
Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version XX Month, XXXX.

Digital Object Identifier 10.1109/TMLCN.2022.1234567

Robust and Lightweight Modeling of
IoT Network Behaviors from

Raw Traffic Packets
Aleksandar Pasquini1, Rajesh Vasa1, Irini Logothetis 1, Hassan Habibi Gharakheili2,

Alexander Chambers3, and Minh Tran3

1A2I2, Deakin University, Geelong, VIC 3220, Australia
2School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia

3Information Sciences Division, Defence Science & Technology Group, Edinburgh, SA, Australia

Corresponding author: Aleksandar Pasquini (email: aleksandar.pasquini@deakin.edu.au).

This submission extends and builds upon our paper presented at the IEEE Globecom 2023 workshop on AI/ML for Edge/Fog Networks
(A4E) [1].

This research is supported by the Commonwealth of Australia as represented by the Defence Science and Technology Group of the
Department of Defence.

ABSTRACT
Machine Learning (ML)-based techniques are increasingly used for network management tasks, such
as intrusion detection, application identification, or asset management. Recent studies show that neural
network-based traffic analysis can achieve performance comparable to human feature-engineered ML
pipelines. However, neural networks provide this performance at a higher computational cost and
complexity, due to high-throughput traffic conditions necessitating specialized hardware for real-time
operations. This paper presents lightweight models for encoding characteristics of Internet-of-Things (IoT)
network packets. (1) We present two strategies to encode packets (regardless of their size, encryption, and
protocol) to integer vectors: a shallow lightweight neural network and compression. With a public dataset
containing about 8 million packets emitted by 22 IoT device types, we show the encoded packets can
form complete (up to 80%) and homogeneous (up to 89%) clusters; (2) We demonstrate the efficacy of
our generated encodings in the downstream classification task and quantify their computing costs. We
train three multi-class models to predict the IoT class given network packets and show our models can
achieve the same levels of accuracy (94%) as deep neural network embeddings but with computing costs
up to 10 times lower; (3) We examine how the amount of packet data (headers and payload) can affect
the prediction quality. We demonstrate how the choice of Internet Protocol (IP) payloads strikes a balance
between prediction accuracy (99%) and cost. Along with the cost-efficacy of models, this capability can
result in rapid and accurate predictions, meeting the requirements of network operators.

INDEX TERMS Feature Engineering, Packet Embedding, Network Behavior Characterization, IoT Devices

I. Introduction

THE proliferation of Internet-of-Things (IoT) devices has
impacted the complexity of modern networks. As these

devices become integral to both consumer and industrial
environments, identifying and classifying them is essential
for effective network management, security monitoring, and
anomaly detection in the IoT domain [2].

Device classification allows network administrators to
understand the types of devices connected to their networks,
enabling tasks such as applying appropriate security policies,

detecting unauthorized devices, and optimizing network re-
sources. However, traditional device classification techniques
rely on static models developed with manual feature en-
gineering [3]–[6], where domain experts analyze network
traffic to identify distinctive features. This approach is time
intensive, requires specialized skills and knowledge about the
network, and limits the adaptability of models to changing
network behaviors [7].

To address these limitations, researchers have explored
using traditional methods that do not leverage machine learn-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

A. Pasquini et al.: Robust and Lightweight Modeling of IoT Network Behaviors from Raw Traffic Packets

ing (ML) techniques. These approaches utilize signatures
for classifying IoT network traffic, such as cloud services
[8], accessed domain names [9], or Manufacturer Usage
Description (MUD) profiles [10]. While these methods can
be effective, they rely on network characteristics or require
additional data that may not be readily available in all
environments. This paper focuses on ML-based methods that
use emitted packets from the device without the need for
additional data.

Automated feature extraction methods, especially those
leveraging neural networks, have gained prominence as a
robust alternative to traditional techniques. Neural networks
can automatically learn representations from raw data, cap-
turing intrinsic patterns without human intervention [11]–
[13]. These representations can be expressed as dense em-
beddings. The information content of embeddings is partic-
ularly advantageous in the field of network traffic inference,
where embeddings have been used to achieve high accuracy
(greater than 90%) in tasks such as device classification [14]–
[23].

However, existing neural network–based approaches for
device classification face two main limitations as they learn
representations of packets. First, they may depend on specific
types of network packets for input, such as Domain Name
System (DNS) packets [19] or application-layer packets [21],
which may not always be available, leading to delays or
reduced applicability in diverse network settings. Second,
they can involve computationally expensive preprocessing
steps, such as transforming packets into two-dimensional
(2D) grayscale or Red-Green-Blue (RGB) images [14]–[16],
which increases resource consumption and thus hinders real-
time analysis.

Given these limitations, there is a need for more compu-
tationally efficient techniques for IoT device classification
that do not rely on specific packet types. This paper focuses
on addressing these needs by making the following contri-
butions:

Our first contribution establishes two lightweight packet
transformation methodologies that accept any type of packet
as input. The first method employs a one-dimensional con-
volutional neural network (1D CNN), which leverages the
sequential nature and local patterns inherent in the raw
byte values. The second method, inspired by Kolmogorov
complexity [24], utilizes the Deflate compression algorithm
[25] and Principal Component Analysis (PCA) [26] to reduce
the entropy of the raw data. Our second contribution demon-
strates that by using compression to represent a packet (com-
pressed packet), the classifier performance is comparable to
a neural network learnt representation of a packet (dense em-
bedding) at one tenth of the computational cost. We bench-
mark both of our packet representation methods (compressed
packet, dense embedding) with five other approaches by
measuring training, inference and memory costs. We evaluate
these representations using three IoT classifiers [3]–[5] for
device classification, measuring and comparing accuracy and

Encoding

Vectorization

Embedding

Compressed
Packets

Feature Map

Turn into a
Graph

Graph Neural
Network

EmbeddingsPackets

Embeddings

Embeddings

Embeddings

Compression

Turn into
Integers

Numeric-Based
Neural Network

Turn into an
Image

2D Convolutional
Neural Network

Feature
Extraction

Extract Text
Text-Based

Neural Network

High
Computational

Cost

Low
Computational

Cost

FIGURE 1. Packet information can be encoded, by various techniques,
into usable inputs for machine learning models.

classification time. Our third contribution develops a trade-
off framework that optimizes the use of varying amounts of
packet information to maximize prediction quality relative
to computational cost. Specifically, we evaluate the impact
of different Transmission Control Protocol/Internet Protocol
(TCP/IP) layer headers on accuracy by systematically re-
moving them.

The structure of this paper is as follows: §II explains the
relationship between encoding and embedding and provides
an overview of prior studies in the field of packet embed-
dings. Our lightweight models are presented and intrinsically
evaluated in §III, while the extrinsic device classification task
results and cost analysis are shown in §IV. §V examines the
trade-off between the amount of information gained from
packets versus their computing and latency costs. Finally,
the paper concludes in §VI.

II. Background and Related Work
A. Data Encoding for Learning Tasks
Machine Learning (ML) has been used for traffic classifi-
cation tasks [7], [22], [27]–[29], yet these models seldom
use packet bytes as input due to their heterogeneous nature.
Instead, the bytes are first encoded. Encoding is the process
of converting data from one form to another. This transfor-
mation does not have to include data compression. Fig. 1
shows some of the encoding methods and their qualitative
costs.

Neural networks can be used to represent a packet. They
create these representations by feeding data through its layers
and adapting its internal parameters to minimize a predefined
loss function. This loss function is crafted to incentivize the
model to position similar items nearer to each other in the
vector space, thereby capturing the underlying relationships
and patterns within the data. These representations from
neural networks are referred to as dense embeddings because
they encode data as vectors in which every value is non-
zero. Each neural network generates a different set of dense
embeddings. However, not all network architectures are
alike, as some offer a more accurate and cost-efficient set
of embeddings than others.

2 VOLUME ,

Packets can also be represented by compression-based
encoding, which reduces the data redundancy. However, this
method does not organize packets with similar concepts
closely within the representational space, making it less suit-
able for classification tasks. Compression algorithms cannot
generally capture the subtle patterns needed for accurate
concept learning and precise predictions [7].

B. Prior Research on Packet Encoding
Packet embeddings can be categorized based on the nec-
essary packet transformations before executing the packet
encoding process. There are four main types: Image, Graph,
Text, and Byte. Image-based methods [7], [14], [15] involve
converting the packet into an image, while graph-based
models [7], [14], [15] transform the packet into a graph
representation. Text-based approaches identify “words” in
the packet, and then the “words” are embedded using Natural
Language Processing (NLP) techniques. These transforma-
tions are needed to standardize the packets and utilize various
neural network architectures effectively. These processes are
computationally demanding due to the differing structures of
packets compared to images, words, and graphs.

Additionally, each of these techniques has a different set
of assumptions. Image-based models assume spatial locality
and translational invariance, meaning that nearby pixels are
related and patterns can appear anywhere within the image.
Word-based models depend on sequential relationships and
contextual dependencies inherent in language. Graph-based
models assume data is interconnected through nodes and
edges, capturing non-linear and non-sequential relationships.

However, packets do not meet these foundational assump-
tions and transforming the packet data into images, words,
or graphs will not bring those necessary characteristics. They
lack the spatial structure of images, the sequential context of
language, and the relational connections of graphs. Packets
are discrete data units with specific fields that may not
have positional or contextual dependencies suitable for these
models. Therefore, applying image-, word-, or graph-based
neural network models to packet data is misaligned, leading
to heightened computational costs for minimal accuracy
improvements.

In contrast, the byte methods prove to be more efficient
as they retain the input data in its original raw format.
However, the efficacy of these methods remains largely
unexplored beyond a limited number of protocols. In what
follows, we briefly describe each group and highlight the
distinguishing aspects of our approach. Table 1 provides
a summary of works on traffic encoding methods (ours
included), specifically highlighting the protocol of interest,
the input data, preprocessing techniques, encoding strategies,
downstream inference tasks, and the prediction types.

1) Image Based Techniques
Computer vision techniques have been found to be applicable
in network security, specifically in understanding packet data

[7], [14]–[16]. These methods leverage a 2D Convolutional
Neural Network (2D CNN) to process packet payloads akin
to image analysis. All the methods require preprocessing a
certain number of bytes into a 2D image, as shown in the
Input and Preprocessing columns of Table 1. However, there
are different ways to do this preprocessing. For example,
HAST-ID [14] one hot encodes the first n bytes of a packet
and stacks the generated vectors to form a 2D image. This
is similar to [16], where they stacked normalized feature
vectors into a matrix. [7] generates 23×23 grayscale images
by using the first 784 byte values as pixel values. Authors
of [15] create an RGB image instead of a grayscale one.
They do this by first dividing the packet into n segments
and then forming a m×n packet matrix. They then rotate
the matrix by 90 degrees for the second channel and by
another 90 degrees for the third channel.

These methods show high performance (95-99% accuracy)
for intrusion detection, but the packets are a sequence of
bytes and do not have strong spatial characteristics like
images. Packets are structured in a linear sequence, and
their order holds information for network analysis, which
these representations ignore. Utilizing a 2D CNN designed
for grid-like data introduces complexity due to transforma-
tions not aligned with the inherent characteristics of packet
sequences.

2) Graph Based Techniques
Graph-based methods involve turning packets into graphs,
allowing the application of graph neural networks (as seen
under the Preprocessing and Encoding Strategies columns
in Table 1). This transformation can be done by associating
nodes with IP addresses and creating an edge for each packet
transmitted between a pair of nodes. For example, [23]
models traffic as a bipartite graph where sender nodes are
connected to destination TCP port nodes. Another method,
presented by [22], transforms each packet into a graph by
considering each byte in the packet’s sequence as a distinct
node. This approach ensures that the packet graph contains
no more than 256 nodes, corresponding to the maximum
number of unique byte values. The edges in this graph are
represented using Pointwise Mutual Information to signify
the connections between the packet’s nodes.

[22] and [23] report an accuracy of 80-99% in intrusion
detection and application classification, respectively. How-
ever, creating separate edges for every packet is computa-
tionally expensive, especially in high-throughput networks.
For real-time tasks, packet graphs are impractical, leading
many graph-based approaches to use flows instead.

3) Text Based Techniques
Inspired by their success in traditional text processing tasks,
the efficacy of using NLP techniques for packets has been
investigated. These approaches use NLP approaches, such

VOLUME , 3

A. Pasquini et al.: Robust and Lightweight Modeling of IoT Network Behaviors from Raw Traffic Packets

TABLE 1. Comparison of our work to previous traffic encoding methods.

Studies Protocol Filter Input Preprocessing Encoding Strategies Downstream Task Prediction Type

Image Based

2D CNN [7] All 784 bytes from a bidirectional flow Transformation to grayscale image 2D CNN Intrusion Detection Multiclass

HAST-I [14] All N bytes from a bidirectional flow Transformation to grayscale image 2D CNN Intrusion Detection Multiclass

HAST-II [14] All N bytes from M packets from a bidirectional flow Transformation to grayscale image 2D CNN & LSTM Intrusion Detection Multiclass

SeNet-I [15] ARP, IPv4 5 packets from an unidirectional flow Transformation to RGB image 2D CNN Intrusion Detection Multiclass

2D CNN [16] All Headers of first N packets from an unidirectional flow Transformation to grayscale image 2D CNN Intrusion Detection Multiclass

Text Based

Payload Embeddings [17] All Payload from a single packet One-hot encoding of bytes Shallow Neural Network Intrusion Detection Binary

PAC-GPT [30] ICMP & DNS N packets from a bidirectional flows Text summary GPT-3 Packet Generation Binary

Packet2Vec [27] All Entire header and payload of a single packet Hexadecimal bigram of bytes Skip-gram Intrusion Detection Binary

Pert [18] Application layer Payload of a single packet Tokenisation of bigram byte strings ALBERT Application Classification Multiclass

NorBert [19] DNS N packets Extract domain names Bert Device Classification Multiclass

PL-CNN [20] All Payloads of first N packets from unidirectional flows Extract words from payload Skip-gram Intrusion Detection Binary

PL-RNN [20] All Payloads of first N packets from unidirectional flows Extract N characters from payload words LSTM Intrusion Detection Binary

IoTminer [21] HTTP, HTTPS, FTP, RTSP Payload from a single packet Extract words from payload GloVe Device Classification Multiclass

Graph Based

TCGNN [22] Application layer Payload from a single packet Transformation to graph GNN Intrusion Detection Multiclass

tGNN [23] TCP N packets from an unidirectional flow Transformation to graph Temporal GNN Application Classification Multiclass

Byte Based

BLJAN [31] Application layer Payload from a single packet Byte object to integers BLJAN Application Classification Multiclass

1D CNN & FcNN [28] TCP & UDP Payload from a single packet Byte object to normalized integers 1D CNN & FcNN Intrusion Detection Binary

PEAN [32] TLS N packets from a bidirectional flow Byte object to hexadecimal integers Transformer Application Classification Multiclass

Our Techniques

Our 1D CNN All Entire header and payload of a single packet Byte object to integers 1D CNN Device Classification Multiclass

Our Compression All Entire header and payload of a single packet Byte object to integers Deflate & PCA Device Classification Multiclass

as Word2Vec [33], GloVe [34] and BERT (Bidirectional
Encoder Representations from Transformers) [35] to gen-
erate an embedding, with each approach employing a dif-
ferent generation method. For example, Word2Vec [33],
the earliest method, utilizes shallow neural networks to
learn vector representations of words through context-based
training, either using Continuous Bag of Words (CBOW)
or Skip-gram models. GloVe [34] extends this concept by
aggregating global word-word co-occurrence matrices from
a corpus and factorizing these matrices to yield embeddings.
This approach integrates both global statistics and local
context, effectively bridging the gap between global matrix
factorization and local context window methods. BERT [35],
the latest method, utilizes a transformer architecture with at-
tention mechanisms to process texts bidirectionally, allowing
for a more dynamic representation of word context within a
sentence and an understanding of the interdependencies of
words.

Some models require text as input, which limits the
protocols that can be used. This limitation is detailed in
the Protocol Filter column of Table 1. The naive method
is to extract words from the packets and turn those words
into embeddings. The main difference between methods
is what words are extracted and what model is used for
encoding the words to embeddings. The authors in [20]
extract words from the payloads and then convert each
word to a 20-dimensional vector via Skip-gram or Long
Short Term Memory networks (LSTMs). Similarly, IoTminer
[21] extracts words from application layer packets and uses
GloVe to turn them into embeddings. PAC-GPT [30] converts
network packets into text representations, which are then fed
into GPT-3 to generate Python code for creating the packets.

Another method is to treat the bytes that make up a
packet as words. Packet2Vec [27] converts each packet into
a series of n-grams. This transformation effectively creates
a sequence analogous to words in a text. This approach
deliberately omits IP and port details to focus purely on
content. Similarly, [17] extends the Skip-gram model found
in Word2Vec and focuses on transforming payload sequences
through word embeddings.

More recent methods leverage the BERT model. NorBert
[19] extracts fully qualified domain names from DNS packets
and tokenizes them by splitting the names according to their
hierarchy level. These tokens are then inputted into a BERT-
based model, which turns them into embeddings. Pert [18]
does payload tokenization by taking pairs of byte values as
basic character units to generate bigram strings. The authors
then train a custom ALBERT model on the strings.

NLP-based approaches create embeddings that do not
faithfully represent the packets’ actual contents and pur-
poses. NLP is designed to understand and interpret human
languages where words have semantic and syntactic rela-
tionships. Network packets, conversely, contain structured
binary data, where the significance of each bit or byte
is contextually different from how words function in a
sentence. By converting packets into n-grams and treating
them as words, important contextual information is lost. For
instance, certain byte sequences in packets, such as headers,
checksums, or control flags, are critical for understanding
the packet’s purpose and integrity. Additionally, waiting for
certain packets so that words can be extracted from them
limits the effectiveness of the technique.

4 VOLUME ,

4) Byte Based Techniques
Byte-based techniques involve minimal packet transforma-
tions. The only preprocessing needed, as indicated in the
Preprocessing column in Table 1, involves converting byte
values into integers. These integer inputs can be used in
many different types of models. BLJAN [31] utilizes an
embedding module to process both the bytes and their labels
into a joint space that captures their implicit correlations
using a dual attention mechanism. Similarly, [28] employs
a 1D CNN to generate their embeddings from the integer
values. PEAN [32] utilizes packets in their hexadecimal
representation. The authors train their transformer model by
masking a portion of the integers, and the model attempts to
regenerate them.

Despite requiring less preprocessing than the others men-
tioned earlier, these methods still have input limitations and
use large and complex models. This becomes apparent when
contrasted with our lightweight approach.

5) Our Novelty
In contrast to prior research, our methodology differentiates
itself in three areas. The first aspect is that our models use
a generalized input without the need to filter specific packet
types or protocols. Certain filtering methods, particularly
those requiring examination of packet layers (e.g., appli-
cation layer presence), can incur prohibitively high costs,
especially in high-throughput networks. Filtering specific
protocols may also hinder the inference of rich context about
traffic behaviors. We will demonstrate that although some
packets may not be very informative for the device classi-
fication task, our lightweight packet encoding methods can
extract valuable information from the majority of packets.
Secondly, using a single packet as input makes our inference
system “stateless”, eliminating the complexity and overhead
of maintaining expensive runtime states, such as flow records
in alternative approaches. Our models can process each
emitted packet independently, making predictions without
requiring context. Our final novelty lies in utilizing compres-
sion to encode packets for a downstream classifier. To the
best of our knowledge, there have been no prior attempts to
do this. We showcase that models employing compression-
encoded packets exhibit higher accuracy than those using
human-engineered features but lower than those utilizing
neural network embeddings. However, packet compression
encodings are not learned, saving training time.

This paper expands and builds upon our preliminary
work in [1]. Both the earlier work and this paper aim to
classify IoT network packets. The human feature engineering
pipeline created in our previous work serves as one of the
baselines for this paper. Additionally, the three classifiers
used in the previous study are again used for classification
but have been modified to accept the 64-dimension inputs.
There are three fundamental differences between these two
papers.

• Our previous paper [1] utilized predefined human-
driven feature engineering to extract features from IoT
traffic data, where domain experts manually select and
analyze relevant features. This contrasts with this paper,
which employs model-driven, automated feature extrac-
tion using neural network-based methods to generate
embeddings from raw traffic packets. This approach
minimizes the need for manual intervention and en-
hances the efficiency and scalability of feature extrac-
tion by transforming raw data into compact numerical
representations. These representations adapt to new data
with minimal manual input.

• This paper focuses on metrics emphasizing compu-
tational efficiency and cost-effectiveness, introducing
lightweight models designed to minimize computa-
tional overhead while maintaining high prediction ac-
curacy. It demonstrates how these models can achieve
accuracy levels comparable to more complex neural
networks but with significantly reduced computing
costs, making them well-suited for real-time applica-
tions. The study also examines trade-offs associated
with using different types of packet data to balance
prediction quality and computational costs. In contrast,
our previous work [1] only measured the accuracy and
reliability of ensemble methods.

• Our previous paper [1] examined the causes and impli-
cations of agreements and disagreements in predictions
made by ensemble methods. In contrast, our current
paper does not consider ensemble methods. Instead, it
concentrates on developing efficient models for encod-
ing and classifying IoT network packets. The goal is
to achieve high accuracy with minimal computational
costs rather than exploring the consistency of predic-
tions across multiple classifiers.

III. Lightweight Transformation of Traffic Packets
In this section, we outline the architectures and preprocessing
steps for the models and datasets we use in our experiments.
This section concludes with an intrinsic evaluation of the
embeddings and an ablation study of our methods. All
models are built with Tensorflow 2.15 and Keras 3. More
details can be found in our GitHub repository1.

A. Packet Encoding Models
Our first method closely resembles the approach in [28],
which trained a 1D CNN on byte values. However, we
introduce three major enhancements. Firstly, we do not
restrict inputs to packets with a specific transport layer
protocol. Instead, we utilize every packet transmitted by a
device, which enhances the flexibility of the embeddings in
downstream tasks such as device classification. Secondly,
our 1D CNN is more lightweight due to fewer layers and
parameters (see Table 2). Finally, the embeddings produced

1https://github.com/AleksandarPasquini/EncodePacket

VOLUME , 5

https://github.com/AleksandarPasquini/EncodePacket

A. Pasquini et al.: Robust and Lightweight Modeling of IoT Network Behaviors from Raw Traffic Packets

A Packet is emitted
by an IoT Device

Byte String List of Integers
\x36\x01...\x42

A Centralized
Server for
Inference

65

165

.......

Amazon
Echo

[36, 1, ... 42]

Converting Raw Bytes to Integers

[36, 1, ... 42, 0, ... 0]

Padded List of Integers

Padding Sequences

1D CNN
Embedding

Model Classifier64-Dimension
Embedding

1x64

Label

1x700 1x700 1x1504

FIGURE 2. Packets undergo two preprocessing steps before they are ready to be used as input for the 1D CNN. The bold steps are explained in more
detail in Section III-A-1.

by our models will enable multiclass predictions for device
classification.

Since model training is a one-time process, it is usu-
ally performed off-network before deploying the inference
model. GPU-based computational resources can be utilized
to expedite training, particularly with large volumes of traffic
data. In contrast, real-time inference is far less computa-
tionally intensive and can be directly deployed into network
switches or on a centralized CPU-based server.

Our second method turns a packet into a compressed
object, leveraging compression as an automatic feature ex-
tractor. Compression algorithms are designed to eliminate
redundant data, resulting in a more concise representation.
This reduction in entropy enhances the visibility of the un-
derlying patterns and structures in the data, reducing noise in
downstream tasks. The authors of [36] employ the gzip com-
pression algorithm in conjunction with a k-nearest-neighbor
classifier for text classification. Their method achieves re-
sults comparable to deep learning methods on various in-
distribution datasets and even outperforms encoder-only
models like BERT on out-of-distribution datasets. Inspired
by this concept, we explore the potential of compression
for encoding packets. Compression algorithms offer the ad-
vantage of not requiring training and can operate efficiently
on standard CPUs [25]. This approach is especially useful
in environments with limited computational resources or
scenarios where real-time processing of large network data
is crucial.

Another advantage the compression method has over
neural networks is that it does not require supervision. For
each new classification task, supervised neural networks like
1D CNNs must be retrained on labels specific to that task;
otherwise, the generated embeddings may not align with the
classification objective. In contrast, the compression method
is task-agnostic, producing the same feature vector regardless
of the target task. Evaluating the generalizability of these
methods to other classification tasks and analyzing retraining
costs is beyond the scope of this paper.

We evaluate our methods against five techniques. Most
of these techniques are byte-based, but we also include
one technique from each of the image and text domains.
To ensure consistency and fairness, we standardize the
final vector length to a maximum of 64-dimensions across
all techniques, except for the byte values technique and
the human-engineered features, which serve as baseline
methods. We selected 64-dimensions because the minimum

Ethernet frame size is 64 bytes. Optimizing the embedding
length is beyond the scope of this paper. In what follows,
we will discuss the background of each encoding technique
and detail how we incorporated them into our study.

1) Our Lightweight 1D CNN Model
We chose to utilize a 1D CNN because network packets
are efficiently processed as sequences of bytes. By applying
filters across the packet sequence, 1D CNNs can extract
relevant features with minimal preprocessing. In the fol-
lowing sections, we outline the sequential steps involved
in transforming raw packet data into an embedding. Fig. 2
visualizes the steps.

Converting Raw Bytes to Integers: The process begins
by collecting the packet’s byte object and converting each
byte object into a feature vector. This transformation uses
each byte integer value as a feature value, e.g., a 700 byte
long packet will be converted into a list of 700 integers.

The alternative approach involves using N-grams, where N
denotes the number of consecutive integers grouped together
as a single unit. For example, with N set to 3, the N-gram
would consist of three consecutive integers processed as one
feature. N-grams can represent more information in shorter
sequences, potentially reducing computational complexity
compared to individual integers. However, we did not adopt
N-grams in our method as preliminary experiments showed
they did not decrease the computational cost, mainly due to
the larger vocabulary size involved.

Padding Sequences: The final step involves padding the
sequences of integers to ensure uniform length, a require-
ment of the CNN architecture. Sequences are right-padded
with zeros if they are shorter than the maximum length
of 1504. In the example shown in Fig 2, the 700-length
list is padded with zeros to reach a length of 1504. The
maximum size of an Ethernet frame is typically 1518 bytes,
which includes the Ethernet header (14 bytes) and trailer
(4 bytes), leaving a payload (maximum transmission unit)
of 1500 bytes. However, we ignore the Ethernet trailer as
it does not provide information about the device that sent
the packet. Additionally, the source MAC and IP addresses
are removed, reducing the packet length by another 10 bytes.
Removing source MAC and IP addresses from packet data is
crucial to prevent overfitting and ensures the neural network
model generalizes effectively across different packets of the
same device type and across various networks with differing
addressing configurations. Including these unique identifiers
may lead the model to memorize specific addresses asso-

6 VOLUME ,

TABLE 2. Our lightweight 1D CNN architecture, where N is the batch size.

Input [2D]N×1504

Layer Output Shape # of Parameters Hyperparameters
Embedding [3D]N×1504×64 16384 vocab size = 256, output dim = 64

Conv1D [3D]N×1490×128 123008 filters = 128, kernel size = 15

GlobalMaxPooling1D [2D]N×128 0

Dense [2D]N×64 8256 units = 64

Classification [2D]N×22 1430 units = 22, activation = softmax

ciated with device classes instead of learning underlying
behavioral patterns. By excluding them, the model can focus
on general device features, improving its ability to accurately
classify unseen packets of known device classes based on
behavior patterns rather than specific identifiers. While most
packets require padding, we demonstrate that this does not
affect downstream tasks because the models disregard the
zeros. Our dataset does not include jumbo packets, which
are approximately six times larger (9000 bytes payload), as
they are typically managed only by specialized networks,
thus validating the choice of 1504 bytes as a suitable length.

1D CNN Embedding Model: Our proposed 1D CNN
architecture for generating packet embeddings comprises
several key layers that work in tandem to transform the
padded vector representations. This section explains the lay-
ers employed in the architecture, highlighting their roles and
justification for their inclusion in the model. An overview
can be seen in Table 2.

Embedding Layer: The Embedding layer serves as the
initial component in our CNN architecture, transforming
discrete tokens into fixed-sized dense vectors in a 64-
dimensional embedding space. Each token in the input
sequence, consisting of 1504 tokens, is represented by a
unique dense vector, resulting in a 3D output shape of
N × 1504 × 64, where “N” is the batch size. We set N
to be 512. The embedding layer contains 16384 trainable
parameters whereby each of the 256 possible token values
(the vocabulary size of the byte values) is associated with a
64-dimensional vector. Thus, there are 256 × 64 = 16384
parameters, which are adjusted during training to enable
the model to learn meaningful representations for the byte
values.

Conv1D Layer: The Conv1D layer applies 128 one-
dimensional convolutional filters to the embedding layer out-
put sequence, which captures local patterns and relationships
within the packet data. Each filter has a kernel size of 15,
meaning it processes 15 adjacent elements at a time, allowing
the model to detect various types of local features. Since the
convolution operates without padding the sequence length
is reduced as the kernel slides over the input. The output
sequence length is determined using the formula: Output
Length = Input Length - Kernel Size + 1. For this layer,
the output length becomes 1490 (1504 − 15 + 1), resulting
in an output shape of N × 1490× 128. This layer contains
123008 trainable parameters, with each of the 128 filters
having 15×64 weights (one for each combination of the 15
input elements and 64 input channels from the embedding

layer), plus a bias term per filter. Thus, the total number of
parameters is calculated as (15×64×128)+128 = 123008.
These parameters are updated during training to help the
model extract meaningful patterns from the data.

GlobalMaxPooling1D Layer: The GlobalMaxPooling1D
layer applies a max-pooling operation across the entire
length of each feature map produced by the Conv1D layer,
extracting the most important information by selecting the
maximum value from each of the 128 feature maps. This
operation reduces the dimensionality of the data while re-
taining the most salient features. Specifically, it collapses the
1490× 128 output from the Conv1D layer into a 128 vector
for each sample by taking the maximum value across all
1490 time steps for each feature map. As a result, the output
shape becomes N × 128. This layer does not contain any
trainable parameters since it performs a fixed mathematical
operation without requiring weights to be learned during
training.

Dense Layer: The Dense layer is a fully connected layer
that transforms the 128-dimensional pooled features into
a 64-dimensional space, capturing higher-level abstractions
and interactions among the features extracted by the preced-
ing layers. Therefore, the layer’s output shape is N × 64.
There are 8256 trainable parameters in this layer because
each of the 128 input units is connected to all 64 output units,
requiring 128×64 weights plus one bias term for each of the
64 output units. Thus, totaling (128×64)+64 = 8256. These
parameters enable the model to capture complex interactions
in the data. The weights of this layer are extracted and used
as embeddings. With 64 output dimensions, the downstream
classifier has 64 features to learn from and make inferences.
Fig. 2 shows the remaining process.

Classification (Dense Layer): The final Classification
layer is a Dense layer that maps the 64-dimensional vectors
to probabilities across 22 classes using a softmax activation
function, enabling the model to generate probability distri-
butions for class predictions. The output shape of this layer
is N × 22, as there are 22 classes. There are 1430 trainable
parameters because each of the 64 input units connects to all
22 output units, requiring 64×22 weights, plus one bias term
for each of the 22 output units ((64×22)+22 = 1430). Note
that this layer is not involved in the generation of embeddings
and is only used during training.

2) Our Lightweight Compression Model
Our alternative model utilizes compression, which can ac-
commodate diverse data distributions and characteristics,
making it applicable to a wider range of packet proto-
cols without requiring manual adjustments. Compression
generally falls into two main categories: lossless, which
allows perfect reconstruction of the original data from the
compressed file, and lossy, which discards some data perma-
nently to achieve higher compression rates. Our compression
strategy incorporated both approaches. The compression

VOLUME , 7

A. Pasquini et al.: Robust and Lightweight Modeling of IoT Network Behaviors from Raw Traffic Packets

c
z

A Packet is
emitted by an

IoT Device

Byte String Compressed Byte String
\x36\x01...\x42

Inference
embedded into a
Network Switch

36

125

.......

Amazon
Echo

[36, 1, ... 42]

Deflate Compression Algorithm

[36, 4, ... 125]

Compressed List of Integers

Classifier
64-Dimension

Vector

1x64

LabelPCA & Postprocessing

[36, 1, ... 42, 0, ... 0]

Padded List of Integers

1x700 1x630 1x690 1x64

FIGURE 3. Packets are compressed by both Deflate and PCA algorithms before they are ready to be used by the classifer. The bold steps are explained
in more detail in Section III-A-2

process is illustrated in Fig. 3. The following subsection
describes our compression pipeline.

Deflate Compression Algorithm: Since packets are a
byte object, the zlib library [37] functions can be directly
applied without any preprocessing. We chose to employ
the Deflate algorithm [25] for compression. Deflate is a
widely used method for efficiently reducing data size during
storage or transmission. It operates on data streams using
two primary techniques: LZ77, which replaces repeated char-
acter sequences with references to earlier occurrences, and
Huffman coding, which assigns shorter codes to frequently
occurring symbols. Together, these techniques achieve high
compression ratios while maintaining fast compression and
decompression.

We also introduced several modifications to the standard
Deflate compression algorithm. The zlib library adds some
overhead to the compressed outputs. Specifically, There is
a constant overhead of five bytes per 16 KB block of data,
which represents 0.03% additional data. For inputs smaller
than 16 KB, this overhead remains fixed at five bytes. Addi-
tionally, there is a one-time overhead of six bytes for the first
block. In the worst-case scenario, where the input consists
of just a single byte, this overhead can inflate the data size
by 1100%. These zlib-specific overheads serve to provide
metadata, ensuring data integrity, but are unnecessary for
our purposes. Therefore, we also set the wbits parameter to
-15, which removes the header and trailing checksum from
the output.

We also set the compression level to the maximum level.
These levels affect the balance between compression speed
and the degree of compression achieved. Since the packets
are all smaller than 1.5 KB, having higher levels of com-
pression will not substantially slow down the process.

Even with the highest level of compression, the packets
were only reduced in size by approximately 10%. This
limited compression is due to the small size of packets and
the lack of compressible information within them. While the
deflate algorithm can theoretically achieve compress ratios
up to 1:1032 in edge cases (like a file with all zeros), the
average packet compression ratio was 1:1.08.

We also evaluated different compression algorithms, such
as LZMA, which offers higher compression ratios than
Deflate but at the cost of increased computational time.
Our comparison revealed no significant difference between
LZMA and Deflate in terms of compression ratios. Conse-
quently, we chose Deflate as the compression algorithm for
our pipeline. An example packet can be seen in Fig 3. When

compressed by the Deflate algorithm, its size is reduced from
700 bytes to 630 bytes, making it ready for the next stage.

PCA & Postprocessing: After compressing the byte
objects, they are converted into integer vectors, a necessary
format for the classifiers. The size of all vectors is deter-
mined by the largest compressed packet. Fig. 3 provides
a hypothetical example, demonstrating how the compressed
byte string is converted into a list of integers and then padded
to a length of 690, which corresponds to the size of the
largest packet produced by the Deflate algorithm. Since this
exceeds our standardized vector length of 64, we apply PCA
to reduce it to 64-dimensions. After this compression, the
vector is ready for downstream tasks.

B. Compared Encoding Techniques
The following section will discuss other encoding techniques
from previous studies and detail how we incorporated them
into our study:

1) Naive Encoding
We employ two baseline encoding methods. The first is the
naive approach, which converts the packet’s byte integer
values into a list of values. To maintain consistency in
length across all packets, we standardized the list lengths by
determining the longest sequence length among all packets
and padding shorter byte sequences with zeros to match
the maximum length. While this technique is used for our
first intrinsic experiment, the resulting list length causes the
packet classifiers to require excessive time for training and
inference.

Our second baseline method replaces the byte values
approach with human-engineered features. We adopt the IoT-
Sense [3], IoTDev [4], and IoTSentinel [5] feature vectors
to represent the packets in our experiments. We utilized the
feature extraction code provided by IoTDev to calculate the
computing costs.

2) Word2Vec
Originally, Word2Vec [33] generates dense vector repre-
sentations for words based on their contextual usage in a
large corpus. This method can be adapted to packet data by
treating each packet as a “sentence”, and the individual bytes
within the packets act as analogous “words”, as demonstrated
in [27].

The preprocessing follows a similar process to [27] with
the byte objects converted into hexadecimal strings. The
hex strings are then split into two-character words, and the

8 VOLUME ,

model is trained on them. The packet vector is generated by
averaging the word token vectors of the packet.

For our implementation, we used the Word2Vec imple-
mentation in gensim [38], configuring it with the following
hyperparameters: a vector size of 64, a window size of 5
(the maximum distance between the current and predicted
word within a sentence), and a minimum word count of 1
(considering all words that occur at least once in the dataset
to prevent the exclusion of infrequent terms).

3) 2D CNN
As discussed in Section B, the choice of using a 2D CNN
to embed individual packets is driven by its ability to
effectively capture spatial relationships inherent in the data.
By leveraging the two-dimensional structure formed by the
bytes and their sequential arrangement, the network can learn
hierarchical representations that capture both local patterns
and global dependencies.

For preprocessing, the raw packet data undergoes conver-
sion, where each packet is represented as a list of integers
using a naive byte value approach. These lists are then
padded to achieve uniformity, with a maximum sequence
length set to 1504. Subsequently, the padded sequences
are reshaped into a 2D array with dimensions (32×47),
effectively creating a grayscale image suitable for input into
the subsequent 2D CNN model.

We based our 2D CNN architecture on the work in [15].
Appendix Table 8 shows the layers used in the model. The
embeddings utilized are extracted from the weights of the
penultimate layer.

4) Transformer
Transformers have been applied to tasks such as traffic
classification and generation [30], [39]. The transformer
architecture excels in processing and contextualizing data,
accommodating diverse input sequences, and handling com-
plex correlations, which proves advantageous for converting
packets into embeddings. Our transformer model draws
inspiration from GPT-2, similar to work in [39]. Our work,
however, focuses on individual packets rather than flows.

The preprocessing steps for the transformer involve cre-
ating a list of byte integer values and padding them for
uniformity. These padded lists are then inputted into our own
GPT-2-inspired architecture. This architecture can be seen in
Table 9 in the Appendix section. The transformer decoder
layers culminate in a pooling layer, from which the output
is used as the embedding.

5) LSTM
Long Short-Term Memory (LSTM) networks have been
employed for generating embeddings of individual packets
due to their inherent ability to capture sequential patterns
within the data [40]. The design of our LSTM architecture
(Table 10 in the Appendix section) is inspired by an existing
model [40]. Similar to the previous approaches, the weights
from the penultimate layer are used as embeddings.

TABLE 3. Distribution of network packets across IoT device classes in the

UNSW IoT dataset.

IoT Device Class # Packets

Dropcam 2.1m

Samsung SmartCam 966k

Belkin Wemo Motion Sensor 749k

Amazon Echo 705k

Belkin Wemo Switch 612k

Insteon Camera 500k

Netatmo Welcome 369k

Withings Smart Baby Monitor 350k

Smart Things 290k

Withings Aura Smart Sleep Sensor 239k

TP-Link Day Night Cloud Camera 198k

HP Printer 166k

Netatmo Weather Station 130k

Triby Speaker 111k

LiFX Smart Bulb 88k

Nest Dropcam 76k

PIX-STAR Photo-Frame 42k

iHome 35k

TP-Link Smart Plug 25k

Withings Smart Scale 2985

NEST Protect Smoke Alarm 2317

Blipcare Blood Pressure Meter 131

The input for the LSTM comprises a network packet
represented as a list of byte integer values. To ensure uniform
processing, the maximum sequence length is determined
among all byte lists and all lists are padded to that length.

C. Do Encoding Models Represent IoT Behavior?
Our first experiment aimed to determine the efficacy of
the embedding generated by the models. We chose to in-
trinsically evaluate the quality of the packet embeddings.
The objective was to verify that the embeddings accurately
represent the underlying packet data, thereby enhancing the
effectiveness of subsequent analysis tasks. Specifically, we
expected embeddings from packets originating from the
same type of device to exhibit similarities, while embeddings
from packets of different device types should display distinct
differences.

1) Our Packet Traces Data
For our experiments, we utilized the publicly available
UNSW IoT dataset [41], a resource widely recognized and
validated in various IoT-related research contexts [1], [4],
[29]. This dataset contains network traffic captured as PCAP
files from both IoT and non-IoT devices. The 22 IoT devices
emitted 7.79 million packets (Table 3).

To prepare the UNSW dataset for analysis, we imple-
mented three preprocessing steps. Firstly, we removed all
packets not originating from IoT devices, including packets

VOLUME , 9

A. Pasquini et al.: Robust and Lightweight Modeling of IoT Network Behaviors from Raw Traffic Packets

Ethernet
7,788 K

IPv4/IPv6
7,120 K

ARP
603 K

TCP/UDP
6,533 K

EAPOL
65 K

ICMP
298 K

Multicast Listener Report
195 K

Raw
4,318 K

Other
1 K

ESP
18 K

DNS
132 K

BOOTP/DHCP
51 K

NTP
101 K

Whole Packet IP Payload Transport PayloadEthernet Payload

FIGURE 4. The breakdown of packet protocols within our dataset.

received by the devices, as they do not directly reflect device
functionality. Secondly, we discarded packets without an
Ethernet header as we needed the source MAC address
to determine the ground truth. Finally, we stripped source
MAC and IP addresses from the packets, where applicable,
to prevent the classifiers from overfitting to these specific
attributes. This process involved removing the IP addresses
from both Address Resolution Protocols (ARP) and Internet
Control Message Protocols version 6 (ICMPv6). We retained
destination IP and MAC addresses, as they are crucial for un-
derstanding the communication endpoints and, consequently,
the function of the IoT devices. We also chose not to perform
any class balancing, as we wanted the datasets to reflect
real-world network traffic conditions. However, in our final
experiment in Section V, we also test the accuracy difference
between including and excluding the destination IP. After
these adjustments, the byte objects are ingested into the
models.

We constructed four different datasets of packets, as shown
in Fig. 4. The primary difference between these datasets
lies in the removal of specific headers. The whole packet
dataset (red column on the left of Fig. 4) includes all the
information in a packet, whereas the IP payload dataset (the
orange column) removes the Ethernet and IP headers from
the packets. This approach allows us to assess the impact
of selecting particular protocol payloads on the resulting
embeddings in our final experiment.

We utilize the Scapy library for packet preprocessing, and
the raw protocol (the long blue bar under the Transport
Payload column in Fig. 4) is a byproduct of this process.
The raw protocol is a default layer for data that does not fit
into any of the more structured layers that Scapy can parse.
This does not affect our experiments since we do not intend
to strip any additional headers beyond the transport layer.

2) Efficacy of Packet Encodings
Before evaluating the methods, we first had to train the
models to generate embeddings. A stratified split (70-30)
was used to ensure both the training and test data maintained
the same imbalanced packet distribution. We decided to train
each model until they reached 95% accuracy on the training
data, using a batch size of 512 for all the models. Next,
we transformed the training data into the “seen” embedding
dataset and the testing data into the “unseen” embedding
dataset. These datasets were evaluated separately.

The embeddings were evaluated using a variety of metrics.
The first metric we examined was cosine similarity. For
each class, we computed the cosine similarity of 10,000
embeddings to calculate the average cosine similarity for
that class. If a device had fewer than 10,000 packets, all
of its instances were used. However, cosine similarity only
evaluates how close the embeddings are to each other and
does not test if embeddings from different classes are distinct
from each other. Therefore, our second evaluation involved
creating clusters and measuring different cluster metrics. The
completeness, homogeneity and V-measure of the clusters
were calculated. A perfect homogeneity score indicates that
each cluster contains only members of a single class, while
a perfect completeness score means all members of a given
class are assigned to the same cluster. The V-measure is
the harmonic mean of homogeneity and completeness. The
clusters were formed by agglomerative clustering, with the
number of clusters being set to the number of devices (22).
A stratified dataset split was used, ensuring an equal number
of embeddings from both the seen and unseen datasets were
selected for clustering. Only 2% of the entire dataset was
used to form these clusters. We also separately generated
t-distributed Stochastic Neighbor Embedding (t-SNE) plots
(Fig. 5) of 5000 embeddings from 7 devices to visualize the
clusters in a two-dimensional space. These plots aid in data
analysis and help visually communicate the data landscape.

3) Similarity Results
The metrics for each encoding method are presented in Table
4. A visualization of the embedding clusters produced by
four representative encoding methods can be seen in Fig. 5.
Further visualizations can be seen in our GitHub repository2.

The byte values and compression methods produced the
second-worst and worst cosine similarity scores, respectively.
This is because byte values of objects do not inherently
represent vectors in a meaningful metric space. These are
low-level representations and lack the contextual or structural
information needed to determine the similarity of the content
or functionality of these objects. Also, cosine similarity
assumes a linear space where dimensions are independent
and equally significant, which is not the case with network
packets. Different fields in a packet play different roles.
For instance, destination IP addresses and port numbers
have more significant implications for similarity than other

2https://github.com/AleksandarPasquini/EncodePacket

10 VOLUME ,

https://github.com/AleksandarPasquini/EncodePacket

TABLE 4. Summary of encoding cluster evaluation metrics.

Metric
Bytes Values Compression 1D CNN Word2Vec 2D CNN LSTM Transformer

Baseline Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen

Cosine Similarity 0.52±0.10 0.33±0.16 0.33±0.16 0.71±0.11 0.71±0.12 0.64±0.13 0.64±0.19 0.75±0.11 0.75±0.12 0.81±0.11 0.81±0.12 0.75±0.13 0.74±0.14

Completeness 0.47 0.40 0.40 0.80 0.80 0.47 0.47 0.70 0.71 0.85 0.85 0.82 0.81

Homogeneity 0.50 0.43 0.43 0.89 0.89 0.48 0.48 0.81 0.83 0.92 0.92 0.90 0.90

V-measure 0.49 0.41 0.42 0.84 0.84 0.47 0.48 0.75 0.76 0.88 0.88 0.86 0.86

−80 −60 −40 −20 0 20 40 60 80
TSNE1

−80

−60

−40

−20

0

20

40

60

80

TS
NE

2

Amazon Echo
Belkin Wemo Motion Sensor
Samsung SmartCam
Dropcam
Insteon Camera
Netatmo Weather Station
HP Printer

(a) Word2Vec.

−75 −50 −25 0 25 50 75
TSNE1

−75

−50

−25

0

25

50

75

TS
NE

2

(b) 2D CNN.

−100 −75 −50 −25 0 25 50 75 100
TSNE1

−100

−75

−50

−25

0

25

50

75

TS
NE

2

Amazon Echo
Belkin Wemo Motion Sensor
Samsung SmartCam
Dropcam
Insteon Camera
Netatmo Weather Station
HP Printer

(c) Compression.

−80 −60 −40 −20 0 20 40 60 80
TSNE1

−80

−60

−40

−20

0

20

40

60

80

TS
NE

2

(d) 1D CNN.

FIGURE 5. t-distributed Stochastic Neighbour Embedding (t-SNE) of the encoding methods. The perplexity was set to 30, and 1000 iterations were
performed.

fields. This poor performance also extends to the cluster
analysis, with both techniques exhibiting poor completeness
and homogeneity scores. These results indicate that these
methods are likely to underperform in downstream tasks.

Word2Vec also exhibits poor performance because the
assumptions of natural language processing do not hold for
network packets. For example, the distributional hypothesis,
which suggests that words appearing in similar contexts
have similar meanings, cannot be applied to packets. This is
reflected in the poor cosine similarity and V-measure scores.

The remaining models perform well, with none achieving
a cosine similarity lower than 0.70 or a V-measure score
lower than 0.75. Additionally, there is a maximum of a 0.01
difference in the V-measure between the seen and unseen

embeddings, indicating that the models can generalize well
to unseen data. The t-SNE projections show the 2D CNN
embeddings creating the best clusters (Fig. 5b). Most of the
clusters are homogeneous except for the one in the center.
However, LSTM achieves the highest metrics, suggesting
that the LSTM embeddings will yield the highest accuracy
in the downstream classification task.

4) 1D CNN Ablation
We also conducted an ablation study to assess the impact
and importance of individual components or variables in the
1D CNN. By selectively disabling or modifying these com-
ponents one at a time, we could determine their individual
contributions to the model’s performance. Each ablation was

VOLUME , 11

A. Pasquini et al.: Robust and Lightweight Modeling of IoT Network Behaviors from Raw Traffic Packets

TABLE 5. The impact of ablation scenarios on the cosine similarity of seen and unseen instances, as well as on training time.

Ablation Category Ablation Scenario Seen Similarity Unseen Similarity
Average Training Time

per Batch
Baseline: kernel size=15, embeddings dimension=64

filters=128, activation function=None, batch size=512
0.74 0.74 18ms

Kernel Size

↓ decreasing to 3 0.67 0.67 17ms
↓ decreasing to 5 0.70 0.70 17 ms
↓ decreasing to 7 0.71 0.70 17 ms
↓ decreasing to 9 0.71 0.71 17 ms
↓ decreasing to 12 0.73 0.72 18 ms
↑ increasing to 18 0.75 0.74 19 ms
↑ increasing to 21 0.73 0.73 19 ms

Embeddings Dimension
↓ decreasing to 32 0.73 0.73 17 ms
↑ increasing to 128 0.73 0.72 20 ms

Number of Filters
↓ decreasing to 96 0.74 0.73 17 ms
↑ increasing to 256 0.76 0.75 21 ms

Activation Function
+ adding Relu to convolutional layer 0.73 0.73 18 ms
+ adding Sigmoid to convolutional layer 0.74 0.74 18 ms
+ adding Swish to convolutional layer 0.72 0.71 19 ms

1D Convolution Assumption - removing convolutional layer 0.52 0.51 14 ms

trained with the same amount of resources. The results can
be seen in Table 5.

The first component we modified was the kernel size. The
number of parameters grows linearly with kernel size, so
smaller kernel sizes are generally preferred. With a kernel
size of 5, the number of parameters is 67,158, which is half
of the number for a kernel size of 15. However, this reduction
comes at a cost: a 5% decrease in cosine similarity. It also
reduces the training batch time by 1 millisecond, saving
approximately 10 seconds per epoch. We believe that this
time saving was not worth the decrease in performance. Even
with a kernel size of 9, which maintained a batch training
time of 17ms, the performance loss was too significant to
justify. At a kernel size of 12, there was a decrease in
performance without any time savings. Therefore, decreasing
the kernel size does not improve the overall model.

We also increased the kernel size to 18 and 21 to see if
there was an increase in the cosine similarity. Our results
show, at best, a 0.01 increase but generally no change, and
the training time also increases by 1 ms per step. This
suggests that a kernel size of 15 is appropriate for our 1D
CNN.

Changing the number of embedding dimensions, a hy-
perparameter for the first layer, impacted the training time.
Decreasing the number of dimensions to 32 reduced the time
to 17 ms, while increasing the dimensions to 128 raised
the time to 20 ms. However, both changes resulted in a
0.01 decrease in cosine similarity. Neither of these ablations
improved the model.

The filters in the convolutional layer are important for
extracting features from the data. More filters should extract
more features, which can lead to more similar embeddings.
This is reflected in an increase in cosine similarity to 0.76,

but this comes at the cost of an additional 3 ms in training
time. We decided not to increase the number of filters, as
the 0.02 performance increase was not worth the extra time.
Similarly, decreasing the filters reduced the performance by
0.01 and decreased the time by 1 ms. Again, the small
changes did not improve the model.

Next, we evaluated three activation functions—Rectified
Linear Units (ReLU), Sigmoid, and Swish—within the con-
volutional layer. ReLU (max(0, x)), Sigmoid (1/(1 + e−x))
and Swish (x/(1+e−x)) should empower the neural network
to identify a broader spectrum of non-linear patterns within
the data, thus providing the resulting embeddings with more
information. After testing the model with each activation
function, the results did not change or decrease. Addition-
ally, the training time increased by 2 ms when adding the
Swish function. This could be because convolutional layers
already perform a kind of element-wise non-linear operation
through the convolution process. This inherent non-linearity
identification might have been sufficient, and adding an extra
activation function did not alter the model’s ability to capture
more complex patterns.

Finally, we removed the 1D convolution layer to test
our assumption regarding its necessity for generating packet
embeddings. If the performance remains relatively consistent
or only experiences a minor degradation, it would suggest
that the 1D convolution layer might indeed be dispensable
for this task, indicating that a simpler architecture suffices.
However, the observed 0.22 decrease in results indicates that
the convolution layer provides important information to the
embeddings, thereby validating our assumption.

12 VOLUME ,

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Withings Scale vs rest (AUC = 0.86)
Chance level (AUC = 0.5)

(a) Human-engineered features.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Withings Scale vs rest (AUC = 0.83)
Chance level (AUC = 0.5)

(b) Word2Vec embeddings.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Withings Scale vs rest (AUC = 0.87)
Chance level (AUC = 0.5)

(c) Compression.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Withings Scale vs rest (AUC = 0.98)
Chance level (AUC = 0.5)

(d) 1D-CNN embeddings.

FIGURE 6. The ROC curves for a representative class, Withings Smart Scale, when using (a) human-engineered features, (b) Word2Vec embeddings, (c)
compression, and (d) 1D-CNN embeddings as input for the IoTSense classifier [3].

IV. Efficacy of Packet Embeddings in Predicting IoT
Classes
We now evaluate the practical utility of our embeddings
in real-world network analysis tasks by using them as
features in IoT device classifiers. To do this, we adapt
three established IoT device classification techniques [3]–[5],
modifying them to classify single packets instead of using
packet aggregation. Details of this adaptation process are
available in our previous work [1]. Despite adapting these
three techniques to operate with embeddings and compressed
data, we maintained the same hyperparameters across the
experiments to ensure consistent conditions.

We excluded the byte-value method due to its impractical
size and instead used the human-engineered features as the
baseline for comparison. The embeddings are again split
into 70% (the seen dataset from the previous experiment)
and 30% (the unseen dataset). Table 6 reports the average
accuracy, precision, recall and AUC of these experiments.

Additionally, we quantify the memory cost, the training
and inference times and computing costs. To track these
metrics during training and generation, we used CodeCarbon
2.3.4 [42]3. All evaluations were performed on a 64-bit
Ubuntu 5.4.0 server equipped with 20 AMD EPYC 7742
64-core processors, 1008 GB RAM, and 4 NVIDIA A100s
GPUs. It is worth noting that the Word2Vec, compression
and human feature engineering methods did not make use
of the GPUs. CodeCarbon measured the energy usage of the
GPUs and RAM, while providing an estimated CPU usage
based on the processors’ thermal design power. With the
collected information, we perform a cost-benefit analysis of
the techniques.

A. Performance
Table 6 provides an overview of the performance of embed-
dings generated by each method across the three classifiers.
We use macro-average to ensure that each class contributes
equally to the final evaluation metric. Calculating metrics for
each class independently and then averaging them prevents

3https://github.com/mlco2/codecarbon/tree/v2.4.1

TABLE 6. Macro-average performance across the three IoT classifiers.

Method Accuracy Precision Recall AUC
Compression 0.91 0.88 0.79 0.97

1D CNN 0.94 0.95 0.88 0.98

Human Features 0.88 0.87 0.78 0.96

Word2Vec 0.87 0.86 0.70 0.96

2D CNN 0.94 0.95 0.87 0.98

LSTM 0.94 0.94 0.87 0.98

Transformer 0.94 0.95 0.88 0.98

majority classes, like Dropcam, from disproportionately in-
fluencing the results. The results indicate that human feature
engineering ranks as the second worst-performing method.
This highlights the ability of neural networks to produce
useful embeddings that outperform those created by human
experts.

Fig. 6 illustrates the Receiver Operating Characteristic
(ROC) curves for a representative class, Withings Smart
Scale, across different methods. At a false positive rate of
0, the human-engineered features exhibit the second lowest
true positive rate, while the compression method performs
the worst. This again shows that the neural network models
generate more informative features than those developed by
humans, especially at the threshold of 0 false positives.

Surprisingly, compression does not have the worst AUC or
accuracy; that distinction goes to Word2Vec. The poor clus-
tering observed in the first experiment has resulted in subpar
performance in this experiment for Word2Vec. However,
the compression method, which initially exhibited worse
clustering performance than Word2Vec, now outperforms
it across all metrics. This suggests that features defining
clusters may not align with those defining class boundaries,
leading to ineffective clustering but effective classification.

The other embedding methods showed similar perfor-
mance, all resulting in trends resembling the one shown in
Fig. 6d. This highlights their ability to extract information
from the raw data. Although the LSTM method was ex-
pected to achieve the highest metrics according to the first

VOLUME , 13

https://github.com/mlco2/codecarbon/tree/v2.4.1

A. Pasquini et al.: Robust and Lightweight Modeling of IoT Network Behaviors from Raw Traffic Packets

TABLE 7. Costs of encoding methods when using the whole packet as input (normalized for 1000 input packets).

Method
Training Time

(Until 95% accuracy)
Training Cost

(Until 95% accuracy)
Embedding Generation Time

(Per 10000 inputs)

Inference Time
Embedding Generation + Classification

(Per 10000 inputs)

Inference Cost
(Per 10000 inputs)

Model Memory Cost

Compression 0 0 4.32s 4.38s 0.6 Wh 0

1D CNN 445s 121.9 Wh 2.00s 2.07s 0.4 Wh 1.71 MB

Human Features 0 0 53.68s 53.76s 7.3 Wh 0

Word2Vec 138s 18.8 Wh 87.73s 87.83s 12.0 Wh 0.09 MB

2D CNN 1145s 261.3 Wh 2.37s 2.43s 0.5 Wh 36.94 MB

LSTM 6013s 1563.0 Wh 30.64s 30.70s 6.6 Wh 4.87 MB

Transformer 49436s 12430.0 Wh 4.39s 4.46s 1.2 Wh 2.31 MB

1D CNN

2D CNN
LSTM

Transformer

Word2Vec

Human Features

Compression

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5 6

Pe
rf

or
m

an
ce

 S
co

re

Cost Score

FIGURE 7. Cost versus benefit of various techniques.

experiment, all neural networks, except Word2Vec, produced
similar results. This suggests a performance ceiling, where
approximately 6% of the packets are difficult to classify cor-
rectly. These 6% of packets are likely low-entropy packets,
such as those from the network time protocol (NTP). Once
the source IP and MAC addresses are removed from an NTP
packet, very little distinguishes an NTP packet sent by one
device from another.

B. Costs
All of the neural networks, except Word2Vec, achieved
over 90% accuracy, but the computational cost of achieving
that accuracy varied significantly. These differences can be
seen in Table 7. The inherent complexity of the neural
networks led to more demanding computational requirements
during both the training and inference stages. In contrast,
compression and human feature engineering techniques are
more resource-efficient due to their reduced algorithmic
complexity. For example, the LSTM model is 7.5 times
slower in generation time than the compression method.
Additionally, the compression and human-engineered feature
methods do not require model training.

Regarding energy costs, generally, the longer the model
takes to train and generate embeddings, the more power it
will consume. However, using the A100 GPUs can reduce
execution time at the cost of higher power consumption.
This is evident with the compression method taking ap-
proximately the same time to generate embeddings as the
transformer, but the transformer uses more power. The slower
time for compression is due to selecting the highest level of
compression for the packets.

The memory costs for each technique depend on the num-
ber of parameters required by the architecture. Interestingly,

execution times are not correlated with the model sizes;
rather, the types of transformations being performed have
a more significant impact. For example, the 2D CNN model
has 13 times more trainable parameters than the transformer
model, yet the transformer is 43 times slower during training.
However, higher memory costs do lead to increased energy
consumption. The 1D and 2D CNN models both have similar
embedding generation times, but the larger 2D CNN model
consumes approximately 25% more energy.

C. Cost vs Benefit Analysis
To determine the most cost-effective model, we ranked the
models based on their performance (Table 6) and costs (Table
7). Each column of Table 7 was used to rank the models
except for the embedding generation time, which is already
accounted for in the inference time. Models with the highest
performance or lowest cost received a score of 1, while those
with the lowest performance or highest costs received a score
of 7, given there are seven methods.

For example, the 1D CNN model received performance
scores of [4,5,6,4] (based on four performance metrics in
Table 6) and cost scores of [4,4,1,1,4] (based on five cost
metrics in Table 7). These scores were then averaged and
plotted in Fig. 7. The 1D CNN model is represented at the
score coordinates (cost, performance) = (2.8, 4.75). Note that
regions closer to the top left of Fig. 7, highlighted in green,
are more desirable than regions closer to the bottom right,
highlighted in red.

From Fig. 7, two techniques stand out: Compression and
the 1D CNN. These techniques offer the best performance
relative to their cost. However, our metrics do not capture the
entire picture. Traditional human feature extraction is often a
time-consuming process, and previous studies did not report
the time taken to identify those features. In contrast, both the
neural networks and compression pipelines streamline this
process by autonomously discerning information from the
raw data. Therefore, these methods are preferable to human
feature engineering.

A network engineer should choose compression or 1D
CNN based on the available resources. If resources are lim-
ited, compression is the recommended choice. If resources
are ample, 1D CNN is the better option.

To fully understand the suitability of our models, a larger-
scale experiment involving hundreds of devices should be
conducted. It is possible that more devices require bigger

14 VOLUME ,

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Whole Packet Ethernet Payload Ethernet Payload
(No Destination IP

addresses)

IP Payload Transport Payload

Ac
cu

ra
cy

FIGURE 8. The average accuracy of the three IoT classifiers with different
input datasets. Each input dataset went through the 1D CNN pipeline.
Error bars are omitted due to a minimal standard deviation of 0.001

models to distinguish the types, and compression alone may
not suffice. Another approach could be to classify devices
based on their function rather than their make/model. This
would reduce the number of classes needed and potentially
make the models more robust to out-of-distribution devices.
V. Balancing Packet Data Against Prediction Quality
We used the whole packet as the input throughout our
previous experiments, allowing the models to process any
packet. However, there are low information packets, and
using only parts of the packet might achieve similar results
without the extra processing cost. The optimal input should
have a smaller size, achieve high accuracy (or another
output metric), and be widely available in the network. A
smaller size is desirable as it reduces both the training and
inference costs. Widespread availability [6] in the network
also means that the data can be extracted without long
delays. Additionally, achieving 100% accuracy on 20% of
all network packets is less advantageous than achieving 75%
accuracy on 100% of the packets.

We examine four different types of inputs (Whole Packet,
Ethernet Payload, IP Payload, Transport Payload) and eval-
uate their size, availability and accuracy. We recognize that
the sub-datasets exclude packets found in the parent datasets;
for example, EAPOL packets are not included in the IP
Payload dataset. As shown in Fig. 4, our dataset is organized
into four subsets with specific relationships. We opted to
include all valid packets in the parent datasets to streamline
processing and avoid runtime filtering. In this experiment,
we also created a version of the Ethernet Payload sub-dataset
with the destination IP address removed from packet headers.

These five datasets are processed through the 1D CNN
pipeline and subsequently used to train the three multiclass
classifiers. Fig. 8 shows the average accuracy of the classi-
fiers trained on each sub-dataset. Additionally, we illustrate
in Fig. 9 how frequently five representative devices supply
input packet data in a 1-hour window. In what follows, we
discuss our experimental results.

1) Whole Packet
Using the whole packet as input for an IoT device classifier
provides a comprehensive view as it contains all the possible
information except for the source addresses. This approach
leads to relatively accurate classification for 94% of packets

(as indicated by the red bar in Fig. 8), but it also has the
maximum input size of 1504 (the maximum transmission
unit in our dataset). If a packet size is less than 1504 bytes,
then it needs to be padded, introducing redundant informa-
tion. This issue is exacerbated by protocols like the Address
Resolution Protocol (ARP), which lack distinguishing device
features, especially when source IP and MAC addresses are
removed from packets. Such packets become unclassifiable,
adding unnecessary computational overhead. That said, using
the entire packet avoids assumptions about specific packet
protocols and does not rely on dynamic conditional filters,
enabling it to accept any packet as input. This approach can
expedite the classification process for less frequently active
devices, such as the Pixtar photo frame and Blipcare blood
pressure meter (shown in the two bottom rows in Fig. 9).

2) Ethernet Payload
The Ethernet payload provides classifiers with nearly identi-
cal information as the whole packet, excluding the Ethernet
header. The solid green bar in Fig. 8 reveals that the Ethernet
payload achieves equivalent accuracy to the whole packet,
suggesting this specific header contributes little significant
information. We note that removing the Ethernet header
results in only a minor 8 byte reduction in total size. Impor-
tantly, the availability of the Ethernet payload is the same
as the whole packet within our dataset because all packets
include an Ethernet header. This uniformity may differ in
other network contexts. Choosing the Ethernet payload for
network administrators offers a preferable balance, delivering
comparable accuracy and availability at a slightly lower
computational cost.

3) IP Payload
Focusing solely on the IP payload emphasizes the actual
data exchanged between devices and their corresponding
endpoints, potentially retaining the distinctive patterns while
eliminating the irrelevant ones. This sub-dataset excludes
approximately 10% of all packets, mainly ARP packets,
which are likely to be incorrectly classified. Therefore, the
availability of this scenario is 90% of the Whole Packet
scenario. This sub-dataset achieves 99% accuracy, shown by
the yellow bar in Fig. 8. Removal of both the IP and Ethernet
headers reduces the total packet size by only about 2%. Since
all inputs must be padded to the maximum size, removing
these headers only gives a reduction of 24 bytes (The 4-
byte IP source address and 6-byte MAC source address are
already removed).

4) Transport Payload
The transport payload sub-dataset contains 40% fewer pack-
ets than the original dataset of whole packets. A significant
portion of those packets are involved in TCP handshakes
and do not carry payload data, leaving us with approxi-
mately 4.6 million usable packets. In Fig. 9, we observe
that packets with transport payloads (blue dots) are less
frequent compared to other packets, particularly noticeable

VOLUME , 15

A. Pasquini et al.: Robust and Lightweight Modeling of IoT Network Behaviors from Raw Traffic Packets

05:00 PM 05:05 PM 05:10 PM 05:15 PM 05:20 PM 05:25 PM 05:30 PM 05:35 PM 05:40 PM 05:45 PM 05:50 PM 05:55 PM 06:00 PM
Time

Blipcare Blood Pressure Meter

PIX-STAR Photo-Frame

HP Printer

Amazon Echo

Dropcam

Whole Packet Ethernet Payload Network (IP/IPv6) Payload Transport (TCP/UDP) Payload

FIGURE 9. The frequency and availability of various input packets emitted by five representative devices in our dataset within a one-hour window.

in the traffic from the HP printer and Pixtar photo frame.
Limiting the inputs to the packet payloads has been done in
many studies [17], [18], [20]. The data patterns within the
payloads are expected to strongly indicate the type of device
generating the traffic. However, this approach achieved only
96% accuracy (shown by the blue bar in Fig. 8), which is
lower than that achieved using the IP payloads. This suggests
that the transport headers do contribute valuable information
for device classification. Furthermore, the reduction in size
is minimal, approximately 8 bytes (UDP header)4, similar to
the IP payload scenario. Thus, relying on transport payload
is less favorable due to lower availability and accuracy
compared to IP packets, despite a marginal decrease in the
input size.

Discussion of Input Analysis
While primarily qualitative, our analysis above can be ex-
tended into a formal optimization framework. Constructing a
realistic objective function requires capturing three aspects:
computational costs, performance metrics, and input avail-
ability with normalization factors. Together, these elements
can help network administrators make informed decisions.
For administrators with sufficient resources, accuracy should
be prioritized over cost. Conversely, if resources are limited,
cost should be given more weight. Another area for further
exploration is examining the advantages and disadvantages

4When the maximum transmission unit (MTU) is used, the payload of
UDP packets is larger than that of TCP because UDP headers are only 8
bytes compared to at least 20 bytes for TCP. Therefore, all inputs in the
Transport Payload scenario will be padded to the maximum size, which
corresponds to the largest UDP payload possible.

of only the IP header or the first N bytes of a packet payload,
where N is a configurable parameter.

Alternative methods for quantifying the costs and avail-
ability of the inputs could be developed. Using size as a
proxy for computational costs may not be ideal, as not all
packets contain useful information. Also, one may prefer the
mean arrival time of each input to be a better measure of
packet availability. We note that packet availability varies
across different networks. Some devices might rarely use
certain protocols, while others use them frequently. Under-
standing this ratio would enable a more accurate model of
how quickly all devices can be classified correctly.

VI. Conclusion
This paper developed two novel approaches for classifying
network behaviors from IoT devices using packet embed-
dings: one based on a 1D CNN architecture and the other on
compression techniques. By applying these methods to real
traffic traces, we demonstrated that automatically generated
embeddings can achieve up to 6% higher classification
accuracy than features identified by expert humans. We
performed a cost-benefit analysis comparing the benefits of
neural network models to simpler algorithms. While neural
networks achieved a 94% performance metric, this came
with increased computational costs. Our compression and 1D
CNN models provided the best balance between performance
and cost. Finally, we examined the types of packet inputs
and their impact on availability, input size, and accuracy. We
found that using the IP payload of packets yields the highest
accuracy, but approximately 10% of packets do not contain
an IP layer. Therefore, network administrators should use the
whole packet as input until an IP packet is available.

16 VOLUME ,

Our compression embedder model uses fewer computing
resources than the 1D CNN embedder model, making it a
more efficient choice for embedding directly into network
switches. However, due to its lower predictive accuracy,
network operators may choose to configure switches to
dynamically forward packets from specific MAC addresses
to a central server running the 1D CNN-based model for
more accurate classification. Although the 1D CNN model
demands greater computational power, it offers higher clas-
sification accuracy, making it well-suited for deployment on
an appropriately configured central server.

Acknowledgment
This research is supported by the Commonwealth of Aus-
tralia as represented by the Defence Science and Technology
Group of the Department of Defence.

REFERENCES
[1] A. Pasquini et al., “Exploring the Reliability of IoT Packet Classifiers:

An Experimental Study,” in Proc. IEEE Globecom Workshops, Kuala
Lumpur, Malaysia, Dec 2023.

[2] I. Lee, “Internet of Things (IoT) Cybersecurity: Literature Review and
IoT Cyber Risk Management,” Future internet, vol. 12, no. 9, p. 157,
Sep 2020.

[3] B. Bezawada et al., “Behavioral Fingerprinting of IoT Devices,” in
Proc. ACM ASHES, Toronto, Canada, Oct 2018.

[4] K. Kostas et al., “IoTDevID: A Behavior-Based Device Identification
Method for the IoT,” IEEE IoT Journal, vol. 9, no. 23, pp. 23 741–
23 749, Jul 2022.

[5] M. Miettinen et al., “IoT SENTINEL: Automated Device-Type Iden-
tification for Security Enforcement in IoT,” in Proc. IEEE ICDS,
Atlanta, USA, Jul 2017.

[6] A. Pashamokhtari et al., “Efficient IoT Traffic Inference: From Multi-
View Classification to Progressive Monitoring,” ACM Trans. Internet
Things, vol. 5, no. 1, pp. 1–30, Dec 2023.

[7] M. Hamidouche et al., “Enhancing IoT Security via Automatic Net-
work Traffic Analysis: The Transition from Machine Learning to Deep
Learning,” arXiv preprint arXiv:2312.00034, Nov 2023.

[8] A. Pashamokhtari, N. Okui, Y. Miyake, M. Nakahara, and
H. Habibi Gharakheili, “Combining Stochastic and Deterministic Mod-
eling of IPFIX Records to Infer Connected IoT Devices in Residential
ISP Networks,” IEEE Internet of Things Journal, vol. 10, no. 6, pp.
5128–5145, Nov 2022.

[9] S. J. Saidi, A. M. Mandalari, R. Kolcun, H. Haddadi, D. J. Dubois,
D. Choffnes, G. Smaragdakis, and A. Feldmann, “A Haystack Full
of Needles: Scalable Detection of IoT Devices in the Wild,” in Proc
ACM IMC, Oct 2020.

[10] A. Hamza, D. Ranathunga, H. Habibi Gharakheili, T. A. Benson,
M. Roughan, and V. Sivaraman, “Verifying and Monitoring IoTs
Network Behavior Using MUD Profiles,” IEEE Transactions on De-
pendable and Secure Computing, vol. 19, no. 1, pp. 1–18, May 2020.

[11] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, “Feature Generating
Networks for Zero-Shot Learning,” in Proc. IEEE CVPR, Salt Lake
City, USA, Jun 2018.

[12] X. Xu et al., “Semantic Embedding Space for Zero-shot Action
Recognition,” in Proc. IEEE ICIP, Quebec, Canada, Sep 2015.

[13] C. Cheng et al., “Meta-Adapter: An Online Few-shot Learner for
Vision-Language Model,” Proc. NeurIPS, Dec 2023.

[14] W. Wang et al., “HAST-IDS: Learning Hierarchical Spatial-temporal
Features using Deep Neural Networks to Improve Intrusion Detection,”
IEEE access, vol. 6, pp. 1792–1806, Dec 2017.

[15] Y. A. Farrukh et al., “Senet-i: An Approach for Detecting Network
Intrusions Through Serialized Network Traffic Images,” Engineering
Applications of Artificial Intelligence, vol. 126, no. 4, p. 107169, Sep
2023.

[16] E. Paolini et al., “Real-Time Network Packet Classification Exploiting
Computer Vision Architectures,” IEEE Open Journal of the Commu-
nications Society, vol. 5, pp. 1155–1166, Feb 2024.

[17] M. Hassan et al., “Intrusion Detection Using Payload Embeddings,”
IEEE Access, vol. 10, pp. 4015–4030, Dec 2021.

[18] H. Y. He et al., “PERT: Payload Encoding Representation from
Transformer for Encrypted Traffic Classification,” in Proc. IEEE ITU
Kaleidoscope. Ha Noi, Vietnam: IEEE, Dec 2020.

[19] F. Le et al., “NorBERT: NetwOrk Representations Through BERT for
Network Analysis & Management,” in Proc. MASCOTS, Nice, France,
Oct 2022.

[20] H. Liu et al., “CNN and RNN Based Payload Classification Methods
for Attack Detection,” Knowledge-Based Systems, vol. 163, pp. 332–
341, Jan 2019.

[21] Y. Zhang et al., “IoTminer: Semantic Information Extraction in the
Packet Payloads,” in Proc. IEEE GLOBECOM, Rio de Janeiro, Brazil,
Jan 2022.

[22] G. Hu et al., “TCGNN: Packet-grained Network Traffic Classification
via Graph Neural Networks,” Engineering Applications of Artificial
Intelligence, vol. 123, no. 3, p. 106531, Aug 2023.

[23] L. Gioacchini et al., “Exploring Temporal GNN Embeddings for
Darknet Traffic Analysis,” in Proc. ACM GNNet, New York, USA, Dec
2023. [Online]. Available: https://doi.org/10.1145/3630049.3630175

[24] C. S. Wallace and D. L. Dowe, “Minimum Message Length and
Kolmogorov Complexity,” The Computer Journal, vol. 42, no. 4, pp.
270–283, Jan 1999.

[25] P. Deutsch, “Rfc1951: Deflate Compressed Data Format Specification
Version 1.3,” USA, 1996.

[26] H. Abdi and L. J. Williams, “Principal Component Analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp.
433–459, Jul 2010.

[27] E. L. Goodman et al., “Packet2Vec: Utilizing Word2Vec for Feature
Extraction in Packet Data,” arXiv preprint arXiv:2004.14477, Apr
2020.

[28] D. A. Bierbrauer et al., “Transfer Learning for Raw Network Traffic
Detection,” Expert Systems with Applications, vol. 211, p. 118641, Jan
2023.

[29] A. Sivanathan et al., “Detecting Behavioral Change of IoT devices
using Clustering-Based Network Traffic Modeling,” IEEE IoT Journal,
vol. 7, no. 8, pp. 7295–7309, Mar 2020.

[30] D. K. Kholgh and P. Kostakos, “PAC-GPT: A Novel Approach to
Generating Synthetic Network Traffic with GPT-3,” IEEE Access,
vol. 11, pp. 114 936–114 951, Oct 2023.

[31] K. Mao et al., “Byte-Label Joint Attention Learning for Packet-grained
Network Traffic Classification,” in Proc. IEEE/ACM IWQOS, Tokyo,
Japan, Jun 2021.

[32] P. Lin et al., “A Novel Multimodal Deep Learning Framework for
Encrypted Traffic Classification,” IEEE/ACM Transactions on Net-
working, vol. 31, no. 3, pp. 1369–1384, Jun 2023.

[33] T. Mikolov et al., “Efficient Estimation of Word Representations in
Vector Space,” arXiv preprint arXiv:1301.3781, Sep 2013.

[34] J. Pennington et al., “Glove: Global Vectors for Word Representation,”
in Proc. ACL EMNLP, Doha, Qatar, Oct 2014.

[35] J. Devlin et al., “Bert: Pre-training of Deep Bidirectional Transformers
for Language Understanding,” arXiv preprint arXiv:1810.04805, May
2018.

[36] Z. Jiang et al., ““Low-Resource” Text Classification: A Parameter-
Free Classification Method with Compressors,” in Proc. Association
for Computational Linguistics, Toronto, Canada, Jul 2023, pp. 6810–
6828.

[37] J.-l. Gailly and M. Adler, “Zlib Compression Library,” 2004.
[38] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling

with Large Corpora,” in Proc. LREC Workshop on New Challenges
for NLP Frameworks, Valletta, Malta, May 2010.

[39] R. Bikmukhamedov and A. Nadeev, “Generative Transformer Frame-
work for Network Traffic Generation and Classification,” T-Comm,
vol. 14, no. 11, pp. 64–71, Oct 2020.

[40] R.-H. Hwang et al., “An LSTM-Based Deep Learning Approach
for Classifying Malicious Traffic at the Packet Level,” Applied
Sciences, vol. 9, no. 16, Aug 2019. [Online]. Available: https:
//www.mdpi.com/2076-3417/9/16/3414

[41] A. Sivanathan et al., “Classifying IoT Devices in Smart Environments
Using Network Traffic Characteristics,” IEEE Transactions on Mobile
Computing, vol. 18, no. 8, pp. 1745–1759, Aug 2019.

[42] B. Courty et al., “mlco2/codecarbon: v2.4.1,” May 2024. [Online].
Available: https://doi.org/10.5281/zenodo.11171501

VOLUME , 17

https://doi.org/10.1145/3630049.3630175
https://www.mdpi.com/2076-3417/9/16/3414
https://www.mdpi.com/2076-3417/9/16/3414
https://doi.org/10.5281/zenodo.11171501

A. Pasquini et al.: Robust and Lightweight Modeling of IoT Network Behaviors from Raw Traffic Packets

Appendix

TABLE 8. 2D CNN architecture, where N is the batch size.

Input [4D]N×32×47×1

Layer Output Shape # of Parameters Hyperparameters
BatchNormalization [4D]N×32×47×1 4

Relu Activation [4D]N×32×47×1 0

Conv2D [4D]N×32×47×16 160
filters = 16, kernel size = (3, 3)

padding = same

BatchNormalization [4D]N×32×47×16 64

Relu Activation [4D]N×32×47×16 0

Conv2D [4D]N×32×47×16 2320
filters = 16, kernel size = (3, 3)

padding = same

BatchNormalization [4D]N×32×47×16 64

Relu Activation [4D]N×32×47×16 0

Conv2D [4D]N×32×47×32 4640
filters = 32, kernel size = (3, 3)

padding = same

BatchNormalization [4D]N×32×47×32 128

Relu Activation [4D]N×32×47×32 0

Conv2D [4D]N×32×47×32 9248
filters = 32, kernel size = (3, 3)

padding = same

BatchNormalization [4D]N×32×47×32 128

Relu Activation [4D]N×32×47×32 0

Conv2D [4D]N×32×47×64 18496
filters = 64, kernel size = (3, 3)

padding = same

BatchNormalization [4D]N×32×47×64 256

Relu Activation [4D]N×32×47×64 0

Conv2D [4D]N×16×24×64 36928
filters = 64, kernel size = (3, 3)

padding = same, strides = (2, 2)

Flatten [2D]N×24576 0

Dense [2D]N×128 3145856 units = 128, activation = relu

Dropout [2D]N×128 0 rate = 0.2

Dense [2D]N×64 8256 units = 64, activation = relu

Dropout [2D]N×64 0 rate = 0.2

Classification [2D]N×22 1430 units = 22, activation = softmax

Note: The padding type is called “SAME” because it ensures that the
output size remains the same as the input size.

TABLE 9. Transformer Architecture, where N is the batch size

Input [2D]N×1504

Layer Output Shape # of Parameters Hyperparameters

TokenAndPositionEmbedding [3D]N×1504×64 112640

vocab size = 256

sequence length = 1504

embedding dim = 64

TransformerDecoder [3D]N×1504×64 33472

intermediate dim = 128

num heads = 2, dropout = 0.2

normalize first = True

TransformerDecoder [3D]N×1504×64 29344

intermediate dim = 96

num heads = 2, dropout = 0.2

normalize first = True

TransformerDecoder [3D]N×1504×64 25216

intermediate dim = 64

num heads = 2, dropout = 0.2

normalize first = True

LayerNormalization [3D]N×1504×64 128

GlobalMaxPooling1D [2D]N×64 0

Classification [2D]N×22 1430 units = 22, activation = softmax

TABLE 10. LSTM architecture, where N is the batch size

Input [2D]N×1504

Layer Output Shape # of Parameters Hyperparameters
Embedding [3D]N×1504×64 16384 vocab size = 256, output dim = 64

Bidirectional LSTM [3D]N×1504×256 197632 units = 128, return sequences = True

Dropout [3D]N×1504×256 0 rate = 0.2

Bidirectional LSTM [3D]N×1504×128 164352 units = 64, return sequences = True

Dropout [3D]N×1504×128 0 rate = 0.2

Bidirectional LSTM [2D]N×64 41216 units = 32, return sequences = False

Dropout [2D]N×64 0 rate = 0.2

Dense [2D]N×64 4160 units = 64

Classification [2D]N×22 1430 units = 22, activation = softmax

Aleksandar Pasquini received his Bachelor of
Science degree in 2019 and his Master of Infor-
mation Technology degree in 2022, both from the
University of Melbourne. He is currently pursuing
a Ph.D. in Computer Science at Deakin University.
His research interests include network behavior
characterization, machine learning in networks,
and the Internet of Things (IoT).

Rajesh Vasa received his BAppSc. (1997) and
PhD in Software Engineering (2010) from Swin-
burne University of Technology. He is currently the
Head of Translational Research & Development at
Deakin Applied AI Institute, Deakin University;
and holds a Chair in Software and Technology
Innovation. His research interests include evolution
of complex systems, robustness of AI, construction
agentic systems and quantification of failure in AI
models.

Irini Logothetis (MIEAust CPEng NER
APEC Engineer IntPE(Aus)) received her
BCCompSc(Hons) BEng(Elect)(Hons) in 2005
and her Ph.D. in Engineering in 2021. She is a
Senior Research Fellow at the Applied Artificial
Intelligence Institute (A2I2) at Deakin University.
Her research is in knowledge reasoning and
representation in sustainability for social value.

Hassan Habibi Gharakheili received his B.Sc.
and M.Sc. degrees in Electrical Engineering from
the Sharif University of Technology in Tehran,
Iran, in 2001 and 2004, respectively, and his Ph.D.
in Electrical Engineering and Telecommunications
from the University of New South Wales (UNSW)
in Sydney, Australia in 2015. He is currently a
Senior Lecturer at UNSW Sydney. His research in-
terests include programmable networks, learning-
based networked systems, and data analytics in
computer systems.

Alexander Chambers received his PhD in
High-Performance Computational Physics from
the University of Adelaide in 2018. He is cur-
rently a cybersecurity researcher at Defence Sci-
ence Technology Group, Australia. His research
interests include data science applications to cyber-
security, particularly network analysis and security
operations.

Minh Tran received his PhD in Computer Systems
Engineering from the University of South Australia
in 2011. He is currently a cybersecurity researcher
at the Defence Science and Technology Group,
Australia. His research interests are in the areas of
cyber terrain mapping and user/entity behavioural
analytics.

18 VOLUME ,

	Introduction
	Background and Related Work
	Data Encoding for Learning Tasks
	Prior Research on Packet Encoding
	Image Based Techniques
	Graph Based Techniques
	Text Based Techniques
	Byte Based Techniques
	Our Novelty

	Lightweight Transformation of Traffic Packets
	Packet Encoding Models
	Our Lightweight 1D CNN Model
	Our Lightweight Compression Model

	Compared Encoding Techniques
	Naive Encoding
	Word2Vec
	2D CNN
	Transformer
	LSTM

	Do Encoding Models Represent IoT Behavior?
	Our Packet Traces Data
	Efficacy of Packet Encodings
	Similarity Results
	1D CNN Ablation

	Efficacy of Packet Embeddings in Predicting IoT Classes
	Performance
	Costs
	Cost vs Benefit Analysis

	Balancing Packet Data Against Prediction Quality
	Whole Packet
	Ethernet Payload
	IP Payload
	Transport Payload

	Conclusion
	REFERENCES
	Appendix
	Biographies
	Aleksandar Pasquini
	Rajesh Vasa
	Irini Logothetis
	Hassan Habibi Gharakheili
	Alexander Chambers
	Minh Tran

