our data-collection script treated all days as 24-hour peri-
ods. However, researchers using our data should note the
occurrence of daylight saving time in Australia during the
collection period: on Sunday, 1 October 2023, clocks moved
forward one hour at 2am, and on Sunday, 7 April 2024,
clocks moved backward one hour at 3am. These daylight
saving time changes may impact how certain temporal pat-
terns in the traffic traces are interpreted.

Missing Annotation and Data
We have ground-truth records for a subset of the interactions
that human users had with the IoT devices and/or the
lab environment. However, since our lab space was shared
with other researchers, it is highly likely that additional
interactions occurred but were not recorded. Furthermore,
some devices were added to the testbed without recording
their setup times. Additionally, it is important to note that
data collection was intermittently disrupted when the router
was turned off during both scheduled and unscheduled power

VOLUME 00, 2024 7



A. Pasquini et al.: IEEE-DATA Descriptor Article Template

Made at SankeyMATIC.com

IPv4/IPv6
88,180K

802.1Q
13,355K

Cooked Linux
112,772K

ARP
15,307K

TCP
32,444K

NAT_KEEPALIVE
1,685K

UDP
50,484K

Raw
55,201K

DNS
6,341K

ESP
283K

LLC
6,657K

ICMP
1,119K
Multicast Listener Report
276K
ICMPv6 Echo Request
469K
ICMPv6 Neighbor Discovery
802K

NTP
95K

BOOTP/DHCP
37K

SMB1
202K
NBNS
45K

Whole Packet Ethernet Payload
Transport PayloadIP Payload

FIGURE 5. Protocol distribution in the Deakin IoT Traffic dataset, with
protocols appearing fewer than 10,000 times omitted.

outages, requiring a system reboot manually to resume
operations. Consequently, this resulted in gaps of hours in
the traffic data, and thus, not all daily PCAP files conclude
at 23:59.

Protocols
A breakdown of the protocols used in the dataset can be
seen in Fig. 5. Note that the usual Ethernet layer is replaced
with “Cooked Linux” layer (SLL). This layer is added to
every packet by tcpdump when used with the -i any option.
The SLL header provides a standardized format for packet
metadata in cases where Ethernet headers are absent, such as
with loopback interfaces (lo) and certain virtual interfaces.
This format allows for the capture of all traffic across
heterogeneous interface types. The SSL structure includes
a pseudo-header that specifies the packet origin and type but
omits the destination MAC address.

Despite these differences, key information, such as the
source MAC address, remains accessible within the Cooked
Linux capture layer, allowing downstream tasks such as
anomaly detection, network behavior analysis and machine
learning benchmarking to proceed without adaptation. The
absence of the destination MAC address, however, may affect
applications relying directly on the complete Ethernet header
structure and adjustment might be necessary.

SOURCE CODE AND SCRIPTS
The following third-party software was used to create the
Deakin IoT Traffic dataset:

1) OpenWrt 22.03.3 [14]
2) Tcpdump 4.9.3 [17]

3) Scapy 2.6.1 [18]
4) Python 3.10 [19]

All our Python scripts and PCAP files can be downloaded
at this link: Deakin IoT Traffic. The only requirement for
usage is that you cite this paper.

ACKNOWLEDGEMENTS AND INTERESTS
A. Pasquini curated and analyzed the data, performed the
experiments, and wrote parts of the manuscript. R. Vasa, I.
Logothetis and H. Habibi Gharakheili reviewed the curation
and wrote parts of the manuscript. All authors reviewed the
manuscript.
This research is supported by the Commonwealth of Aus-
tralia as represented by the Defence Science and Technology
Group of the Department of Defence.
The authors have declared no conflicts of interest.

REFERENCES
[1] S. Dadkhah et al., “Towards the Development of a Realistic Multi-

dimensional IoT Profiling Dataset,” in Proc. IEEE PST, Fredericton,
NB, Canada, Aug 2022.

[2] J. Ren et al., “Information Exposure for Consumer IoT Devices:
A Multidimensional, Network-Informed Measurement Approach,” in
Proc. IMC, Amsterdam, Netherlands, Oct 2019.

[3] B. Charyyev and M. H. Gunes, “Locality-Sensitive IoT Network
Traffic Fingerprinting for Device Identification,” IEEE Internet of
Things Journal, vol. 8, no. 3, pp. 1272–1281, 2020.

[4] S. Dong et al., “Your Smart Home Can’t Keep a Secret: Towards
Automated Fingerprinting of IoT Traffic,” in Proc. ACM Asia-CCS,
Taipei, Taiwan, Oct 2020.

[5] R. Perdisci et al., “Iotfinder: Efficient Large-Scale Identification of IoT
Devices via Passive DNS Traffic Analysis,” in Proc. IEEE EuroS&P,
Genoa, Italy, Sep 2020.

[6] Stratosphere, “Stratosphere laboratory datasets,” 2015, retrieved March
13, 2020, from https://www.stratosphereips.org/datasets-overview.

[7] M. Miettinen et al., “IoT SENTINEL: Automated Device-Type Iden-
tification for Security Enforcement in IoT,” in Proc. IEEE ICDS,
Atlanta, GA, USA, Jul 2017.
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